
Definition of the Lingay programming language

(Version 0.2)

John Longley

August 26, 2008

Abstract

This document formally defines Lingay, a higher order object oriented programming
language inspired by game semantics and intended as a kernel for the proposed Eriskay
programming language. The present definition serves as a formal basis for metatheo-
retical study of the language and for the development of prototype implementations.

Introduction

This document formally defines Lingay — a strongly typed, higher order, class-based object
oriented programming language whose design has been closely guided by ideas from game
semantics. Lingay is proposed as a kernel for Eriskay, a full-scale programming language
currently under development and envisaged as a framework for future work in program
verification. We intend Lingay as a research language embodying many of the innovative
aspects of Eriskay, and suitable for pedagogical purposes, metatheoretical study, program-
ming experiments and case studies in program verification. The motivations for the project
and its semantic underpinnings, along with an informal introduction to the main features
of the language, are presented in a companion document.1 A prototype implementation of
Lingay is also available from the Eriskay project website.2

The present version of the definition of Lingay supersedes a substantially different one
which appeared as an appendix to our contribution to the GaLoP III workshop (ETAPS,
Budapest, April 2008), and which we now refer to as Version 0.1.

The author is grateful to Nicholas Wolverson for the research collaboration out of which
this language definition has grown, and for his work on the implementation which generated
much valuable feedback on the definition. This work was supported by EPSRC Grant
GR/T08791: “A programming language based on game semantics”.

1Longley, J. and Wolverson, N., Eriskay: a programming language based on game semantics. To appear
as an Informatics Research Report, University of Edinburgh, 2008.

2http://homepages.inf.ed.ac.uk/jrl/Eriskay

1

1 Lexical matters

A Lingay program text is a sequence of ASCII characters. At the lexical level, a program
text is analysed as a sequence of input elements, each of which is a whitespace element, a
comment, or a token.

A whitespace element is a sequence consisting of a single whitespace character (space,
horizontal tab, form feed, newline, or return).

A comment is either an end-of-line comment, of the form // text and running to the
end of the line, or a traditional comment, of the form /* text */ where text is non-empty
and possibly spreads over several lines. Formally, the set of possible comments is defined
via the following regular expression:

(// non-line-term∗) + (/* non-star (non-star∗ * *∗ non-star-slash)∗ non-star∗ * *∗ /)

where non-line-term is the set of all ASCII characters except newline and return; non-star is
the set of all ASCII characters except *; and non-star-slash is the set of all ASCII characters
except * and /. Note that in Lingay, as in Java, traditional comments do not nest.

Tokens are certain non-empty sequences of non-whitespace ASCII characters, and are of
two kinds: reserved and non-reserved. The reserved tokens in Lingay are as follows:3

{ } [| |] () : ; . , ? ! -o -> => :< | = := $ ** +> + - < ...
as bool case class classimpl constr der deref else end extend extending false
fields fn fold for funclass if in int linear linclass methods new of oncefn
prom rec recval ref reftype root split tag then tok true unfold val unit with

Each non-reserved token belongs to one of five lexical categories, which are pairwise
disjoint. In addition, certain reserved tokens are classified as belonging to one of these
categories. The lexical categories are as follows:

• Identifiers, ranged over by the metavariables x, y, k, f,m, t according to the context. In
general, an identifier in Lingay is any finite sequence of alphabetic characters, numeric
digits, underscores () and primes (’), beginning with an alphabetic character, which
is not a reserved token.

• Infixes, which in Lingay are just the reserved tokens +, - and <, ranged over by ı.

• Boolean literals, which are just the reserved tokens true and false.

• Integer literals such as 0, 5 and ~23. In general, an integer literal is either the token
0, or a non-zero digit followed by zero or more further digits, or the ‘minus’ charac-
ter ~ followed by a non-zero digit followed by zero or more further digits. Literals
representing integers of arbitrary absolute size are admitted.

• Type constants, which in Lingay are just the reserved tokens bool and int, ranged
over by κ.

3Strictly speaking, for the sake of compatibility with the future definition of Eriskay, the entire present
definition of Lingay may be regarded as parameterized by a set of reserved tokens which must include those
listed here.

2

We also define the class of literals (ranged over by lit) to consist of the boolean literals
and integer literals.

As usual, the source text of a program is lexically analysed into a sequence of input
elements according to the principle of longest match. Whitespace elements and comments
are then discarded from this sequence, so that for the purpose of the remainder of the
definition, a Lingay program may be regarded simply as a sequence of tokens.

2 Types

2.1 Surface and underlying type expressions

The syntax of surface type expressions is defined by the LALR(1) grammar given in Figure 1.
Here, as elsewhere, the symbol ε indicates the empty sequence of tokens. If X is any phrase
category, we write Clist (X) for the phrase category of (possibly empty) comma-separated
lists of phrases of type X:

Clist (X) ::= ε | Cbody (X) X
Cbody (X) ::= ε | Cbody (X) X ,

Phrases generated by the productions labelled † in Figure 1 are called derived forms. We let
t range over surface type expressions (strictly speaking, over phrases of category type-expr
or type-expr1 in the grammar of Figure 1).

For the purpose of the formal definition, we distinguish between such surface type ex-
pressions and underlying type expressions, the latter being syntax trees for the (ambiguous)
grammar given in Figure 2. We let τ, σ, ζ, ξ range over underlying type expressions (that is,
syntax trees of category type-expr under the grammar of Figure 2), and π over underlying
labelled product type expressions of the form {Clist (comp-type)}. We also let lo range over
the phrase category lin-opt.

The following operations are associated with underlying type expressions.

• If π = {k0 : τ0, · · · ,kn−1 : τn−1} and π′ = {k′0 : τ ′0, · · · ,k′n′−1 : τn′−1} where the ki

and k′j are all distinct, we write π + π′ for the type

{k0 : τ0, · · · ,kn−1 : τn−1,k
′
0 : τ ′0, · · · ,k′n′−1 : τn′−1}

Otherwise π + π′ is undefined.

• If π = {k0 : τ0, · · · ,kn−1 : τn−1} and π′ = {k′0 : τ ′0, · · · ,k′n′−1 : τn′−1}, and whenever
ki = k′j we have τi = τ ′j , we say π′ is compatible with π. In this case we define π ⊕ π′

to be the type

{ki0 : τi0, · · · ,kir−1 : τir−1,k
′
0 : τ ′0, · · · ,k′n′−1 : τ ′n′−1}

where i0 < · · · < ir−1 and {ki0 , . . . , kir−1} = {k0, . . . , kn−1} − {k′0, . . . , k′n′−1}. If π′ is
not compatible with π, π ⊕ π′ is undefined.

We say π′ extends π if π′ = π + π′′ for some π′′, or equivalently if π′ = π ⊕ π′′ for some π′′

(see rule 41 of Section 4).

3

type-expr ::= type-expr1
| type-expr1 -o type-expr (linear function type)

† | type-expr1 -> type-expr (reusable function type)
† | type-expr1 ** type-expr (merged product type)

| rectype t => type-expr (recursive type)
type-expr1 ::= κ (type constant)

† | unit (unit type)
† | t (type name)

| { Clist (comp-type) } (labelled product)
| VS (type-expr,type-expr) (value-state product)
| [| Clist (summand-type) |] (labelled sum)
| ! type-expr1 (reusable type)
| lin-opt classimpl type-expr, (class implementation type)

type-expr,type-expr end
† | lin-opt classimpl (class implementation type,

fields type-expr sugared version)
methods type-expr
constr type-expr end

† | (type-expr) (parsing brackets)
comp-type ::= k:type-expr (component typing)

summand-type ::= k of type-expr (summand typing)
† | k (singleton summand)

lin-opt ::= ε | linear

Figure 1: Context-free grammar for surface type expressions

type-expr ::= κ
| { Clist (comp-type) }
| [| Clist (summand-type) |]
| ! type-expr
| type-expr -o type-expr
| rectype t => type-expr
| lin-opt classimpl type-expr,

type-expr,type-expr end
comp-type ::= k:type-expr

summand-type ::= k of type-expr
lin-opt ::= ε | linear

Figure 2: Context-free grammar for underlying type expressions

4

2.2 Translation of derived forms

Surface type expressions may be translated to underlying ones in the presence of a type
abbreviation environment. Formally, a type abbreviation environment Θ is a finite partial
function mapping identifiers t to underlying type expressions τ . If Θ is a type abbreviation
environment, we define a function −Θ from surface to underlying type expressions by induc-
tion on the structure of surface type expressions as follows. Note the distinction between
object-level brackets (,) and meta-level parentheses (,).

• For the derived forms in Figure 1, we define

(t -> t′)Θ = ! (tΘ -o t′Θ)
(t ** t′)Θ = tΘ + t′Θ

unitΘ = { }

tΘ =
[

Θ(τ) if τ ∈ dom Θ
t otherwise

VS (t,t′)Θ = { value=tΘ, state=t′Θ}
(lo classimpl fields tf

methods tm constr tk end)Θ = lo classimpl tf,tm,tk endΘ

(t)Θ = tΘ

• For recursive types, we define

(rectype t => t)Θ = rectype t => tΘ\t

where (Θ\t)(t′) = Θ(t′) for t′ 6= t, and (Θ\t)(t) is undefined.

