Game semantics for object-oriented languages:
a progress report*

John Longley Nicholas Wolverson
July 25, 2006

Abstract

We report on ongoing work in the area of game semantics for object-
oriented languages. We present a simple language that embodies many of
the core ingredients of object-oriented languages, focusing especially on
the issues of data abstraction, inheritance, and shared mutable state. We
give a denotational semantics for this language using a particularly simple
category of games, and describe some of the seemingly novel ideas that
are involved in the proof of soundness for this semantics. We also indicate
how various possible extensions of our language might be modelled, and
discuss the place of the present work within our long-term program of
using game semantics to inform the design of object-oriented languages
and type systems for them.

1 Introduction

In this paper we report on an ongoing project concerned with applying ideas
from game semantics to the study of object-oriented languages [Lona]. The
spirit of this project is to work with a very simple category of games with a
rich mathematical structure and see what kinds of object-oriented languages
can be naturally modelled within it, rather than (say) trying to model every
aspect of existing object-oriented languages by developing suitably elaborate
mathematical machinery. Our expectation is that the simplicity and naturalness
of our underlying game model will lead us to identify fragments of existing
languages that are relatively well-behaved and mathematically pleasant. This
can be expected to lead to relatively clean and tractable principles for reasoning
about programs in such fragments, as well as statically enforceable constraints
on programs (such as might be incorporated into a type system for a language)
which guarantee that they fall within these well-behaved fragments. A longer
term, more ambitious goal is to allow the game model to guide the design of
a full-scale object-oriented language with a sound mathematical basis, possibly
incorporating novel language features inspired by the mathematical structures
that are available in the model.

In this paper, we make a modest start on our programme by presenting a
simple-minded game semantics for a language that embodies many, but not all,

*Research supported by EPSRC Grant GR/T08791: “A programming language based on
game semantics”.



of the core ingredients of object-oriented languages. Let us briefly discuss these
ingredients in turn.

Firstly, we wish to take seriously the issue of data abstraction. For simplicity,
imagine a Java-style object whose fields are all private and whose methods are
all public. The basic idea behind our semantics is that the denotation of such
an object should be a strategy specifying the externally observable behaviour of
the object under all possible sequences of future interactions via method calls.
In other words, the object is considered as a black box that one can interact
with by sending messages to it, or more specifically by playing moves in an
appropriate game — all internal interactions involving the contents of the fields
are hidden when we pass to the denotation of the object itself. The type of
the object (corresponding in Java terms to the interface it implements) will
determine what kinds of interactions are legitimate, and will thus define a game
whose strategies represent possible behaviours for objects of this type.

In view of this emphasis on externally visible behaviour, it is to be expected
that this approach should lead naturally to a fully abstract semantics for ob-
jects, in the sense that observationally equivalent objects are identified, even if
they arise from different classes that implement the same interface. In view of
the recognised importance of this kind of data abstraction within software engi-
neering, it is perhaps surprising that relatively little attention has hitherto been
devoted to the problem of providing fully abstract denotational semantics for
abstract datatypes. Our work here shows that game semantics is particularly
well suited to this task.

A second aspect of object-oriented languages which we wish to focus on is
the area of inheritance, including Java-style method overriding and dynamic
binding. As we shall see, these can be accommodated fairly easily in our frame-
work by taking a certain view of what the denotation of a class body should be.
Interestingly, it is the extension of classes with additional fields (rather than
methods) that requires the most work (see Section 7.1).

Thirdly, there is the issue of mutable state and the resulting phenomenon of
interference. In all object-oriented languages, objects can share state in complex
ways, so that interactions with one object can indirectly affect or interfere with
the behaviour of another. One important aspect of our semantics is the way
in which such effects are handled correctly in the presence of the complicated
kinds of flow of control that can arise from the execution programs. However, as
regards the question of the kinds of state-changing operations that methods can
perform, we are at present adopting a middle ground between only considering
ground-type state on the one hand, and considering unrestricted state operations
on the other. This means that whilst our language is rich enough to allow us to
explore some interesting phenomena, it does not cover all possible uses of state
that might arise in a language such as Java. It seems likely that more general
uses of state could be accommodated within our semantic framework, but at
the cost of some further complication.

A fourth issue concerns the identity and newness of names (which typically
appear in object-oriented languages as references). This issue is the focus of
current work on game models based on nominal sets (e.g. [AGM*04]). In the
present paper, we do not attempt to address this issue at all. This is, in part, a
consequence of our decision to focus initially on those language features that our
model naturally seems to support, and in particular our decision to view objects
purely in terms of their external behaviour. However, we do also have in mind



an approach to modelling names within our present semantic framework, at the
cost of a little more machinery. We hope the details will appear elsewhere.

Inevitably, our decision not to consider names places restrictions on the lan-
guage we are able to model. Most obviously, we are unable to deal with equality
tests for references (== in Java). However, the following example shows that the
notion of identity of references is sometimes needed even when describing con-
structs that do not explicitly refer to it. Consider a recursively defined class C
with just two fields, a field a of integer type and a field ¢ of type C (in Java
terminology). Construct an object 01 with o;.a = 0, then construct objects
09,03 with 0.6 = 03.a = 1 and 0s.c = 03.c = 01. Because 0 and o3 have
indistinguishable structure and are only distinguished by their references, they
will be assigned the same denotation by any semantics that does not take ac-
count of references. However, it would seem that such a semantics will then be
unable to account for the fact that assigning os.c = 0y is observably different
in its effect from o0y.c = 03 (since the value of 0y.c.c.a after the assignment will
be 1 in the former case and 0 in the latter case). This example suggests that
if we seriously wish to model a realistic object oriented language we will need
to take account of identity of objects sooner or later, even if we do not care
about explicit reference equality. (This argument is somewhat misleading in
that a similar argument might appear to suggest that all forms of aliasing are
problematic for our approach. In fact this is not the case; the problem is quite
specific to the presence of cycles in the heap.)