• The remaining forms in Figure 1 are translated in the evident way, e.g.:

{k0:t0, · · · ,kn−1:tn−1}Θ = {k0:t
Θ
0 , · · · ,kn−1:t

Θ
n−1}

[|sm0, · · · ,smn−1|]
Θ = [|smΘ

0 , · · · ,smΘ
n−1|]

In this last clause, we make use of an auxiliary translation on phrases sm of category
summand-type defined by

(k of t)Θ = k of tΘ

kΘ = k of { }

2.3 Meta-level type abbreviations

As an aid to readability, we shall freely use the above derived forms in meta-level expres-
sions intended to denote underlying type expressions. Thus, for example, the meta-level
expression τ -> τ ′ serves as an abbreviation for the meta-level expression !(τ -o τ ′). We also
introduce the following meta-level abbreviations for type expressions:

VR (τ0, τ1) = { value:τ0, residue:τ1 }

5

Catchcont (ζ, ξ, τ0, τ1) = [| result : {value:τ0, more: (ζ -> ξ) -o τ1} ,
query : {arg:ζ, resume: ξ -o (ζ -> ξ) -oVR (τ0, τ1)} |]

Rootlo = lo classimpl unit,unit,unit end

Read(σ) = unit ->σ

Write(σ) = σ -> unit

RW (σ) = { read:Read(σ), write:Write(σ)}

For a labelled product type π = {k0:σ0, . . . ,kn−1:σn−1}, we then define

RW all (π) = {k0:RW (σ0), · · · ,kn−1:RW (σn−1)}

We also introduce a notation π\loπ
′, whose definition depends on the value of lo:

• If π = {k0:!τ0, · · · ,kn−1:!τn−1} and π′ is an arbitrary labelled product type expres-
sion, we define

π\επ
′ = {k0:RW all (π′) -> τ0, · · · ,kn−1:RW all (π′) -> τn−1}

• If π = {k0:ρ0 -> ρ′0, · · · ,kn−1:ρn−1 -> ρ′n−1}, we define

π\linearπ
′ = {k0:VS (ρ0, π

′) -> VS (ρ′0, π
′), · · · ,kn−1:VS (ρn−1, π

′) -> VS (ρ′n−1, π
′)}

In each case, if π is not of the appropriate form then π\loπ
′ is undefined.

2.4 Well-formedness and status for types

The rules below generate judgements of the form ∆ ` τ ∝ sd, meaning “τ is a well-formed
type expression with status sd in status environment ∆”. Here sd ranges over the status
descriptors ordinary, reusable, ground, which we take to be linearly ordered as follows:

ordinary v reusable v ground

A status environment ∆ has the form • t0 ∝ sd0 · · · • tn−1 ∝ sdn−1, where the identifiers ti
play the role of free type names. We write ∆[t] for the status associated with the rightmost
appearance of t in ∆ (if there is no such appearance then ∆[t] is undefined).

The rules for classimpl types require the following definitions. A type πm is said to be
of class form relative to types σ0, . . . , σq−1 if πm is of the form

{ m0:!(σ0 -oσ′
0), . . . ,mq−1:!(σq−1 -oσ′

q−1) }

for some σ′
0, . . . , σ

′
q−1 and distinct identifiers m0, . . . ,mq−1. We say simply that πm is of

class form if it is of class form relative to some σ0, . . . , σq−1.

∆ ` τ ∝ sd
∆ ` τ ∝ sd′

sd′ v sd
(1)

6

∆ ` κ ∝ ground

(2)

∆ ` t ∝ sd
∆[t] = sd

(3)

∆ ` τ0 ∝ sd · · · ∆ ` τn−1 ∝ sd
∆ ` { k0:τ0, . . . ,kn−1:τn−1 } ∝ sd

k0, . . . , kn−1 distinct
(4)

∆ ` τ0 ∝ sd · · · ∆ ` τn−1 ∝ sd
∆ ` [| k0:τ0, . . . ,kn−1:τn−1 |] ∝ sd

n > 0
k0, . . . , kn−1 distinct

(5)

∆ ` τ ∝ ordinary

∆ ` !τ ∝ reusable

(6)

∆ ` τ ∝ ground

∆ ` !τ ∝ ground

(7)

∆ ` τ ∝ ordinary ∆ ` τ ′ ∝ ordinary

∆ ` τ -o τ ′ ∝ ordinary

(8)

∆ • t ∝ sd ` τ ∝ sd
∆ ` rectype t => τ ∝ sd

t 6∈ dom ∆
(9)

∆ ` πf ∝ reusable ∆ ` πm ∝ reusable ∆ ` τk ∝ ordinary

∆ ` classimpl πf,πm,τk end ∝ reusable
πm of class form

(10)

∆ ` πf ∝ ordinary ∆ ` πm ∝ reusable ∆ ` τk ∝ ordinary
∆ ` σ0 ∝ ground · · · ∆ ` σq−1 ∝ ground

∆ ` linear classimpl πf,πm,τk end ∝ reusable

πm of class
form relative to
σ0, . . . , σq−1

(11)

We say τ is a well-formed type expression in ∆ if ∆ ` τ ∝ ordinary. We say that well-
formed type expressions τ, τ ′ in ∆ are equivalent, and write τ ≈ τ ′, if they are the same up
to permutations of components in labelled product and sum types and renaming of bound
type names t in type expressions rectype t => τ ; we omit the formal definition. For the
purpose of Lingay, we may define underlying types in ∆ to be the well-formed types in
∆ modulo equivalence. We let τ ,σ range over underlying types, and π over underlying
labelled product types. As a slight abuse of notation, we sometimes write τ ≈ τ to mean
that τ is an element of the equivalence class τ . Likewise, we say π′ extends π if some
element π′ of π′ extends π.

We write FTN(τ) for the set of type names that occur free in a type expression τ (where
reftype is treated as a binder), and similarly for underlying types. We write τ [τ ′/t] for
the result of replacing each free occurrence of t within τ by τ ′ (no renaming of bound type
names is necessary).

We also define the notion of a groundless type expression inductively as follows:

7

• int and bool are not groundless.

• Type names t are not groundless.

• {k0 : τ0, · · · ,kn−1 : τn−1} is groundless iff all the τi are groundless.

• [|k0 : τ0, · · · ,kn−1 : τn−1|] is groundless iff n = 1 and τ0 is groundless.

• !τ is groundless iff τ is groundless.

• τ -o τ ′ is groundless.

• rectype t => τ is groundless iff τ is groundless.

• classimpl πf,πm,τk end and linear classimpl πf,πm,τk end are groundless.

Finally, we define the notion of a first-order type expression in ∆ inductively as follows:

• If ∆ ` τ ∝ ground then τ is first-order in ∆.

• {k0 : τ0, · · · ,kn−1 : τn−1} and [|k0 : τ0, · · · ,kn−1 : τn−1|] are first-order in ∆ iff all
the τi are first-order in ∆.

• !τ is first-order in ∆ iff τ is.

• If ∆ ` τ ∝ ground and τ ′ is first-order in ∆, then τ -o τ ′ is first-order in ∆.

• If τ is first-order in ∆ • t ∝ ground, then rectype t => τ is first-order in ∆.

Note that type expressions of the form τ -o τ ′ or lo classimpl πf , πm, τk end are never
first-order.

2.5 Subtyping

Next we define a subtyping relation on well-formed type expressions. The following rules
generate assertions of the form Σ ` τ <: τ ′, where Σ is a subtyping environment of the form
• t0 <: t′0 · · · • tn−1 <: t′n−1. Here Sn denotes the set of permutations of {0, . . . , n− 1}.

Σ ` κ <: κ

(12)

Σ ` t <: t′
t = t′ or
• t<: t′ ∈ Σ

(13)

Σ ` τ0 <: τ ′0 · · · Σ ` τn−1 <: τ ′n−1

Σ ` {k0 : τ0, · · · ,kn′−1 : τn′−1} <: {kp0 : τ ′p0, · · · ,kp(n−1) : τ ′p(n−1)}

n′ ≥ n
p ∈ Sn

τn, . . . , τn′−1

groundless

(14)

8

Σ ` τ0 <: τ ′0 · · · Σ ` τn−1 <: τ ′n−1

Σ ` [|kp0 : τp0, · · · ,kp(n−1) : τp(n−1)|] <: [|k0 : τ ′0, · · · ,kn′−1 : τ ′n′−1|]

n′ ≥ n
p ∈ Sn

(15)

Σ ` τ <: τ ′

Σ ` !τ <: !τ ′
(16)

Σ ` τ ′0 <: τ0 Σ ` τ1 <: τ ′1
Σ ` τ0 -o τ1 <: τ ′0 -o τ ′1

(17)

Σ • t′0 <: t′1 ` τ0[t′0/t0] <: τ1[t′1/t1]
Σ ` rectype t0 => τ0 <: rectype t1 => τ1

t′0 6∈ τ0, t′1 6∈ τ1

t′0 6= t′1

(18)

Σ ` τ ′k <: τk

Σ ` lo classimpl πf,πm,τk end <: lo classimpl πf,πm,τ ′k end

(19)

If τ, τ ′ are well-formed type expressions in some ∆, we write simply τ <: τ ′ for ∅ ` τ <: τ ′,
where ∅ denotes the empty subtyping environment. Clearly the relation <: is compatible
with equivalence of type expressions, so that we may regard <: as a relation (in fact, a
partial order) on underlying types in any given ∆.

2.6 Types for literals and infixes

To each literal lit we associate a type ty (lit) as follows: boolean literals have type bool, and
integer literals have type int. To each infix ı we associate a result type ty (ı) as follows:
ty (+) = ty (-) = int, and ty (<) = bool.

3 Expressions

3.1 Surface and underlying expressions

The surface syntax of expressions is given by the grammar of Figures 3 and 4, in conjunction
with that of Figure 1. For any phrase category X, we define Clist (X) as in Section 2, and
define Blist (X) to be the phrase category of (possibly empty) bar-separated lists over X:

Blist (X) ::= ε | Bbody (X) X
Bbody (X) ::= ε | Bbody (X) X |

Phrases generated by the productions labelled † are called derived forms. We let e range
over surface expressions — that is, over phrases of any of the categories

expr expr1 expr2 expr3 expr4 expr0

9

expr ::= expr1
| oncefn match (linear function)

† | fn match (reusable function)
| rec match (fixed point)
| catchcont match (continuation catching)
| if expr then expr else expr (conditional)

† | k := expr (field update)
expr1 ::= expr2

| expr2 = expr2 (equality test)
| expr2 \ expr2 (value-state pair)

expr2 ::= expr3
| expr2 $ expr3 (strict application)
| expr3 ı expr3 (infix expression)
| expr3 +> expr3 (record merge/override)
| expr3 :< type-expr (upcasting)

expr3 ::= expr4
| tag k expr4 (summand labelling)

† | tok k (singleton summand)
† | expr3 . k (component extraction)

| prom expr4 (reusable promotion)
| der expr4 (non-reusable dereliction)
| force expr4 (promoted thunk forcing)
| fold type-expr1 expr4 (rectype introduction)
| unfold expr4 (rectype elimination)

† | expr3 expr4 (derelicted application)
| new expr4 (new object)
| make expr4 expr4 (special linear object)
| ref t expr4 (referencing)
| deref expr4 (dereferencing)

expr4 ::= x (variable)
| lit (literal)

† | () (unit value)
† | ? k (field access)

| {Clist (comp-assign) } (labelled record)
| split expr0 as record-pat in expr0 end (record separation)

† | split expr0 as record-pat1 in expr0 end (sugared record separation)
| case expr0 of Blist (case-clause) end (sum elimination)
| lin-opt root (trivial class body)
| lin-opt extend expr with expr,expr end (class extension)

† | class-expr (sugared class expression)
| reftype t for type-expr in expr0 end (reference type expression)

† | (expr0) (parsing brackets)

Figure 3: Context-free grammar for surface expressions, part 1

10

expr0 ::= expr
† | decl expr0 (local declaration)

decl ::= val pattern = expr ; (simple declaration)
| recval x : type-expr = expr ; (recursive declaration)
| expr ; (it declaration)

match ::= x : type-expr => expr (simple match clause)
† | pattern1 : type-expr => expr (derived match clause)
† | fold type-expr1 pattern => expr (rectype match clause)

pattern ::= pattern1
| x (atomic pattern)
| record-pat (record pattern)
| fold type-expr1 pattern (rectype pattern)

pattern1 ::= (wildcard pattern)
| record-pat1 (delimited record pattern)
| (pattern) (parsing brackets)

record-pat ::= { comp-pat-list } + x (general record binding)
record-pat1 ::= { comp-pat-list } (rigid record binding)

| { comp-pat-list ... } (flexible record binding)
| (pattern \ pattern) (value-state pattern)

comp-pat-list ::= Clist (comp-pat)
comp-pat ::= k = pattern (component pattern)

comp-assign ::= k = expr (component assignment)
case-clause ::= k x => expr0 (simple case clause)

† | k pattern1 => expr0 (derived case clause)
† | k => expr0 (singleton case clause)

class-expr ::= class-kind :: type-expr (sugared class expression)
extend-clause
with class-details end

class-kind ::= class | funclass | linclass
extend-clause ::= ε

| extending expr : type-expr
| extending x

class-details ::= fields type-expr
methods {Clist (method-body) }
constr match

method-body ::= m pattern1 = expr

Figure 4: Context-free grammar for surface expressions, part 2

11

expr ::= x
| lit
| {Clist (comp-assign) }
| expr +> expr
| split expr as record-pat in expr end
| tag k expr
| case expr of Blist (case-clause) end
| prom expr
| der expr
| force expr
| fold type-expr expr
| unfold expr
| oncefn match
| expr $ expr
| expr = expr
| expr ı expr
| if expr then expr else expr
| rec match
| catchcont match
| expr :< type-expr
| lin-opt root
| lin-opt extend expr with expr,expr end
| new expr
| make expr expr
| reftype t for type-expr in expr
| ref t expr
| deref expr

match ::= x : type => expr
comp-assign ::= k = expr

record-pat ::= {Clist (comp-bind) } + x
comp-bind ::= k = x
case-clause ::= k x => expr

Figure 5: Context-free grammar for underlying expressions

12

value ::= x
| lit
| {Clist (comp-value) }
| tag k value
| prom value
| fold type-expr value
| oncefn x : type => expr
| value :< type-expr
| lin-opt root
| lin-opt extend lin-opt root with value,value end
| reftype t for type-expr in value end

comp-value ::= k = value

Figure 6: Context-free grammar for values

We also introduce metavariables ranging over other phrase categories as follows.

mt ∈ match
cs ∈ case-clause
csl ∈ Blist (case-clause)
ck ∈ class-kind

dtls ∈ class-details
mb ∈ method-body
pt ∈ pattern

pt1 ∈ pattern1
rp ∈ record-pat

rp1 ∈ record-pat1

We say e is an expression of the core language if e does not contain any of the tokens
reftype, ref or deref.

As with type expressions, we distinguish between surface expressions and underlying
expressions, the latter being syntax trees for the (ambiguous) grammar given in Figure 5
(in conjunction with that of Figure 2). We let e range over underlying expressions. The
set FV(e) of free variables of e is defined as usual, where split, case, oncefn, rec and
catchcont are treated as binders; we omit the formal definition.

Certain underlying expressions are syntactically designated as values. The notion of
value is of particular importance in the dynamic semantics, but it also features in the static
semantics, in rules 27 and 41 of Section 4. The grammar for values is given in Figure 6. We
let v range over values.

13

3.2 Translation of derived forms

A surface expression is translated into an underlying expression in two stages. The first
stage, which is the only ‘type-aware’ part of the translation, simply consists of expanding
each extending clause of the form extending x to extending x : t, where t is (any surface
form for) the type associated with x in the current top-level environment Γ (see Section 7).
This translation stage may be seen as a concession to the absence of any type inference
mechanism in Lingay, and greatly reduces the amount of type annotation required in typical
class definitions.

The second stage makes use of a type abbreviation environment Θ, and extends the
translation −Θ defined on type expressions in Section 2. Although rather complex, this
section stage can be presented as simply a transformation on parse trees.

Formally, we define a translation −Θ which maps surface expressions to underlying
expressions; surface match clauses to underlying match clauses; and surface case clauses
to underlying case clauses. In the following definition, we adopt the convention that the
metavariables z, z′ stand for fresh variables. More precisely, a clause of the form

(lhs)Θ = rhs

asserts that for any surface expression lhs∗ obtained as an instance of lhs via some meta-
substitution µ, the translation (lhs∗)Θ is given as the value of the meta-expression rhs∗ ob-
tained from rhs by first applying the meta-substitution µ, and then further meta-substituting
for z and z′ two distinct identifiers not appearing in lhs∗. The choice of these identifiers is
immaterial; they may, if desired, be specified explicitly by a suitable choice function.

• The translation on expressions is defined as follows.

– For the derived forms in Figures 3 and 4, we define

(fn mt)Θ = prom (oncefn mtΘ)
(k := e)Θ = (rw.k.write e)Θ

(tok k)Θ = tag k { }
(e.k)Θ = split eΘ as {k=x}+y in x end

(e e′)Θ = (der eΘ) $ e′Θ

()Θ = {}
(? k)Θ = (rw.k.read {})Θ

(split e as {cbl ...} in e′ end)Θ = (split e as {cbl }+z in e′ end)Θ

(split e as {cbl } in e′ end)Θ = (split e as {cbl }+z in

val z′ = z=() ; e′

end)Θ

(e)Θ = eΘ

(val pt = e ; e′)Θ = split {k=eΘ} as {k=pt}+z in e′Θ end

(recval x:t = e ; e′)Θ = (val x = rec x:t => e ; e′)Θ

(e ; e′)Θ = (val it = e ; e′)Θ

14

It remains to give the translation for sugared class expressions. For class defini-
tions with empty extending clause, we define

(ck :: t with dtls end)Θ = (ck :: t

extending lo root : Rootlo

with dtls end)Θ

where lo = linear if ck = linclass, and lo = ε otherwise. For class definitions
with an explicitly typed extending clause, we define

(ck class :: t′m extending ec : tc with
fields t′′f
methods {mb0, · · · ,mbn−1 }
constr x:t′k => ek

end)Θ

to be the underlying expression

lo extend eΘ with
fn supervar : τsuper => fn selfvar : τself =>

selfvar +>
{trans (mb0, ck, π′f , πm, π′m,Θ),
· · · ,
trans (mbn−1, ck, π′f , πm, π′m,Θ)} ,

fn super : τk ->πf => fn x:τ ′k => eΘ
k

end

where
lo = linear if ck = linclass, lo = ε otherwise
tc

Θ = lo classimpl πf,πm,τk end

t′m
Θ = π′m, π′m extends πm

t′′f
Θ = π′′f , π′f = πf + π′′f , t′k

Θ = τk

τsuper = πm\loπ
′
f , τself = π′m\loπ

′
f

Here we define

trans (m pt = e, class, π′f , πm, π′m,Θ) =
m = fn rw:RW all (π′f) =>

(super = {m0 = prom (supervar.m0 rw), · · · } ;
self = {m′

0 = prom (supervar.m0 rw), · · · } ;
(oncefn pt :Arg(π′m, m) => e)Θ)

trans (m (v\s) = e, funclass, π′f , πm, π′m,Θ) =
m = fn rw:RW all (π′f) =>

(super = {m0 = prom (supervar.m0 rw), · · · } ;
self = {m′

0 = prom (supervar.m0 rw), · · · } ;
(oncefn v :Arg(π′m,m) =>

(val s = reads (π′f); val (v′\s′) = e;
writes (π′f , s′); v′))Θ)

15

trans (m (v\s) = e, linclass, π′f , πm, π′m,Θ) =
m = (super = supervar ; self = selfvar ;

(fn (v\s) : { value:Arg(π′m,m), state:π′f } => e)Θ)

where we write

πm = {m0:τ0, · · · }
π′m = {m′

0:τ
′
0, · · · }

Arg(π′m,m) = ρ if m = m′
i and τ ′i = ρ -> ρ′

and if π′f = {k0:σ0, · · · } then

reads (π′f) = {k0=rw.k0.read{}, · · · }
writes (π′f , s) = (rw.k0.write (s.k0); · · ·)

– The remaining forms in Figure 3 are translated in the evident way, e.g.:

(case e of csl)Θ = case eΘ of csl Θ

• The translation on match clauses is defined by

(x:t => e)Θ = x : tΘ => eΘ

(:t => e)Θ = z:tΘ => eΘ

(rp1:t => e)Θ = (z:t => split z as rp1 in e end)Θ

((pt1):t => e)Θ = (pt1:t => e)Θ

((x):t => e)Θ = (x:t => e)Θ

((rp):t => e)Θ = (z:t => split z as rp in e end)Θ

((fold t′ pt):t => e)Θ = (z:t => (val pt = unfold z ; e))Θ

(fold t pt => e)Θ = ((fold t pt):t => e)Θ

• The translation on case clauses is defined by

(k x => e)Θ = k x => eΘ

(k pt1 => e)Θ = k z => (val pt1 = z ; e))Θ

(k => e)Θ = (k { } => e)Θ

16

4 Static semantics

4.1 Environments and judgement forms

We now introduce some notation and conventions which will be employed in our static
semantics for expressions.