For the present, however, our focus is on exploring how far one can get
by treating objects purely in terms of their abstract behaviours, and indeed,
on clarifying which kinds of computation with objects really involve only their
abstract behaviour, and which kinds make essential use of the references to them
as well. (One could imagine, for instance, a language with a type system that
allowed one to express this distinction, and this might be helpful for reasoning
about programs.) For example, our language will be restricted in such a way
that only acyclic heaps can be constructed — this will rule out the example
given above, which clearly depends on the possibility of cycles in the heap.

Finally, we should remark that we are only attempting to model sequential
(as opposed to concurrent) programming languages; indeed, sequentiality would
seem to be built into the fabric of the game model we are using. However, our
semantic framework does offer support for coroutining, which can be viewed as a
“sequential” form of threading in which the passage between threads is entirely
under the programmer’s control. There is therefore the possibility of extending
our approach to languages with this kind of feature.

1.1 An alternative approach: ML with references

Many of the ingredients required for the construction of an object-oriented lan-
guage, such as the key idea of local state, have already been treated by previous
work in game semantics: indeed, game models for languages with ML-style ref-
erences (including higher-order state) are given in [AHM98], [Lai02]. Moreover,
it is shown in [BPSM99] how a core object-oriented language may be translated
into such a language, so from one point of view, it is in essence already known
how to give game models for object-oriented languages.

However, we believe that our more direct approach is of interest for sev-
eral reasons. Firstly, it is a core element of our long-term methodology that



our choice of programming language should be guided by simple and beautiful
mathematical structures, and this would be lost if instead of working directly
with our game models we allowed our choice of language to be unduly influ-
enced by what happened to be (straightforwardly) expressible in any particular
target language. Secondly, in our view our approach offers a somewhat deeper
analysis of the notion of state: rather than take as given the behaviour of ref-
erence cells considered as “objects” with read and write methods, we are able
to give an explanation of where this abstract behaviour comes from in terms of
the underlying concrete state. Thirdly, giving a semantics via an intermediate
language tends to obscure issues of full abstraction: even if our semantics for
that language is fully abstract, there remains the question of whether all obser-
vations on programs that can be performed in the intermediate language also
have a counterpart in the source language. Fourthly, the semantics we give is
mathematically different from the one obtained by this indirect route, and is
in some ways more immediately adapted to the specific phenomena associated
with object-oriented languages; this in itself gives our approach some indepen-
dent interest. More detailed comparison of these alternative approaches at a
later date would be useful.

1.2 Structure of paper

The remainder of the paper is structured as follows.

In Section 2 we introduce the syntax and typing rules for the object-oriented
language we will be working with. Like Java, our language is class-based and
method invocation is call-by-value. The core of our language is in part in-
spired by [BPSM99]; like many languages intended for theoretical study, it has
a somewhat functional flavour, and is also more consistently “higher-order” in
character than most existing object-oriented languages. Though its syntax may
look quite unlike that of real-world languages, it is intended as a suitable tar-
get language for translations from Java-like languages, and we illustrate this by
providing examples of derived constructs employing more Java-like syntax.

In Section 3 we present a straightforward operational semantics for our lan-
guage using a simple model for heaps. We hope that it will be more or less di-
rectly apparent that this does indeed capture the kind of operational behaviour
familiar from Java; this contention is reinforced by the close resemblance be-
tween our operational semantics and attempts by other workers to formalise the
semantics of portions of Java.

In Section 4 we introduce the category of games we will work with, essentially
the one introduced by Lamarche [Lam92]. The games we work with are very
simple (there is no need for justification pointers, for instance), but they lead to
an extremely rich structure. Qur approach is somewhat in the spirit of [AJM94],
in that we represent multiple uses of an object by means of a linear exponential
giving us an infinite supply of “copies” of the object’s behaviour. The essential
difference is that in [AJM94] only history-free strategies were considered, with
the effect that all these copies behaved identically, whereas in our setting it is
crucial that the copies can interfere with one another, in view of the presence of
mutable state. Having constructed our base category € of games, we then pass
to a call-by-value category 2 by means of a simplified version of the Fam(%)
construction of [AM9S].

In Section 5, we present a compositional denotational interpretation of our



language in the category 2. The main technical task here is the construction of
a certain morphism called thread, which allows us to pass from a “concrete” view
of an object, in which the internal state and interactions with it are exposed,
to an “abstract” view in which these internal interactions are hidden and only
the externally visible interactions are retained.

Our operational and denotational semantics are markedly different in many
ways — for instance, the denotational semantics makes no reference at all to
heaps. As a consequence, even the proof of soundness (usually the “easy” half of
adequacy) turns out to be far from straightforward. In Section 6 we give a brief
account of the proof, concentrating on some of the interesting and seemingly
new ingredients that are required. Proofs of completeness (the other half of
adequacy), along with the expected full abstraction and universality properties,
are the focus of continuing work.

In Section 7 we briefly discuss some of the extensions and variants of our
language that we have considered. For some of these, a minor elaboration of our
existing semantics is all that is required, whilst others seem to require deeper
innovations and are the subject of ongoing investigation.

2 Language

We shall work with a linear (or affine) call-by-value lambda calculus, where
A — B is the type of functions which “consume their argument” of type A
to produce a result of type B. We make contraction available only for certain
reusable types (see the predicate re(—) defined in Figure 1).

We shall view an object as a collection of methods which may be invoked
repeatedly with some argument, approximately a reusable record of functions
which may behave in a stateful manner. The calculus shall be class-based, so
we take objects to be created from classes via the new operator. We consider
classes with a single updatable field, since we can consider multiple fields to be
a single field of tuple type. On the other hand, we explicitly consider multi-
ple methods, partly because method names play a role in overriding. In Java
terminology, we consider all fields to be protected and all methods public;
public fields or private methods can easily be simulated. We shall not consider
Java-style constructors, but instead implicitly always take the constructor which
initialises all fields to the provided values—but handling the general case should
not be problematic.