A reftype environment Υ is a finite (ordered) list of the form

• t0 7→ τ 0 · · · • tn−1 7→ τn−1

where for each i < n, τ i is an underlying type in the status environment

∆i = • t0 ∝ ground · · · • ti ∝ ground

(Note that ti may appear free in τ i.) We write ∆0(Υ) for the status environment denoted
by ∆n−1 under the above notation conventions. We also write Υ[t] for the underlying type
associated with the rightmost appearance of t in Υ (if any).

A (static) environment Γ is a finite list of entries each of the form

•x : τ st 1 st 2

where x is an identifier, τ an underlying type, st 1 is one of the following environment first
safety tags:4

ε safe rwvar argsafe

and st 2 is one of the following environment second safety tags:

ε newsafe halfnewsafe weaknewsafe

We write Γ[x] (resp. Γ1[x], Γ2[x]) for the type (resp. first or second safety tag) associated
with the rightmost appearance of x in Γ, if any.

The following more specialized notions concerning environments Γ will also be required
at certain points.

• Γ is called reusable if Γ[x] is reusable for all x appearing in Γ (shadowed entries in Γ
are not required to be reusable).

• Γ is called weakly newsafe if for all x appearing in Γ, Γ2[x] is either newsafe or
weaknewsafe or else Γ[x] is a ground type.

• Γ is called rw-free if Γ2[x] 6= rwvar for all x in Γ.

• A variable x is called weakly safe in Γ if Γ1[x] ∈ {safe, rwvar}.

• If e is an expression, we write Γe for the environment consisting of just the entries in
Γ pertaining to variables that occur free in e.

• We write Safe(Γ) for the environment obtained from Γ as follows: all first safety tags
in Γ are replaced by safe; all second safety tags ε are replaced by weaknewsafe; and all
second safety tags halfnewsafe are replaced by newsafe.

4Strictly speaking, a safety tag is either the empty sequence or a sequence consisting of a single keyword.

17

A well-formed typing judgement has the form

Υ,Γ ` e : τ st 1 st 2

where Υ is a reftype environment as above, Γ is a static environment as above, τ and all
types appearing in Γ are underlying types in ∆0(Υ), st 1 is one of the judgement first safety
tags

ε safe writesafe argsafe metasafeε metasafelinear

and st 2 is one of the judgement second safety tags

ε newsafe halfnewsafe

To each judgement first safety tag st1 we associate an environment first safety tag s̃t1 as
follows: s̃t1 = safe if st1 = safe, and s̃t1 = ε otherwise.

4.2 Linear variables and compatibility

The following notation will be employed in many of the typing rules to ensure that linear
variables (i.e. those of non-reusable type) do not appear more than once in well-typed
expressions. (A similar effect could be achieved using a dual-context type system, except
that this would not allow us to resolve name clashes between linear and reusable variables.)
If Γ is an environment, x0, . . . , xn−1 are variables, and e, e′ are expressions, we say e, e′

are Γ-compatible modulo x0, . . . , xn−1, and write e ∼x0,...,xn−1
Γ e′, if for all x ∈ dom Γ −

{x0, . . . , xn−1} such that x occurs free in both e and e′, the type Γ[x] is reusable. In the
case n = 0 we may simply write e ∼Γ e′.

4.3 Rule conventions

A rule instance in general has the form

J0 · · · Jr−1

J

where the Ji and J are well-formed typing judgements. The purpose of the typing rules
given below is to define a set of valid rule instances; the set of derivable typing judgements
is then the smallest set closed under deductions via valid rule instances. However, for
readability, our typing rules are presented with the help of several notational conventions,
which we now explain.

The following steps, in order, are notionally applied to each of our typing rules in order
to generate a set of valid instances:

1. First, any derived syntactic forms for types and expressions that feature in the rules
(such as σ -> τ and e e′) are expanded in accordance with the translation rules of
Sections 2.2 and 3.2. In addition, the abbreviation 〈st〉 in rules 24, 26 and 41 is
expanded to st1 st2.

18

2. Next, for all rules in which reftype environments play no active role (that is, all rules
except 44, 45 and 46), each judgement form appearing in the rule is prefixed by
“Υ,”. (Note that reftype environments are not required at all in order to give a static
semantics for core language expressions.)

3. There are four special conventions that apply selectively to certain typing rules, known
as the safety, writesafety, argsafety and newsafety conventions. Rules that are subject
to these conventions are identified by the letters S,W,A,N respectively.

For each rule subject to the safety [resp. writesafety, argsafety, newsafety] convention,
an auxiliary rule is derived by adding the tag safe [resp. writesafe, argsafe, newsafe] to
the right hand side each judgement which is displayed in the rule without a non-empty
safety tag. (The first premises of rules 24 and 26, which carry variable safety tags,
require more specialized treatment. For the writesafety and newsafety conventions,
we include in the auxiliary rule both the original judgement and the corresponding
judgement with st1 st2 replaced by writesafe ε, whilst for the safety and argsafety
conventions we include only the original judgement featuring st1 st2.)

In each case, it is to be understood that both the original rule and the auxiliary rules
derived via any applicable conventions each give rise to a set of valid rule instances in
accordance with step 4 below.

4. A rule now serves as a template for valid rule instances as follows. By a valuation ν
for a rule we mean an assignment of (mathematical) values ν(X) to the metavariables
X appearing in the rule such that

• ν is compatible with the declared range of each metavariable (for example, ν(x)
is indeed an identifier, and ν(τ) is an underlying type expression);

• any side-conditions appearing in the rule are satisfied under the assignment ν;

• for each judgement form appearing in the rule, the result of instantiating each
metavariable according to ν and then replacing each (outermost) underlying type
expression by the corresponding underlying type is a well-formed typing judge-
ment as defined in Section 4.1).

Thus, each valuation for a rule generates a rule instance, and we define the valid
instances of the rule to be precisely the instances so generated.

We now proceed to the typing rules themselves.

4.4 Basic typing rules

The following rules are associated with typing judgements of the form Γ ` e : τ .

Γ ` x : τ
τ ≈ Γ[x]

(20)

SWN
Γ ` lit : τ

τ ≈ ty (lit)
(21)

19

SWAN
Γ ` e0 : τ0 · · · Γ ` en−1 : τn−1

Γ ` { k0=e0, . . . ,kn−1=en−1 } : { k0 : τ0, . . . ,kn−1 : τn−1 }
∀ i 6= j.
ei ∼Γ ej

(22)

SWAN
Γ ` e : π Γ ` e′ : π′

Γ ` e +> e′ : π ⊕ π′
π′ compatible with π

(23)

SWAN

Γ ` e : { k0 : τ0, . . . ,kn−1 : τn−1 } + τ ′ 〈st 〉
Γ • x0 : τ0 〈st 〉 . . . • xn−1 : τn−1 〈st 〉 • y : τ ′ 〈st 〉 ` e′ : τ

Γ ` split e as { k0=x0, . . . ,kn−1=xn−1 } + y
in e′ end : τ

· · ·
(24)

· · ·

e ∼x0,...,xn−1
Γ e′

x0, . . . , xn−1, y distinct
st 1 ∈ {ε, safe, argsafe}
st 2 ∈ {ε, newsafe, halfnewsafe}

SWN
Γ ` e : τ

Γ ` tag k e : [| k : τ |]

(25)

SWN

Γ ` e : [| k0 : τ0, . . . ,kn−1 : τn−1 |] 〈st 〉
Γ • x0 : τ0 〈st 〉 ` e0 : τ ′

· · ·
Γ • xn−1 : τn−1 〈st 〉 ` en−1 : τ ′

Γ ` case e of k0x0=>e0 | · · ·
| kn−1xn−1=>en−1 end : τ ′

∀i. e ∼xi

Γ ei

st 1 ∈ {ε, safe}
st 2 ∈ {ε, newsafe}

(26)

SWN
Γv ` v : τ

Γ ` prom v : !τ
Γv reusable

(27)

SWN
Γ ` e : !τ

Γ ` der e : τ

(28)

SWN
Γ ` e : !(unit -o τ)

Γ ` force e : !τ
(29)

SWN
Γ ` e : τ ′′

Γ ` fold τ e : τ

τ ≈ rectype t => τ ′

τ ′′<: τ ′[τ/t]
(30)

SWN
Γ ` e : τ

Γ ` unfold e : τ ′′
τ ≈ rectype t => τ ′

τ ′′ ≈ τ ′[τ/t]
(31)

20

Γ • x : σ ` e : τ

Γ ` oncefn x:σ=>e : σ -o τ

(32)

SWN
Γ ` e : σ -o τ Γ ` e′ : σ

Γ ` e $ e′ : τ
e ∼Γ e′

(33)

SWN
Γ ` e : τ Γ ` e′ : τ

Γ ` e = e′ : bool
e ∼Γ e′

τ ground
(34)

SWN
Γ ` e : int Γ ` e′ : int

Γ ` e ı e′ : τ
τ ≈ ty (ı)

(35)

SWN
Γ ` e : bool Γ ` e0 : τ Γ ` e1 : τ

Γ ` if e then e0 else e1 : τ
e ∼Γ e0, e ∼Γ e1

(36)

Γ • x : τ st1′ st2 ` e : τ st1 st2
Γ ` rec x:τ=>e : τ st1 st2

τ groundless
e′ = rec x:τ=>e
Γe′ reusable
st1 ∈ {ε, safe,writesafe}
st2 ∈ {ε, newsafe}
st1′ = s̃t1

(37)

Γ • x : σ st1′ st2 ` e : VR (τ0, τ1) st1 st2
Γ ` catchcont x:σ=>e : Catchcont (ζ, ξ, τ0, τ1) st1 st2

ζ, τ0 ground
x 6∈ dom Γ
σ ≈ ζ -> ξ
st 1 ∈ {ε, safe,writesafe}
st 2 ∈ {ε, newsafe}
st1′ = s̃t1

(38)

SWAN
Γ ` e : τ

Γ ` e :< τ ′ : τ ′
τ <: τ ′

(39)

SWN
Γ ` lo root : lo classimpl unit,unit,unit end

(40)

Γ ` e0 : lo classimpl πf,πm,τk end 〈st 〉
Γ ` v1 : τsuper -> τself -> τself 〈st 〉

Safe(Γ) ` v1 : τsuper -> τself -> τself metasafelo st 2

Γ ` v2 : (τk ->πf) -> τ ′k ->π′f 〈st 〉
Γ ` lo extend e0 with v1,v2 end : lo classimpl π′f,π

′
m,τ ′k end 〈st 〉

· · ·
(41)

21

· · ·

e0 ∼Γ v1, e0 ∼Γ v2, v1 ∼Γ v2

π′f extends πf , π′m extends πm, π′m 6≈ {}
τsuper ≈ πm \lo π′f , τself ≈ π′m \lo π′f
st 1 ∈ {ε, safe,writesafe}, st 2 ∈ {ε, newsafe}

SW
Γ ` e : lo classimpl πf,πm,τk end

Γ ` new e : τk ->πm
lo = ε or τk ground

(42)

SW
Γ ` e : linear classimpl πf,πm,τk end Γ ` e′ : τk

Γ ` make e e′ : πm

(43)

SWAN
Υ • t 7→ τ, Γ ` e : τ ′

Υ,Γ ` reftype t for τ in e end : τ ′
t 6∈ FTN(τ ′)
τ ′ first-order in Υ

(44)

SWN
Υ,Γ ` e : τ

Υ,Γ ` ref t e : t
τ ≈ Υ[t]

(45)

SWN
Υ,Γ ` e : t

Υ,Γ ` deref e : τ
τ ≈ Υ[t]

(46)

4.5 Safety rules for ordinary classes

The following additional rules are associated with judgements Γ ` e : τ safe:

Γ ` x : τ safe

τ ≈ Γ[x]
x weakly safe in Γ

(47)

Γ ` e : τ

Γ ` e : τ safe
τ ground

(48)

Γ • x : σ safe ` e : τ safe

Γ ` oncefn x:σ=>e : σ -o τ safe

all y ∈ FV(e)−{x}
weakly safe in Γ

(49)

Additional rules for judgements Γ ` e : τ writesafe:

Γ ` x : τ writesafe

τ ≈ Γ[x]
Γ1[x] 6= rwvar

(50)

22

Γ ` x.k.read : Read(σ) writesafe

Γ1[x] = rwvar
Γ[x] extends {k:RW (σ)}

(51)

Γ ` e : σ safe newsafe

Γ ` x.k.write e : unit writesafe

Γ1[x] = rwvar
Γ[x] extends {k:RW (σ)}
Γe rw-free

(52)

Γ ` v : σ safe

Γ ` x.k.write v : unit writesafe

Γ1[x] = rwvar
Γ[x] extends {k:RW (σ)}
Γv rw-free
Γv weakly newsafe

(53)

Γ • x : σ ` e : τ writesafe

Γ ` oncefn x:σ=>e : σ -o τ writesafe

(54)

Additional rules for judgements Γ ` e : τ newsafe and Γ ` e : τ halfnewsafe:

Γ ` x : τ newsafe

τ ≈ Γ[x]
Γ2[x] = newsafe

(55)

Γ ` oncefn x:σ=>e : σ -o τ
Γ • x : σ newsafe ` e : τ newsafe

Γ ` oncefn x:σ=>e : σ -o τ newsafe

(56)

Γ ` rec x:τ=>e : τ
Γ • x : τ newsafe ` e : τ newsafe

Γ ` rec x:τ=>e : τ newsafe

(57)

Γ ` catchcont x:σ=>e : Catchcont (ζ, ξ, τ0, τ1)
Γ • x : τ newsafe ` e : VR (τ0, τ1) newsafe

Γ ` catchcont x:σ=>e : Catchcont (ζ, ξ, τ0, τ1) newsafe

(58)

Γ ` e : lo classimpl πf,πm,τk end newsafe

Γ ` new e : τk ->πm halfnewsafe
lo = ε or τk ground

(59)

Γ ` e : linear classimpl πf,πm,τk end newsafe
Γ ` e′ : τk newsafe

Γ ` make e e′ : πm halfnewsafe

(60)

23

Γ ` e0 : τ0 halfnewsafe · · · Γ ` en−1 : τn−1 halfnewsafe

Γ ` { k0=e0, . . . ,kn−1=en−1 } : { k0 : τ0, . . . ,kn−1 : τn−1 } halfnewsafe

∀ i 6= j.
ei ∼Γ ej

(61)

Γ ` e : τ st 1 ε Γ ` e : τ ε st 2

Γ ` e : τ st 1 st 2

(62)

Additional rules for judgements Γ ` e : τ argsafe:

Γ ` x : τ argsafe

τ ≈ Γ[x]
Γ1[x] = argsafe

(63)

Γ • x : RW all (π) rwvar ` e : τ writesafe

Γ ` fn x : RW all (π) => e : RW all (π) -> τ argsafe

(64)

Γ ` e : { k0 : τ0, . . . ,kn−1 : τn−1 } + τ ′ 〈st 〉
Safe(Γ • x0 : τ0 〈st 〉 . . . • xn−1 : τn−1 〈st 〉 • y : τ ′ 〈st 〉) ` e′ : τ argsafe

Γ ` split e as { k0=x0, . . . ,kn−1=xn−1 } + y
in e′ end : τ argsafe

· · ·
(65)

· · · e ∼x0,...,xn−1
Γ e′

x0, . . . , xn−1, y distinct

Γ ` e : RW (σ) -> τ argsafe Γ ` e′ : RW (σ) safe

Γ ` e e′ : τ writesafe

(66)

Rule for judgements Γ ` e : τ metasafeε:

Γ • super : τsuper argsafe newsafe • self : τself argsafe newsafe `
e : τself argsafe

Γ ` fn super : τsuper => fn self : τself =>e
: τsuper -> τself -> τself metasafeε

τsuper ≈ π\επ
′′

τself ≈ π′\επ
′′

Γe reusable

(67)

4.6 Safety rules for linear classes

For method implementations in linear classes, “safety” means that nested invocations of
super and self are prohibited. This is accomplished by the following rule:

24

Γ • super : τsuper • self : τself ` e : τself
Λ ` e ∝ 1

Γ ` fn super : τsuper => fn self : τself =>e
: τsuper -> τself -> τself metasafelinear

τsuper ≈ π\linearπ
′′

τself ≈ π′\linearπ
′′

Γe reusable
Λ = Λ0(Γ), super : 1, self : 1

(68)

Here we use a judgement form Λ ` e ∝ r asserting that an expression e is of abstraction
rank r relative to a rank environment Λ = x0 ∝ r0, . . . , xn−1 ∝ rn−1, where the ri are
natural numbers. Informally, this expresses the idea that e will be rendered “safe” by
applying it to r arguments (as in e e0 . . . er−1), assuming that each xi may be rendered
safe by applying it to ri arguments. If Γ is an environment whose variables (in order) are
x0, . . . , xn−1, then Λ0(Γ) denotes the rank environment x0 ∝ 0, . . . , xn−1 ∝ 0.

Abstraction rank judgements are generated by the following rules. We write Λ[x] for the
number associated with the rightmost occurrence of x in Λ (if any), and say e is Λ-sensitive
if some x with Λ[x] > 0 occurs free in e. We also write ^ for subtraction truncated at zero.

Λ ` x ∝ r
r ≥ Λ[x]

(69)

Λ ` lit ∝ r

(70)

Λ ` e0 ∝ r · · · Λ ` en−1 ∝ r

Λ ` {k0=e0, . . . ,kn−1=en−1} ∝ r

(71)

Λ ` e ∝ r Λ ` e′ ∝ r

Λ ` e +> e′ ∝ r

(72)

Λ ` e ∝ r Λ, x0 ∝ r, . . . , xn−1 ∝ r, y ∝ r ` e′ ∝ r′

Λ ` split e as {k0=x0, . . . ,kn−1=xn−1} + y in e′ end ∝ r′
(73)

Λ ` e ∝ r

Λ ` tag k e ∝ r

(74)

Λ ` e ∝ r Λ, x0 ∝ r ` e0 ∝ r′ · · · Λ, xn−1 ∝ r ` en−1 ∝ r′

Λ ` case e of k0x0=>e0| . . . |kn−1xn−1=>en−1 end ∝ r′
(75)

Λ ` v ∝ r

Λ ` prom v ∝ r

(76)

25

Λ ` e ∝ r

Λ ` der e ∝ r

(77)

Λ ` e ∝ r

Λ ` force e ∝ r ^ 1
(78)

Λ ` e ∝ r

Λ ` fold τ e ∝ r

(79)

Λ ` e ∝ r

Λ ` unfold e ∝ r

(80)

Λ, x ∝ 0 ` e ∝ r

Λ ` oncefn x : σ=>e ∝ r + 1
(81)

Λ ` oncefn x : σ=>e ∝ 0
oncefn x : σ=>e not Λ-sensitive

(82)

Λ ` e ∝ r Λ ` e′ ∝ 0
Λ ` e $ e′ ∝ r ^ 1

(83)

Λ ` e ∝ r Λ ` e′ ∝ r

Λ ` e = e′ ∝ r

(84)

Λ ` e ∝ r Λ ` e′ ∝ r

Λ ` e ı e′ ∝ r

(85)

Λ ` e ∝ r Λ ` e1 ∝ r Λ ` e2 ∝ r

Λ ` if e then e1 else e2 ∝ r

(86)

Λ, x ∝ r ` e ∝ r

Λ ` rec x : τ=>e ∝ r

(87)

Λ, x ∝ 0 ` e ∝ r

Λ ` catchcont x : σ=>e ∝ r

(88)

Λ ` e ∝ r

Λ ` e :< τ ∝ r

(89)

Λ ` lo root ∝ r

(90)

26

Λ ` lo extend e0 with v1, v2 end ∝ r
e0, v1, v2 not Λ-sensitive

(91)

Λ ` new e ∝ r
e not Λ-sensitive

(92)

Λ ` e′ ∝ 0
Λ ` make e e′ ∝ r

e not Λ-sensitive
(93)

Λ ` ref t e ∝ r

(94)

5 Runtime expressions and evaluation contexts

5.1 Runtime expressions

In order to describe the dynamic semantics of Lingay, it is convenient to work with a lan-
guage of runtime expressions which differs slightly from the language of expressions used
above. On the one hand, the language of runtime expressions includes various auxiliary
constructs which do not appear in source programs, but which arise at intermediate stages
during evaluation. On the other hand, runtime expressions feature almost no explicit type
information, reflecting the fact that the process of evaluation may be presented quite inde-
pendently of the type system.