As in [BPSM99], we take classes to be first-class expressions rather than a
top level construct, for simplicity and with a view to defining a language with a
higher-order flavour (perhaps as an extension of that described here). We create
classes via a general class extension mechanism extend e with e’ where one
can extend a base class to define a class directly.

To define a class, one must give a collection of named method implemen-
tations in a fashion allowing for recursion. A key principle of object-oriented
programming is that of open recursion, via method overriding. Methods are
defined in a context with a self object, standing for an instance of the class
presently being defined. Recursive method invocations via self refer not to
their currently defined implementations, but to the potentially redefined imple-
mentations in a future subclass. We thus define a class with an expression

extend e with (¢) {m1 =e1,...,m, =e€,}



as a collection of functions e; ...e, labelled with method names m; ...m,,
where ¢ is the self-binding, and then might use it an expression such as

(new (extend e with ...) s).m €'

where we are subclassing e, creating a new object with state s, and then invoking
method m with argument e’'.

As classes define stateful objects, we choose to take a method implementation
to be a state transforming function of type

m: SX >5SQY

for a class with state of type S, where we are defining a method m of type
X — Y. As we will discuss later, this will be problematic for general S, and in
fact we take

m:( OT)® X >T®Y

replacing the state S with a ground type component 7' and an object type
component 0. The lack of an O on the right hand side does not disallow
interaction with a (stateful) object stored in the state, but effectively disallows
replacing this with a new object.

This interpretation can be considered as a first step to a more general treat-
ment of objects. Viewing a method as a function taking a state as argument
and returning a modified state can be thought of as allowing the state to be
read at the start of a method’s execution (taking a private copy) and written
at the end. We might wish to extend this to allow the state to be read from
or written to at arbitrary points. However, one can simulate this behaviour by
wrapping the ground-type state in an object, with methods which can be used
to read or write this state at any time.

Base Calculus

While the constructs presented above represent our conception of classes, we
shall actually regard these as derived from more basic operations on objects.
We could define a language with built-in classes, but interpretation of these in
our operational and denotational semantics would involve a duplication of effort
(and require longer proofs). For our operational semantics, we must split class
instantiation into two steps in any case, so we work in a simpler setting with
objects, a fixed point operator and a state-internalisation operation, which is
sufficient to implement classes as described above.
Firstly, we have objects which can be created directly:

obj {mi =e1,...,my, =€y}

These are reusable, and hence must be defined in a reusable context, that is one
consisting entirely of objects. We freely use a shorthand

obj {m; = e;}icx

for a set X of indices, treating objects as unordered justified by our subtyping
relation.



T,0 u= N|mQ®@m|m — |
Obj {my:7,...,mpy: o}

basic(N)
basic(X) A basic(Y) — basic(X @Y)

re(Obj X) basic(X) — re(X)
re(X)Are(Y) = re(X ®Y)
re(T1: Tiy-eyTnt Tn) > Vi.re(r;)

Figure 1: Types

We shall interpret a class as its step function, which takes an implementation
of self and returns a refined one

Class X = Obj X — Obj X

We shall take the fixed point of this step function to obtain the resulting object,
but—corresponding to the late binding of self—we leave the step function of a
class open. To extend a class, one then provides a new step function from the
old, adding or altering fields of the resulting object to add or override methods
respectively.

This interpretation of classes as step functions is as used in [BPSM99], and
discussed in [AC96]. As noted there, overriding is handled correctly, but method
update! is not permitted, and field update must be handled separately. We
are happy to consider objects as being created from classes, rather than using
method update, and wish to explicitly consider object state (i.e. fields) in any
case.

The last element required to implement classes internalises the stateful be-
haviour of an object. Given an explicitly state-transforming object obj (as
arising from the fixed point of a step function), and an initial state s,

constr obj s

gives an object where the state is hidden, incorporated into the behaviour of
the object. The usual new operation is then just constr combined with the
fixed point operator.

Figures 1-5 describe our base calculus, and Figures 6-7 derived syntax and
rules for classes. While we use x,y to range over variables, we use [ for variables
of reusable type. The definition of values in Figure 3 is required for the object
construction rule.?

We feel that the derived nature of our classes makes our language more
modular, and will make it easier to study possible language extensions. For
example, one can easily extend the class syntax shown to provide a super
facility, for invoking overridden methods of the superclass, without modifying
the core language as presented.

IThat is, replacing the methods of an existing object.

2The restriction to values in this rule permits the cases we are interested in (where v will
be of the form Az.e) and appears necessary to ensure the correctness of our denotational
semantics.



e u= ¢, |ifzethene; elsees |
(e1,e2) | let (z,y) bee; iney | Az.e | er e |
obj {mi =e1,...,mp =e,} | eem|Y(e) | constre; e,

Figure 2: Terms

v ou= ¢y | Aze | (vi,v2) | obj {mi =v1,...,mp =v,}
Y(v) | l.m| Y (v).m

Figure 3: Values

D,x:m,y: m,Abe:r F'kFe:7
z:Thx:T Ay:m,z:m,TFe:7 Tyx:mbe:r

k
: - NEk >
Fe, No..aNon 2N ~NE20

I'te:N Abre:7 Abes: T
I' Al ifzethene; elsees: 7

IN'bFei:rn Tobey:mn Tx:m,y:mbe:7 Abp:m Qn
[, Tok (e1,e2): 71 ® T2 Ak let {z,y) bepin e: 7

Nz:the:7” Thre:T—7 Ake:r
'k Xze:7— 7 Ablee: 7!