The language of runtime expressions involves the following new lexical categories and
other finitary structures:

• A category of locations, ranged over by `, playing the role of references to heap objects.

• A category of temporary locations, ranged over by , which play a technical role in the
semantics of linear classes.

• A category of proper references, ranged over by ρ, used in the semantics of the reftype
system.

• A category of test variables, ranged over by x̂, used in the semantics of catchcont.

• A category of force tokens, ranged over by ξ, used in the semantics of force.

• Finite sets of identifiers, ranged over by F and M , playing the role of sets of field and
method names respectively.

• Finite sets of force tokens, ranged over by Ξ.

• Heaps, ranged over by h, to be defined in Section 6.1 (note that the definitions of
heaps and runtime expressions are mutually recursive).

27

Because runtime expressions are manipulated as abstract structures, it is not necessary to
specify concretely what the new lexical categories consist of (other than to require that they
are infinite), nor to devise a linear textual representation for runtime expressions involving
finite sets and heaps (we are content to incorporate these as decorations attaching to the
tokens extend, constr, alloc). The grammar for runtime expressions is given in Figure 7;
auxiliary expression forms are marked with ?.

An occurrence of a variable x within a runtime expression e is free if it is not part of
a subexpression oncefn x=>e′, rec x=>e′ or catchcont x=>e′. As usual, we write e[v/x]
for the result of substituting v for each free occurrence of x in e. (No renaming of bound
variables is necessary, since variable capture situations cannot in fact arise in the course of
evaluations of well-formed programs.) A runtime expression e is closed if it contains no free
variables (note that it may contain unbound locations).

Certain runtime expressions are designated as runtime values. The grammar for runtime
values is given in Figure 8. Throughout this section we use e and v to range over runtime
expressions and runtime values respectively. We also write V for the set of runtime values.

It is useful to note that all runtime expressions that will arise in the course of evaluation
of well-typed programs will satisfy the following syntactic constraint: in any subexpression
of any of the forms

extendF,M e with e0,e1 end
restore h in e0 end
lin-opt constrF

Ξ(e0,e1)
lin-opt allocF

Ξ(e,e0)
temp x=e0 in e end
writetemp (,e0)

the subexpressions e0, e1 are always runtime values. This observation significantly simplifies
the definition of evaluation contexts, to be presented in Section 5.3.

If v = {k0=v0, . . . ,kn−1=vn−1} and v′ = {k′0=v′0, . . . ,k′n′−1=v
′
n′−1}, we define v � v′ to

be the value
{ki0=vi0, · · · ,kir−1=vir−1,k

′
0=v

′
0, · · · ,k′n′−1=v

′
n′−1}

where i0 < · · · < ir−1 and {ki0 , . . . , kir−1} = {k0, . . . , kn−1} − {k′0, . . . , k′n′−1}.
For the purpose of defining the semantics of equality testing in the presence of typecasts,

we define a function strip : V → V t {*}, which intuitively maps a value to its ground type
content (if any):

strip(lit) = lit
strip({k0=v0, · · · ,kn−1=vn−1}) = {ki0=strip(vi0), · · · ,kim−1=strip(vim−1)}

if {i0, · · · , im−1} = {i | strip(vi) 6= *} 6= ∅
strip({k0=v0, · · · ,kn−1=vn−1}) = * if strip(vi) = * for all i

strip(tag k v) = tag k strip(v) if strip(v) 6= *

strip(tag k v) = * if strip(v) = *

strip(prom v) = strip(v)
strip(prom restore h in v end) = strip(v)

strip(fold v) = fold strip(v) if strip(v) 6= *

28

expr ::= x
? | x̂

| lit
| {Clist (comp-assign) }
| expr +> expr
| split expr as record-pat in expr end
| tag k expr
| case expr of Blist (case-clause) end
| prom expr
| der expr
| force expr4

? | saveheap (expr,ξ)
? | restore h in expr end

| fold expr
| unfold expr
| oncefn x => expr

? | oncefn x̂ => expr
| expr $ expr
| expr = expr
| expr ı expr
| if expr then expr else expr
| rec x => expr
| catchcont x =>expr
| lin-opt root
| lin-opt extendF,M expr with expr,expr end
| new expr
| make expr expr

? | lin-opt constrF
Ξ(expr,expr)

? | lin-opt allocF
Ξ(expr,expr)

? | `
? | ` . k
? | ` . rw-op
? | temp x = expr in expr end
? | readtemp temploc
? | writetemp (temploc,expr)

| ρ
| ref expr
| deref expr

comp-assign ::= k = expr
record-pat ::= {Clist (comp-bind) } + x
comp-bind ::= k = x
case-clause ::= k x => expr

? rw-op ::= k . read | k . write | readAll | writeAll
? temploc ::= x |

Figure 7: Context-free grammar for runtime expressions
29

value ::= x̂ | der x̂
| lit
| {Clist (comp-value) }
| tag k value
| prom value
| prom restore h in value end
| fold value
| oncefn x=> expr
| lin-opt root
| lin-opt extendF,M lin-opt root with value,value end
| lin-opt constrF

Ξ (value,value)
| der lin-opt constrF

Ξ (value,value)
| ` | der `
| ` . k | der ` . k
| ` . rw-op
| ρ

comp-value ::= k = value

Figure 8: Context-free grammar for runtime values

strip(fold v) = * if strip(v) = *

strip(ρ) = ρ

strip(v) = * for all other values v

We also write ≈ for the equivalence relation on values generated by permutations of record
components; we omit the formal definition.

Finally, for each infix ı = +, -, <, we write φı for the evident associated operation on
literals: for example, φ+(3, 5) = 8 and φ<(3, 5) = true.

5.2 Translation of well-typed expressions to runtime expressions

By an expression abbreviation environment we shall mean a finite partial function Ω map-
ping identifiers x to closed runtime expressions e. In the presence of an expression abbrevi-
ation environment Ω, a well-typed expression e as defined in the preceding sections may be
translated into a runtime expression as follows:

• Firstly, each extend subexpression is annotated with sets F,M recording the field
and method names featuring in the parent class being extended (this is the only type-
related information we shall require at runtime). More precisely, if in some typing
derivation for e, we have an occurrence of a subexpression

lin-opt extend expr1 with expr2,expr3 end

in which the subexpression expr1 is assigned the type lin-opt classimpl πf,πm,τk end,

30

where

πf = {f0 : σ0, . . . ,fp−1 : σp−1}, πm = {m0 : σ0, . . . ,mn−1 : σn−1}

then the relevant occurrence of extend is annotated with the sets

F = {f0, . . . , fp−1}, M = {m0, . . . ,mn−1}

Note that F and M are independent of the typing derivation chosen.

• Secondly, all other explicit type information in e is erased by applying the following
rewrite rules (the first of which applies to phrases of category match):

x:τ=>e x=>e

fold τ e fold e

e :< τ e

reftype t for τ in e end e

ref t e ref e

• Thirdly, we substitute closed runtime expressions for any free variables in e as deter-
mined by Ω. More formally, if FV(e) = {x0, . . . , xn−1} and Ω(xi) = ei for each i, we
replace e by the runtime expression e[e0/x0] · · · [en−1/xn−1].

5.3 Evaluation contexts

An evaluation context is, intuitively, a runtime expression with a single “hole” corresponding
to the location of the subterm which would need to be supplied for evaluation to proceed.
Evaluation contexts are used in our operational semantics for catchcont expressions.

The grammar for evaluation contexts is given in Figure 9. We use the metavariable E
to range over evaluation contexts, and write E[e] for the expression obtained by replacing
the hole [−] in E by e. We also write E ◦ E′ for the evident evaluation context E[E′[−]].
We say an evaluation context E is transparent to a variable x if it is not of the form
E1[catchcont x : τ=>E2[−]] for any E1, E2. Finally, a stuck term is an expression of the
form E[der x̂ $ v]. We let u range over stuck terms, and w over open values plus stuck
terms.

If v = {k0=v0, . . . ,kn−1=vn−1} and u = {k′0=w0, . . . ,k′n′−1=wn′−1}, we define v � u to
be the stuck term

{ki0=vi0, · · · ,kir−1=vir−1,k
′
0=w0, · · · ,k′n′−1=wn′−1}

where i0 < · · · < ir−1 and {ki0 , . . . , kir−1} = {k0, . . . , kn−1} − {k′0, . . . , k′n′−1} as above.