T'tovier ---Tho,: 7, re(T)
F'kobj{m; =vy,...,my, =v,}: Obj {my: 1,...,mp: T}

Lz:o,y:0ke:T Tk e: Obj {m: 71}
re(o)
T,z:oke[z/z,z2/y]: T

I'Fem:

The:(r—=1)=>(T—>71) re(T") I'te: Obj X —» Obj X
THFY(e): 7> F'FY(e): Obj X

re(T)

Fke:Obj{m:0@yQ@Tm > 7T, tmea Abe:o®y
[, At constr ce: Obj {m: 7, = 7}, }mea

basic(vy), re(o)

T'kte: 7T
Tke: 7!

T 7

Figure 4: Core Language



n<im i nn it 7n T2<iT

TLT T <:T3 MM <:T QT T — T2 <:T — T
Obj {m1:71,....,mp: T} <: Obj {my: Tu,...,Mij1: Tig1, My Tiyeoo,Mp: T}
T <iT e Tp <iT)
: . . : ] .
Obj {m1: T1,....,mp: Tn,Mpy1: Tny1,.-.y <:Obj {my:7],...,mp: 7.}

Figure 5: Subtyping

F Object, ., : Class (0,7;)

Tk e: Class {(o,v;m: Tyy = T}, )mea
[,6: Obj{en: 0 ®@YQ T = YR T, }meauB
Fen:o®@YyQ® 1y, = vQT),
- m € B
I't extend e with () {m = e }meB
: Class {0,v;m: T = 7)), }meauB

'k er: Class (o,v;m: Ty = T )mex AbFex:o®7y
I,AF newe; ea: Obj {m: 7, =& 7/, tmex

Figure 6: Derived Constructs

Class {(o,v;m: T = T}, )mex
e d
Obj{m:0®@7QTm > YT, )mex —
Obj {m: 0 ®Y®Tm = ¥ Th)mex

Object,, ., ~> Az.{}

extend c with (¢) {m =en}men
Y d

. =(cg).m, me A\B
o { o fm meas )

new c e ~ constr Y (c) e
let x be e in ey ~ (Az.€2) €1
Mz, y).e ~ Azlet (z,y) bezine

Figure 7: Translation of Derived Forms



3 Operational Semantics

We define a big-step evaluation semantics using heaps, where an expression in
some heap evaluates to a value and an updated heap. We restrict to expressions
all of whose free variables are of object type, and identify these free variables [
with heap locations.

In Figure 8 we give an evaluation relation || C (H x E) x (H x V) from
expressions with heaps to values with heaps, writing h,e | h',v. We interpret
a heap as an element of H = L — V x V, a partial function mapping locations
to heap cells, where a heap cell is the actual object state paired with its class
definition. So for I € dom(h), h(l) = (s,c) with s and ¢ values representing
the state and class of the object [. It is only the state which we will update,
and so must essentially live in the heap, but it is convenient to store the class
expression there, and one could imagine modelling method update in this way
(although our denotational semantics could not interpret this).

Note that in the current presentation, the state consists of an object-type
and ground-type part, only one of which is directly updated. Correspondingly,
the method invocation rule updates the ground-type component of the state
only.

We use the state convention that a rule not mentioning heaps

€1 ‘le"'en‘U'Un

elv

stands for the rule

ho,er 4 hi,v1---hp_1,en ) hp,vp
h07€Uth

as only object construction and method invocation need to interact with the
heap.

Note that our operational semantics is untyped—types are not required at
run time for our language. Also, here we can interpret a larger language than
our games model, including cyclic heaps.

4 (Games

Here we shall use the simplest notion of games we can get away with. As
defined by Lamarche [Lam92] (and described in [Mel]), a game is simply a set
of moves partitioned into opponent and player moves, together with the set
of valid plays of that game. In particular there is no notion of questions and
answers, or justification pointers, and these are not required for the purpose of
our definitions. This leads to a linear category of games, on which we define
an exponential, and which we then enlarge to give a setting for call-by-value
computation.

We briefly review the definition and some of the structure of this category;
full details will appear in [Wol].

A game A is given as (M, A4, Pa): a countable set of moves M4, a labelling
function Aa: Ma — {O, P} (call the negation A4), and a non-empty prefix-
closed set of positions P4 C M7, where each s € P4 consists of alternating O
and P moves, starting with an O move. A strategy for A consists of a non-empty

10



el (ng,...,ng)
v{wv coedm

el0 e Jv eln e v

ifz e then e; else e | v ifz e then e; else e; | v

p(ni,...,nE) =m

n#0

er v exdva el (vi,v2) €vi/z,va/y] Yo
(e1,€2) U (v1,v2) let (z,y) beeine v

erJ Aze! e v €/x] v

e1 ez Jv
el obj {mi =wv1,...,mp = vy} l<i<n
em; | v; -~

elw el Y(v)
Ye)lYw) em{Y@w)m

erdY@W)m @YW)me v e Y@') (' Y(®)) e Juv

e e2 Jv e1ex v
h,ec U h',v. K e, U h", v, el
h,constr e; e, | K[l = (v, vy)],1 [ fresh em{l.m

h'ael 'U hlal'm h',vc.m <U0,’Ub,62> ‘U hll’ <UII;aU>
h7€1 €2 U h”[l = ((’1)0,1};)),1)6)],1)

h(l) = ({vo,vp),vc)

Figure 8: Operational Semantics

11



even-prefix-closed ¢ C P4, where s € o is even-length and ¢ is deterministic,
that is for any sa,sb € o, a = b.
We define constructions on games A, B:

Mags = A+B Msop = A+B

Mg = [A4,AB] AM—oB = [A4a,AB]

Pagp = {s€ Lagn| Py op = {s€Ls.p]|
81A€PA;S1B GPB} S]AGPA;$1B€PB}

where L4 is the set of valid (i.e. correctly alternating) moves for A.

Our base category % has as objects these games, and morphisms A — B all
strategies for A — B. As usual identity is defined as a copycat strategy, and
composition as “parallel composition plus hiding”. One can easily show % with
® to be an SMCC; additionally, € is affine, has an additive product & and a
skewed product A @ B, defined as A ® B but where the first move must be in
A3

Before proceeding, we note that products in our category behave in an in-
terfering fashion, that is play in one component can affect future behaviour of
the other. In other words, a strategy for A ® B need not be a pair of strategies
for A and B, and it is this which enables us to model stateful behaviour in %.

We can extend these product operators to labelled and infinitary versions,
and indeed we shall use an infinitary version of @ as a linear exponential, intu-
itively defined as

A=uX A0 X
although we shall do without defining a u operation for now. Concretely, take
Mia = |lien M,Exi )
Aa = LienAa

Py {tEL;A |Vi't]M£f) EPA}

We then define the required operations

0a : 1ASNA dy @ 1A S1ARIA
eqa : A5 A my : !AQ!B -!/(A® B)

These morphisms (excluding €) are interesting in that they are defined in a
dynamic copycat fashion—in the case of d, for example, the first move in a given
l-component in the first or second ®-component of the right hand side sets up a
connection with the first unplayed !-component on the left, after which d behaves
in a copycat fashion with respect to those !-components. An important feature
of our approach is that much of the complexity of the control flow of programs
is isolated with these morphisms and is handled automatically by them.

We can use the CPO-structure of strategies with inclusion to define a fixed
point operator on %. The external fixed point operator is standard, but it is
worth noting the type of the internal version

Ya:l(A—A) > A

3This is the same as the @ of [Lai02], but in reverse, i.e. by A @ B we mean “A then B”
instead of “A after B”. Additionally, the exponential in [Lai02] is similarly constructed from
the @, although it should be noted that the different notion of games means the various forms
of product there are all more “relaxed” than ours.

12



An exponential appears because the function has to be used repeatedly to obtain
the fixed point.

We construct a category 2 to model values by a simplification of the Fam (%)
construction of [AM98], essentially considering just the subcategory of Fam(%)
where games are “families” of one repeated object {A | i € I'}. Objects of 2
are pairs (A4, X) of a countable set A and an object X of ¥, and morphisms
(F,F): (A, X) = (B,Y) are pairs of functions f: A — Band f: A - ¢(X,Y),
and

We define —: 9 x € — € as
(A, X) oY =X —o&4Y

To define lifting we first define in ¢ a weak co-product ¥ 4 X where there is an
initial question followed by a response from A, followed by play in X, i.e.

Ps,x ={e,q}U{qas|a € A,s € X}

and then the lifting functor L: 2 — € simply takes L(A,X) = ¥4X. The
corresponding definition on morphisms, and structure to make L a strong monad

T}A:A—)A_]_ ,LLA:AJ_J_—>AJ_ \PA’B:AJ_®BJ_—>(A®B)J_

are easily defined. We shall also use the following notation for other available
structure:

cong !AQ!B =1(A&B)
f'A—)BJ_ g:A-}BJ_
fi:!A—)(!B)_]_ gTIA_]_—)BJ_

To model natural numbers, we take N = (N, 1¢), and then for a function
p: NF — N take @: ®1,...k N = N the obvious morphism. Define conditionals

ifz4: NL Q@ (AL&A)) > AL

One can also identify a “well-bracketed” submodel %y of € (and similarly
Dwp) by the use of additional structure, not described here. Moreover, all the
pieces of structure mentioned above have analogues in %, and Dy, so that
the definition of [—] given below can be understood as providing a semantics
for our language in either 2 or D;.

5 Denotational Semantics
We give a semantics in 2 of the form
[TFe:7]: [T] = [r]L

Definitions of [—] for types and terms are given in Figures 9-10; we addi-
tionally define the interpretation of the subtyping relation [r <: 7'] : [7] — [']
via the appropriate projection morphisms IIj [,

13



[N]

[r— 7]

[o ® 7]

|[0bj {m1 = Tlye-.yMp = Tn}]]

IN=N
[] — [7']+
[o] @[]

!&me{l...n} |[Tm]] = ®me{1...n}![[7-m]]

Figure 9: Denotation of Types

[z: TFz: 7]
[TFe:7]
[T,y: 72,2 71, A e: 7]

[Feo: N®...® N = NJ
[T, A F ifz e then e else ey: A]

[T,AF(e,e): T®7]
[T,AFlet (z,y) bees iney: 7]

[T'Fobj{mi=wv,...,mp=uvy}: ..]
[T,2: X Felz/z,z/y]: ']

[T+ em: 7]

[T+ Ax.e: 7 — 7]

[T,AF e ex: 7]

[TFY(e): X]
[T, A constre; ex: 7]

[TFe:7]

-
[I[[’,]A Fe: 7] o (idr®![ay)
[T,2: 7,y: 72, Al e:7]o
(idr) ® twist,,] ] ® id[a])
noA@)
ifzgo([CFe: N]®
[[A = ep: A]]&[[A F €2 A:ﬂ)
Vo([Cre:7T]®[AFe:7])
[T,z: m,y: e Fea: 7]t 0T o
(1 ® [AF er: 11 ® 72])
1(cong™) o T o
(®1§i§n|[r F o Tz']]i od")
[T,2: X,y: X Fe:7]o
(idpry ® dix))
1M 0e)o[I'Fe: Obj {m: 7}]
no A ([T,z: 7Fe: 7))
evall o W o
[THei:o>7]@[AFe: o]
Yo[lFe: X — Xt
thread o ¥ o
(TFe:n]Q[AF ex: 7))
[r<:7']e[lFe:T]

Figure 10: Denotation of Terms

14



Note that unlike our operational semantics, we have no notion of a heap here,
just giving the denotation of a term in context. Stateful behaviour of objects
is instead modelled by the behaviour of strategies of ! type. The clause in our
interpretation for contraction uses the diagonal morphism d: !A —-!AQ!A, and
this correctly manages any possible interference arising from multiple uses of
the same object.