6 Dynamic semantics

6.1 Heaps and evaluation judgements

A heap h is defined to be a partial function defined on some finite set of locations `, tem-
porary locations and references ρ, such that

31

eval ::= eval1
| fold eval

eval1 ::= [−]
| { List (comp-comma) k=eval List (comma-comp) }
| eval +> expr
| value +> eval
| split eval as {Clist (comp-bind) } in expr end
| tag k eval
| case eval of Blist (case-clause) end
| der eval
| force eval
| saveheap (eval,ξ)
| unfold eval1
| eval $ expr
| value $ eval
| eval = expr
| value = eval
| eval ı expr
| value ı eval
| if eval then expr else expr
| rec x => eval
| catchcont x => eval
| lin-opt extend eval with value,value end
| new eval
| make eval expr
| make value eval
| lin-opt allocF

Ξ(eval,value)
| ref t eval
| deref eval

comp-comma ::= comp-value ,
comma-comp ::= , comp-assign

Figure 9: Context-free grammar for evaluation contexts

32

• for all ` ∈ dom h, h(`) is a tuple (lo,Ξ, vs, vb), where lo is either ε or linear, Ξ is
a finite set of force tokens, vs is a labelled record value (recording the current state
of the fields of the object at `), and vb is a labelled record value (giving the method
bodies of the object at `);

• for all ∈ dom h, h() is a pair (Ξ, v), where Ξ is a finite set of force tokens, and v is
a value;

• for all ρ ∈ dom h, h(ρ) is a value v.

For any z ∈ dom h, we write hΞ(z) for the set Ξ of force tokens appearing in h(z).
If vs = {f0=v0, . . . ,fp−1=vp−1} and k = ki, we define

vs[k=v] = {f0=v0, . . . ,fi=v, . . . ,fp−1=vp−1}

If h(`) = (lo,Ξ, vs, vb), we define updated heaps h[` 7→ v], h[`.k 7→ v] by

h[` 7→ v](z) =
[

h(z) if z 6= `
(lo,Ξ, v, vb) if z = `

h[`.k 7→ v](z) =
[

h(z) if z 6= `
(lo,Ξ, vs[k=v], vb) if z = `

Similarly, if h() = (Ξ, v0), we define the heap h[7→ v] by

h[7→ v](z) =
[

h(z) if z 6=
(Ξ, v) if z =

We also write h � ξ for the restriction of h to the set {z | ξ ∈ hΞ(z)}, and h� h′ for the
heap defined by

(h� h′)(`) =
[

h′(`) if ` ∈ dom h′

h(`) if ` ∈ dom h− dom h′

(h� h′)() =
[

h′() if ∈ dom h′

h() if ∈ dom h− dom h′

(h� h′)(ρ) = h(ρ)

Our operational semantics consists of a system of rules for deriving evaluation judgements
of the form Ξ ` h, e ⇓ h′, w, where w may be either a value or a stuck term. Here the
portion h, e ⇓ h′, w is called the body of the judgement; we use Φ as a metavariable ranging
over bodies.

The operational rules presented below are to be understood with reference to the fol-
lowing conventions:

• Where only the bodies of judgements are given, a rule of the form

Φ0 · · · Φr−1

Φ
side-conditions

is understood as an abbreviation for the rule

Ξ ` Φ0 · · · Ξ ` Φr−1

Ξ ` Φ
side-conditions

33

• Where mention of heaps is omitted, a rule of the form

Ξ0 ` e0 ⇓ w0 · · · Ξr−1 ` er−1 ⇓ wr−1

e ⇓ w
side-conditions

is understood as an abbreviation for the rule

Ξ0 ` h0, e0 ⇓ h1, w0 · · · Ξr−1 ` hr−1, er−1 ⇓ hr, wr−1

h0, e ⇓ hr, w
side-conditions

6.2 Auxiliary programs

We next define certain runtime expression contexts, for use in particular operational rules
below. Officially these are contexts for the language defined by the grammar of Figure 7;
we use meta-level parentheses (,) to disambiguate where necessary. For readability, we also
adapt some of the derived forms from the grammar of Figure 3 as meta-level abbreviations:

fn x => e ≡ prom (oncefn x => e)
e ; e′ ≡ split {k=e} as {}+z in e′ end (z 6∈ e′)

e e′ ≡ (der e) $ e′

e.k ≡ split e as {k=x}+y in x end

The following runtime expression contexts are required for rule 117 below.

initializer [v] = v (fn u => {})

selfbind [v] = rec f => (v {}) f

For rule 115 we require contexts comb constrs [v, v′] and comb methsF,M
lo [v, v′]. The

former is defined by

comb constrs [v, v′] = fn supercon => fn arg =>

v′ (v (fn u => {})) arg

The latter is defined using an auxiliary context extendImplF,M
lo [v, self, k], which is itself de-

fined separately for lo = ε, linear. In the following definitions, we take F = {f0, . . . , fp−1}
and M = {m0, . . . ,mn−1}.

extendSelfM [self, rest] = {m0 = fn rw => self.m0(rest +> rw), . . . ,

mn−1 = fn rw => self.mn−1(rest +> rw)}
extendImplF,M

ε [v, self, k] = fn rw’ =>

split rw’ as {f0=rw0, . . . ,fp−1=rwp−1} + rest in

v (extendSelfM [self, rest]).k
{f0=rw0, . . . ,fp−1=rwp−1}

end

34

contractF [e, j] = fn {value=x, state=s} =>

split e (readtemp j +>s) as {value=y, state=t} in

split t as {f0=s0, . . . ,fp−1=sp−1} + rest in

writetemp(j,rest) ;

{value=y, state={f0=s0, . . . ,fp−1=sp−1}}

end end

contractAllF,M [e, j] = {m0=contractF [e.m0, j], . . . ,mn−1=contractF [e.mn−1, j]}
extendImplF,M

linear [v, self, k] = fn {value=x, state=t} =>

split t as {f0=s0, . . . ,fp−1=sp−1} + rest in

temp j=rest in

(v (contractAllF,M [self, j])).k
{value=x, state=f0=s0, . . . ,fp−1=sp−1}}

end end

extendImplAllF,M
lo [v, self] = {m0 = extendImplF,M

lo [v, self,m0], . . . ,

mn−1 = extendImplF,M
lo [v, self,mn−1]}

comb methsF,M
lo [v, v′] = fn super => fn self =>

split self as {m0=v0, . . . ,mn−1=vn−1} + d in

v′ (extendImplAllF,M
lo [v {}, {m0=v0, . . . ,mn−1=vn−1}])

self

end

Finally, for rule 121 we require the meta-notation rw bindlo(v, `, F). This is defined
separately for lo = ε, linear as follows, supposing v = {m0=v0, . . . ,mn−1=vn−1}.

rw suiteF [`] = {f0 = {read=(prom `).f0.read,

write=(prom `).f0.write}, . . . ,

fp−1 = {read=(prom `).fp−1.read,

write=(prom `).fp−1.write}}
rw bindε(v, `, F) = {m0 = v0 (rw suiteF (`)), . . . ,mn−1 = vn−1 (rw suiteF (`))}

funToImp [v, `] = fn x =>

split v {value=x, state=`.readAll $ {}}

as {value=y, state=s’} in

`.writeAll $ s’ ; y

end

rw bindlinear(v, `, F) = {m0 = funToImp [v0, `], . . . ,mn−1 = funToImp [vn−1, `]}

35

6.3 Operational rules for successful evaluation

The following rules are associated with successful evaluation to a value (although some of
them also deal with evaluation to stuck terms).

v ⇓ v

(95)

e0 ⇓ v0 · · · en−1 ⇓ vn−1

{k0=e0, . . . ,kn−1=en−1} ⇓ {k0=v0, . . . ,kn−1=vn−1}
(96)

e ⇓ v e′ ⇓ v′

e +> e′ ⇓ v � v′
(97)

e ⇓ {kp0=vp0, . . . ,kp(n′−1)=vp(n′−1)}
e′[v0/x0, . . . , vn−1/xn−1, {kn=vn, . . . ,kn′−1=vn′−1}/y] ⇓ w

split e as {k0=x0, . . . ,kn−1=xn−1} + y in e′ end ⇓ w

p ∈ Sn′

pn < p(n + 1) <
· · · < p(n′ − 1)

(98)

e ⇓ w

tag k e ⇓ tag k w

(99)

e ⇓ tag ki v ei[v/xi] ⇓ w

case e of k0x0=>e0 | · · · | kn−1xn−1=>en−1 end ⇓ w

(100)

e ⇓ prom e′ e′ ⇓ w

der e ⇓ w

(101)

Ξ ` e ⇓ v Ξ • ξ ` saveheap (der v $ {}, ξ) ⇓ w

Ξ ` force e ⇓ w
ξ = fresh(Ξ)

(102)

h0, e ⇓ h1, v

h0, saveheap(e,ξ) ⇓ h1, prom restore h2 in v end
h2 = h1 � ξ

(103)

h, restore h′ in v end ⇓ h′′, v
h′′ = h� h′

(104)

e ⇓ fold w

unfold e ⇓ w

(105)

36

e ⇓ oncefn x=>e0 e′ ⇓ v e0[v/x] ⇓ w

e $ e′ ⇓ w

(106)

e ⇓ v e′ ⇓ v′

e = e′ ⇓ v′′
v′′ =

[
true if strip(v) ≈ strip(v′)
false otherwise

(107)

e ⇓ v e′ ⇓ v′

e ı e′ ⇓ v′′
v′′ = φı(v, v′)

(108)

e0 ⇓ true e1 ⇓ w

if e0 then e1 else e2 ⇓ w

(109)

e0 ⇓ false e2 ⇓ w

if e0 then e1 else e2 ⇓ w

(110)

e [rec x=>e / x] ⇓ w

rec x=>e ⇓ w

(111)

e[x̂/x] ⇓ {value=v0,residue=v1}
catchcont x=>e ⇓

tag result {value=v0, more=oncefn x̂=>v1}

x̂ fresh
(112)

e[x̂/x] ⇓ E[der x̂ $ v]
catchcont x=>e ⇓

tag query {arg=v, resume=oncefn z=>oncefn x̂=>E[z]}

x̂ fresh
z = fresh (E[−])