The morphism thread appearing in the clause for constr lies at the heart of
our interpretation and requires some explanation. For simplicity, consider the
construction of an object with a single method m whose concrete implementa-
tion has type ¢ ® v ® 7 — v ® 7/, where o is a reusable type representing the
“object part” of the internal state, and -y represents the ground type part of the
state. This method implementation receives a denotation of type

ISTRX - (TRY).L

where !S = [o], T = [v], X = [7], and Y = [7']. (The reasons for not
including !S on the right hand side here will be discussed in Section 7.) In
addition, we have the initial state of the object which is passed in as the second
argument to constr; this will receive a denotation of type IS ® T. From these
two data, it is possible to determine the abstract (externally visible) behaviour
of the constructed object as a strategy of type (X — Y ), which captures the
object’s behaviour under any number of invocations of the method m. It is this
“abstraction of behaviour” that is performed by the morphism thread:

threads,T : ('S@T) ® '('S@T@X —o (T®Y)J_) —)‘(X —o YJ_)J_

Intuitively, in the case of successive invocations of m, thread applies the con-
crete method implementation as many times as necessary, starting from the
initial state and threading the updated state through the computation in the
appropriate way. However, there is also the possibility that several invocations
of m may be active at once, even in a non-concurrent setting. For instance,
suppose we pass as an argument to m a function which, when applied, itself
invokes m on the object in question. For such nested invocations, some care is
required: the value of the (ground-type) state supplied as input to a method
call should always be the value from the last time the state was updated — that
is, from the most recent time we returned from an invocation of m (recall the
discussion in Section 2).

The part of thread concerned with 1S is easy to implement — it is simply
a case of taking many copies of 1S and supplying one copy to each instance
of the method implementation; the interference between the components of 1S
then automatically takes care of the propagation of any changes to the objects.
The ground type part of thread, on the other hand, is defined recursively in a
highly dynamic fashion. Let us regard 7" simply as a set, and consider the task
of defining

threadt : T ® '(T(X)X —o (T@Y)L) —>'(X —o YL)L

for a given “current state” ¢ € T and a given computation involving multiple
invocations of m. We focus attention on the first invocation of m (call this
the main invocation), and divide subsequent invocations into two categories:
those nested within the main invocation, and those occurring afterwards. We

15



recursively handle the first group of invocations by supplying the state ¢ as
the input to this subcomputation. When the main invocation completes, it
updates the state to some #', and we then recursively handle the second group
of invocations supplying the state ¢’ as input.

More formally, we first define for each t € T" and ¢ € N a morphism

prethread,; : Z © ® Z) -1z
u€eT,jEN

where Z = X — (T ® Y),. The whole family of morphisms is obtained via a
simultaneous least fixed point, taking prethread,; to be the composition

ZoQ)\z
u’j
id @ ((Q),,; prethread,,;) o reshuffle)

1z

A \Z Zo\Z
@ ?j branchy @ fold

where reshuffle performs some complicated redistribution of components, and
branch; supplies components of !Z by drawing them from the component (¢,0)
of the tensor product until such time as the initial question in the left-hand copy
of Z has been answered by some move t', after which they are drawn from the
component (¢',1). The required strategy for threadr at a given ¢t € T is then
readily constructed from prethread,y. Full details will appear in [Wol].

6 Adequacy

Having given a language with a denotational semantics and an operational se-
mantics which the reader will hopefully find intuitive, we naturally wish to show
that these agree, or in the usual terminology that our denotational semantics
is adequate. We describe some interesting aspects of the proof here, since even
the soundness part has not been straightforward.

Firstly, our operational semantics is defined as a relation on heaps and ex-
pressions, while our denotational semantics only considers terms in context,
having no notion of a heap. We do not have to extend the denotational seman-
tics to terms in heaps—instead, we consider locations in an expression to be
variables in an appropriate context. The denotation of the heap cell (I — ¢,v)
is taken to be the object [constr ¢ v], and this is composed with the denotation
of the expression to give the interpretation of the variable I.

Since the operational semantics is untyped, we give a typing on heaps, and
its interpretation, in Figure 11. In the case of flat heaps, this reduces to

[h=UL v (c1,v1),- -, ln = (cn,vn)] =
[constr ¢; v1] ® ... Q® [constr ¢, v,]

We then interpret terms in heaps, where A F h,e: 7

[el([r]) = [®(A) Fe: T]o[AFA]: 1 — [r]L

16



P(oc®0bj{m:0®T =507 }mex ) =O0bj {m: 7 — 7'} nex)
AFh ®A)Fov:T
OFO Al:TEhl—w

[[@ + @]] = idl
[A,1: TEhl=(c,8)] = [AF h];d;(idiaay @ [®(A) F constr ¢ s: 7])

AFhe:To AFRADP(A) e T

Figure 11: Typing and interpretation of heaps

[~11[Texd [Pl [e-] [A11I[{er e2)]
q q q

:al :az (01, az)

t t ‘? ""‘-.:tz

Figure 12: Pairing Interaction

Theorem 1 (Soundness) If A+ hyel A’ F h' v then [e]([h]) = [v]([A'])-

In order to prove soundness, we shall wish to compare strategies for values
with strategies for expressions, and in particular after an expression performs
some interaction with the heap we wish to be able to ask if the strategy from
that point onwards is just the same as the strategy for the corresponding value
given by the operational semantics. Note that it is not enough to ask that every
play in [e] with its initial heap-interaction removed is a play in [v], for one needs
to know what happens on both sides after some arbitrary interaction with the
heap is the same. Consider evaluation of h, (e1,es2), depicted in Figure 12. If
h,e1 { hi,v1 and hy,es | he,v2, we need to know that [e;] after interacting
with [h1] would behave the same as [v1] if the heap were to thereafter behave
as [hz].

For this we define a kind of memoization operation on strategies and heaps,
as depicted in Figure 13, so that for an interaction sequence s € [h]||[e], [e]s is
as [e] but with heap-interaction s “cut out”, and [h]® is the heap that would

result after s, so that
[el([~]) = [els([A]°)

We think of [e]s as the value resulting from evaluating e in heap h, and thus
come to the following lemma to prove soundness. We use projections Iljaj,
A/ to handle growing heaps, the new part of the heap being supplied to the
value [v] before comparing with [e]s.

In fact here we shall consider a simplification. In general even the types
of [e]s and [v] differ, as the former may interact further with the result of a

17



[~]1Iel [e] lels

q q

W
(S

Figure 13: Memoization

method invocation in the interaction s, while this behaviour would be “hard-
wired” in the latter. This can be accounted for, but for now we present the
following definition for the case when this does not occur:

Lemma 2 (Soundness) If
AFhye AJA"FhR v
then there exists (unique) gsa € [h]||[e] with

[p]*° = Mpapoe[A]
[e]ls = [](Iarg e [R'])

With this formulation, soundness follows via a straightforward induction on
operational semantics derivations. However, a subtlety arises with respect to
substitution. The problem is that the usual substitution lemma is not valid in
a linear lambda calculus, as noted in [Wad91], in a semantics like ours where
! and !! are not isomorphic. Fortunately, in a call-by-value setting, one only
requires substitution for values. We are able to show that wvalues of object type
are always denoted by a promoted morphism (unlike general expressions of that
type), and this is all that is required for our substitution lemma to hold.

At present, the details of our soundness proof are only fully worked out for a
somewhat restricted subset of the language described above (the most important
restriction being to consider only objects with ground-type state, and hence flat
heaps). However, we expect to be able to extend the proof to the language as a
whole without difficulty. One would also like to show the other half of adequacy:

hyetr = [el([r]) = L

The proof is expected to involve a sophisticated use of logical relations.
We expect also to be able to show that the interpretation in 2, is universal
and fully abstract, that is:

Va:1->[r].30Fe:7).[PFe:7]=a
(VC[-],v.Cle]dv & Cle']Jv) = [TFe:7]=[CkFe :7]

18



We believe that both of these properties can be shown by the following route.
Observe that for any type 7, well-bracketed strategies of type 7 can be encoded
by partial functions N — N, which in turn can be represented by programs of
a certain object type p. One can then construct a program interpret_ : p — 7
with the property that

Ve:p,a:1— [r]. (e codes a) = [interpret, e] =a

The construction of these programs proceeds by induction on the structure of
7. Both universality and full abstraction follow readily from the existence of
such programs.

7 Extensions of our language

7.1 Adding new fields in subclasses

There is an important deficiency in the translation of classes we described earlier.
Normally when one creates a subclass, one would expect to add new fields as
well as methods, however we have not allowed for this. The problem is that
the state appears as both argument to and result of the step function being
extended.

Various extensions to our calculus can be used to tackle this problem. When
defining a class, we must give the step function a type which includes not only
the state of that class, but the potential subclass state. When the class is ex-
tended, that potential subclass state will be partially instantiated as the newly
added state, together with the new potential additional state; when the class is
instantiated, the additional state is taken to be something trivial.

By treating the potential future state polymorphically, we thus cater for
any particular choice of additional state when a class is extended. This can
of course be implemented by adding general polymorphism to our language.
However, our category of games has a universal object, so we could choose to
use this to include some facility in our language to allow for the interpretation
suggested above.

7.2 An extension with control operators

As we have remarked, although the notion of well-bracketing is not required
for the definition of our semantics, the denotations of all terms in our language
turn out to live within the well-bracketed submodel Z,,; of 2, and it is with
respect to this submodel that full abstraction and universality properties must
be formulated. It is therefore natural to ask whether there is some natural
extension of the language corresponding to & itself.

We here briefly outline how such an extension can be obtained by adding a
continuation-style operator to our language. For simplicity, let us pretend that
our language has sum types (which could indeed be added if we made use of the
general Fam(%) construction). We may then add an operator catchcont with
the following typing rule:

Tke:Obj{m:1 = n}—>T3
I+ catchcont e: 753 + (11 ® (12 = Obj {m: 71 = o} = 73))

19



where 71,72, 73 are all ground types. Intuitively, the evaluation of catchcont e
proceeds by attempting to evaluate e z, where z is a dummy argument of type
Obj {m: 71 — m2}. If we can evaluate this to some value vz: 73 without ever
having to know what z stands for, inl(v3) is returned. However, if the compu-
tation is blocked because the value of some expression z.m(v1): 7 is required
in order to make further progress (where v; is a value of type 71), we suspend
the computation flagging up the requested value v; together with an operation
allowing us to resume the computation once a suitable value of type 75 is sup-
plied. The linearity of the arrow type in question effectively means that the
continuations we obtain are not reusable or copyable and can only be used in a
linear fashion. As hinted at in the Introduction, this operator suffices to support
various kinds of coroutining.

It is reasonably straightforward to extend our operational semantics to take
account of catchcont, by introducing a class of open values that are allowed to
contain variables together with a suitable notion of evaluation context. The de-
notational interpretation of catchcont is also fairly straightforward. Moreover,
it can be shown that in the presence of catchcont we can syntactically define a
retraction (v — v) < v, where v is the universal type Obj {m : N — N}. This
is the key step required to show that every type is a definable retract of v, and
this provides a cheap route to full abstraction and universality properties along
the lines explained in [Lonb]

The main gap that we have not yet filled concerns the proof of adequacy for
the extended language. Though we fully expect adequacy to hold, the presence
of catchcont greatly increases the complexity of control flow in the language,
and it seems likely that it requires a significant strengthening of our (already
quite elaborate) soundness proof. This may well throw up further unanticipated
difficulties.