(113)

h0, e ⇓ h1, oncefn x̂=>e0 h1, e
′ ⇓ h2, v h2[v/x̂], e0[v/x̂] ⇓ h3, w

h0, e $ e′ ⇓ h3, w

(114)

e ⇓ lo extendF,M root with v1,v2 end

lo extendF ′,M ′
e with v′1,v

′
2 end ⇓

lo extendF ′,M ′
lo root with comb methsF,M

lo [v1, v
′
1], comb constrs [v2, v

′
2] end

(115)

Ξ ` e ⇓ lo root

Ξ ` new e ⇓ lo constrΞ (fn u=>{}, {})
(116)

Ξ ` e ⇓ lo extendF,M lo root with v1,v2 end

Ξ ` new e ⇓ lo constrF
Ξ (initializer[v2], selfbind[v1])

(117)

37

e ⇓ lo constrF
Ξ′(vi,vm) lo allocF

Ξ′(der vi $ e′, vm) ⇓ w

der e $ e′ ⇓ w

(118)

Ξ ` e ⇓ linear root Ξ ` linear allocF
Ξ({}, {}) ⇓ w

Ξ ` make e e′ ⇓ w

(119)

Ξ ` e ⇓ linear extendF,M linear root with v1,v2 end
Ξ ` linear allocF

Ξ(der vi $ e′, vm) ⇓ w

Ξ ` make e e′ ⇓ w

vi = initializer[v2]
vm = selfbind[v1]

(120)

h0, e ⇓ h1, vs

h1, lo allocF
Ξ′(e,vm) ⇓ h2, `

` = freshLoc (dom h1)
h2 = h1(` 7→ (lo,Ξ′, vs, vb))
vb = rw bindlo(vm, `, F)

(121)

h, `.k ⇓ h, v
h(`) = (lo,Ξ′, vs, {k=v, · · · })

(122)

h0, e ⇓ h1, `.k.read h1, e
′ ⇓ h2, {}

h0, e $ e′ ⇓ h2, v
h2(`) = (ε,Ξ′, {k=v, · · · }, vb)

(123)

h0, e ⇓ h1, `.k.write h1, e
′ ⇓ h2, v

h0, e $ e′ ⇓ h3, {}
h3 = h2[`.k 7→ v]

(124)

h0, e ⇓ h1, `.readAll h1, e
′ ⇓ h2, {}

h0, e $ e′ ⇓ h2, vs
h2(`) = (ε,Ξ′, vs, vb)

(125)

h0, e ⇓ h1, `.writeAll h1, e
′ ⇓ h2, v

h0, e $ e′ ⇓ h3, {}
h3 = h2[` 7→ v]

(126)

Ξ ` h1, e[/x] ⇓ h′1, w

Ξ ` h, temp x=v in e end ⇓ h′, w

 = freshTemp(h)
h1 = h + [7→ (Ξ, v)]
h′1 = h′ + [7→ (Ξ, v′)]

(127)

h, readtemp ⇓ h, v
h() = (Ξ′, v)

(128)

h, writetemp (,v) ⇓ h′, {}
h′ = h[7→ v]

(129)

h0, e ⇓ h1, v

h0, ref e ⇓ h2, ρ

ρ = freshRef (dom h1)
h2 = h1(ρ 7→ v)

(130)

h0, e ⇓ h1, ρ

h0, deref e ⇓ h1, v
h1(ρ) = v

(131)

38

6.4 Operational rules for stuck evaluation

The following rules deal specifically with evaluation of expressions to stuck terms.

der x̂ $ v ⇓ der x̂ $ v

(132)

e ⇓ E[der x̂ $ v]
E′[e] ⇓ (E′ ◦ E)[der x̂ $ v]

E,E′ transparent to x
(133)

e0 ⇓ v0 · · · ei−1 ⇓ vi−1 ei ⇓ ui

{k0=e0, . . . ,kn−1=en−1} ⇓ {k0=v0, . . . ,ki=ui, . . . ,kn−1=en−1}
i < n

(134)

e ⇓ v e′ ⇓ u

e +> e′ ⇓ v � u

(135)

e ⇓ v e′ ⇓ u

e $ e′ ⇓ v $ u

(136)

e0 ⇓ v0 e1 ⇓ u1

e0 = e1 ⇓ v0 = u1

(137)

e0 ⇓ v0 e1 ⇓ u1

e0 ı e1 ⇓ v0 ı u1

(138)

e0 ⇓ v0 e1 ⇓ u1

make e0 e1 ⇓ make v0 u1

(139)

e[x̂/x] ⇓ E[der ŷ $ v]
catchcont x=>e ⇓ catchcont x=>E′[der ŷ $ v′]

ŷ 6= x̂
E′ = E[x/x̂]
v′ = v[x/x̂]

(140)

7 Top-level issues

At top level, a Lingay session is an interactive process which proceeds in a series of read-
eval cycles. On each cycle, the programmer submits a top level declaration, which the
system attempts to typecheck and (if appropriate) evaluate relative to certain environment
information maintained by the system. If all these phases complete successfully, the system
displays the result of the computation and the If the parsing or typechecking phases fail,
an error is reported.

The environment information maintained by the system consists of the following:

39

• a type abbreviation environment Θ as defined in Section 2,

• a static environment Γ as defined in Section 4, in which all first safety tags are ε and
all second safety tags are ε or newsafe,

• a heap h as defined in Section 6,

• an expression abbreviation environment Ω as defined in Section 5, such that dom Ω =
dom Γ and such that whenever Ω(x) = e, all locations and temporary locations
appearing in e are in dom h.

Each of these may be potentially updated from one cycle to the next. At the start of
the session, these are set to certain initial values to be specified by the implementor (for
example, they may all be empty).

On each cycle, a top-level declaration is submitted to the session. A top-level declaration
is a phrase of category top-decl, as defined by the following grammar in conjunction with
the surface grammars for types and expressions (Figures 1, 3 and 4):

top-decl ::= type t = type-expr ;
| datatype t = [| Clist (summand-type) |] ;
| decl

We leave the implementor free to specify exactly how a sequence of top-level declarations is
extracted from a stream of input characters (for instance, at what point lexing and parsing
errors are detected and how the system recovers from them); the only firm requirement
is that an input stream consisting of a sequence of correctly formed phrases of category
top-decl, each of which is immediately followed (modulo whitespace) by at least one return
character, should indeed be processed as a series of top-level declarations as follows.

We now describe how each of the three forms of top-level declaration are processed in
the presence of the environment information (Θ,Γ, h,Ω).

• A top-level declaration of the form type t = t ; is processed by first attempting to
translate t to an underlying type expression tΘ as detailed in Section 2.

– If tΘ is undefined (because t involves some type name not appearing in Θ), an
error is reported and the cycle ends with the environment information unchanged.

– If tΘ = τ , we define Θ′ = Θ[t 7→ τ]. The successful binding of τ to t is reported,
and the cycle ends with the updated environment information (Θ,Γ, h,Ω).

• A top-level declaration datatype t = [| sm0, · · · ,smn−1 |] ; is processed as the se-
quence of declarations

type-expr t = rectype t => [| sm0, · · · ,smn−1 |] ;
inj-decl(sm0, t)
· · ·
inj-decl(smn−1, t)

where we define

inj-decl(k of t, t) = val k = fn x:t => fold t (tag k x) ;

inj-decl(k, t) = val k = fold t (tok k) ;

40

• A top-level declaration val x = e ; is processed as follows.

– Firstly, we attempt to translate e to a surface expression e′ by replacing each
subphrase extending t (of category extend-clause) by extending t : t, where t is
some surface type expression representing Γ[t] (which may be chosen arbitrarily).
If this translation fails because some relevant identifier t does not appear in Γ, an
error is reported and the cycle ends with the environment information unchanged.

– Secondly, we attempt to translate e′ to an underlying type expression eΘ as
detailed in Section 3.
∗ If eΘ is undefined, an error is reported and the cycle ends with the environ-

ment information unchanged.
∗ Otherwise, we define e = eΘ.

– Thirdly, we attempt to typecheck e relative to Γ and the reftype environment ∅.
∗ If either ∅,Γ ` e : τ ε newsafe or ∅,Γ ` e : τ ε halfnewsafe is derivable for

some (necessarily unique) underlying type τ , we record the type τ and set
st2 = newsafe, and the value of τ is reported at this point.

∗ Otherwise, if ∅,Γ ` e : τ ε ε is derivable for some (necessarily unique)
underlying type τ we record the type τ and set st2 = ε, and the value of τ
is reported at this point, along with the fact that the result of evaluating e
will be “not newsafe”.

∗ If ∅,Γ ` e : τ ε ε is not derivable for any τ , a type error is reported and the
cycle ends with the environment information unchanged.

– Next, we translate e to a closed runtime expression e∗ using the environment Ω
as detailed in Section 5. Given that e has already been typechecked relative to
Γ, this translation will always succeed.

– Lastly, we attempt to evaluate e∗ relative to the heap h: that is, we attempt
to compute some (necessarily unique) h′, v′ such that the evaluation judgement
∅ ` h, e∗ ⇓ h′, v′ is derivable. The evaluation procedure must be such that
if a suitable h′, v′ exist they will eventually be found, given sufficient time and
memory.
∗ If h′ and v′ are found, then the fact of termination is reported, and if τ is

a ground type then the value v′ is also reported. (An implementation may
also report ground type components of non-ground values.) The cycle then
ends with the environment information updated to

(Θ, Γ′ • x : τ ε st2, h′, Ω[x 7→ v′])

where Γ′ is obtained from Γ by deleting all entries • y : τ ′ st′1 st′2 such that
y ∈ FV(e) and Γ[y] is not reusable.

• A top-level declaration recval x:t = e is processed precisely as val x = rec x:t => e.

• A top-level declaration e ; is processed precisely as val it = e ;.

Finally, if the processing of a top-level declaration is aborted (e.g. by an interrupt from
the user) before it is complete, this fact is reported and the cycle ends with the environment
information unchanged.

41