7.3 Adding pointer update

As we remarked in Section 2, we have so far been considering a kind of restricted
method behaviour in which methods cannot directly update fields of object type
by means of pointer assignment (though they may cause state changes to the
objects they store by interacting with them). This means that once a portion
of heap has been constructed, its topology remains fixed — fields of object type
are stuck with the objects that were assigned to them when the enclosing object
was constructed — and this may have created an impression that our approach
is unable to deal with pointer updates or changing heap topologies of any kind.

In fact, certain special kinds of pointer updates can be incorporated without
any fundamental change to our framework, though at the cost of a little more
work. Specifically, it is fine to allow a method to update pointers provided the
enclosing object already “possesses” the pointers in question or can generate
them for itself. Thus, for instance, a method could swap the contents of two
existing object fields, or could construct a brand new object to put in a field,
but what it must not do is to “capture” a pointer that is passed in as (part of)
the method argument. (The difficulty that arises if it does will be explained in
the next subsection.)

Syntactically, this restriction on pointer manipulation can be enforced by
allowing the method implementations in the rule for constr to have the more

20



general type
CRYRTy > 0RYRT,

but restricting the syntactic form of these method implementations to ensure
that any dependence of the o component of the result on the 7, component of
the input is mediated by some expression of ground type (which cannot conceal
any pointers). This can be achieved in a somewhat ad hoc way by means of
a complicated typing rule. On the denotational side, the construction of the
morphism thread can be elaborated so that it takes appropriate care of the
object type part of the state as well as the ground type part.

Because the details involved in this extension are somewhat messy, in the
present paper we have chosen to content ourselves with a language without
pointer update.

7.4 Pointer capture and beyond

Far more challenging is the question of how to model methods that do capture
pointers in the above sense. The basic difficulty is that, even at the level of
abstract behaviours, our choice of denotation for object types

[[Obj {ml =T1ye- My = Tn}]] = !&me{l...n}lle]] = ®m€{1...n}!|ITm]]

is no longer adequate. The problem is illustrated by the following example.
Suppose an object o possesses a method m : 77 — 75, where 7 is an object
type. Suppose moreover that an expression o.m(o') has been evaluated—that
we have returned from the call to m—and o has retained a pointer to o'. Since
o' is now part of the state of o, any subsequent interactions with o might in
principle trigger interactions with o/. However, such interactions will not be
legal in terms of the rules of the above game: if we restrict our attention to the
moves played in the copy of [11 — 72] corresponding to the first call to m, we
would have an out-of-turn player move in [7;] following on from a player move
in |[T2]].

One might respond to this problem in various ways. One solution would be
to move to a different category of games, as in [AHM98] or [Lai02], where a
more relaxed definition of pairs and exponentials allows the kind of behaviour
illustrated above. Another solution would be to incorporate some notion of
names (or pointers) into the semantics, and to make use of the indirection that
these provide. Whilst both of these are interesting approaches, in our view the
simplicity of our category, and the purity of our “behavioural” view of objects,
have much to commend themselves, and it is interesting to ask whether pointer-
capturing behaviour can be accommodated within this framework.

One approach which seems promising is to express the reusability of objects
by means of a different choice of linear exponential. Recall that our operator !
can be considered to be defined by

A= uX.A0X

If we wish to capture the idea that with each new use of A we supply a value
of some type B which remains available to all later uses of A, we might instead
try something like

uX.B — (A0 X)

21



or even better,

pX (B — (A0 X))

since the latter allows us to take better account of nested activations of the
object in question. However, this leads to significant technical difficulties, and
we have not yet fully succeeded in getting this approach to work.

We are hopeful that using some approach of this kind, it may be possible
to cater for all possible pointer manipulations involving only acyclic heaps. As
indicated in the Introduction, to go beyond this it seems that we are forced to
move to a semantic framework that takes some account of names.

References

[ACO6]

[AGM*+04]

[AHMO8]

[ATMO4]

[AMOS]

[BPSM99]

[Lai02]

[Lam92]

[Lona]

[Lonb)]

[Mel]

Martin Abadi and Luca Cardelli. A theory of objects. Springer,
1996.

Samson Abramsky, Dan Ghica, Andrzej Murawski, Luke Ong, and
Tan Stark. Nominal games and full abstraction for the nu-calculus.
In Proceedings of the Nineteenth Annual IEEE Symposium on Logic
in Computer Science, pages 150-159. IEEE Computer Society Press,
2004.

Samson Abramsky, Kohei Honda, and Guy McCusker. A fully ab-
stract game semantics for general references, 1998.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria.
Full abstraction for PCF. In Theoretical Aspects of Computer Soft-
ware, pages 1-15, 1994.

Samson Abramsky and Guy McCusker. Call-by-value games. In
CSL ’97: Selected Papers from the 11th International Workshop on
Computer Science Logic, pages 1-17, London, UK, 1998. Springer-
Verlag.

Viviana Bono, Amit J. Patel, Vitaly Shmatikov, and John C.
Mitchell. A core calculus of classes and objects. In Fifteenth Confer-
ence on the Mathematical Foundations of Programming Semantics,
1999.

James Laird. A categorical semantics of higher order store. Electr.
Notes Theor. Comput. Sci., 69, 2002.

F. Lamarche. Sequentiality, games and linear logic. In Workshop on
Categorical Logic in Computer Science. Aarhus University, 1992.

John Longley. A programming language based on game semantics.
Grant proposal.

John Longley. Universal types and what they are good for. Domain
theory, logic and computation.

Paul-André Mellies. Sequential algorithms and strongly stable func-
tions. Theoretical Computer Science. To appear.

22



[Wad91]  P. Wadler. There’s no substitute for linear logic. Manuscript, De-
cember 1991.

[Wol] Nicholas Wolverson. Game semantics for object-oriented languages.
PhD thesis, University of Edinburgh.

23



