IGR Report on EPSRC Grant GR/L89532:
Notions of computability for general datatypes

Mike Fourman Gordon Plotkin John Longley
March 6, 2001

Background/Context

In broad terms, we see this research project as residing at the intersection of two established
international research disciplines: theoretical computer science and mathematical logic.

From the point of view of theoretical computer science, our research forms part of a
general international effort to develop mathematical and conceptual tools suitable for un-
derstanding the semantics and logic of a variety of programming languages. The long-term
goals of this research effort are, typically, to support mathematical reasoning about the
correctness of real-world software; to enable a clean and principled approach to the design
of future programming languages; and to suggest innovations in compiler technology. The
programming language semantics community is represented within Britain by groups e.g.
at Birmingham, Cambridge, Oxford, Queen Mary College; and elsewhere by researchers
in Paris, Marseille, Munich, Darmstadt, Genoa, Pittsburgh, Kyoto etc.

It is fair to admit that there remains an enormous gap between what these theoret-
ical approaches are at present able to deliver and what is demanded by the real-world
practice of software engineering. There is therefore room for a wide range of approaches
from the theoretical side, which in practice tend to be mutually enriching: for instance,
there are tensions between the demands of closeness to real-world programming languages
and those of mathematical simplicity and clarity (the latter being a practical as well as
an aesthetic concern in that it allows reasoning to proceed smoothly at higher levels of
abstraction without fussing over idiosyncratic details of the programming language). We
would place our work near the latter end of this spectrum, our intention being to uncover
deep mathematical structure that is inherent in the nature of certain kinds of computa-
tion, independent of details of language design—and whose relevance will therefore persist
as particular languages come and go.

The distinctive contribution of our project has been to focus on various natural notions
of computability that programming languages may embody. It is well known that all rea-
sonable programming languages give the same computable functions on natural numbers,
but there are interesting senses in which this is not true for all other commonly occurring
datatypes. Our philosophy is that an understanding of these notions of computability
gives insight into those semantic models that most closely match the languages in ques-
tion, which in turn supports the design of program logics with a clear operational meaning.
Particular collaborators in the field whose approach is close to ours, and with whom we
have enjoyed fruitful interaction, include Abramsky and his group at Edinburgh (now at
Oxford); Ong and Nickau at Oxford; Streicher and his students in Darmstadt; and Scott
and his collaborators at Carnegie Mellon, Pittsburgh.

We also see our project as making a contribution to mathematical logic, in particular
to the understanding of computability at higher types. This is not so much a coherent
and focussed area of active research within the mathematical logic community at present,
as a widely diffused area of general interest to which researchers from many fields have
contributed at one time or another. Our contribution here has mainly been to bring

together much of this widely scattered knowledge, and to begin to unify it in a coherent
conceptual framework. We hope that our work will make this knowledge more readily
accessible to computer scientists, and will help to foster a deeper level of interaction
between the mathematics and computer science communities.

Our efforts have attracted the interest of the mathematical logic community, as wit-
nessed by the invitation to Longley to give a series of tutorial lectures at the Logic Col-
loquium 2000 in Paris. Our personal contacts within the logic community have included
Hyland in Cambridge, Wainer in Leeds, Normann in Oslo, and Feferman at Stanford.

Key Advances and Supporting Methodology
1. General framework for notions of computability

At the time of writing the proposal for this project, we had in mind a simple framework for
extensional notions of computability (that is, notions of computable function for general
datatypes). A brief presentation of this framework, including a proof that there is no
“Church’s thesis” for partial computable functionals at higher type, was given at the end
of [Lon98a).

Shortly thereafter, in May 1999, we discovered a much more general framework which
embraces both extensional and non-extensional notions of computability. This framework
is based around a typed generalization of standard realizability and of material in Long-
ley’s Ph.D. thesis [Lon95]. This new framework remains in the spirit of our inquiry into
notions of computability (what can be computed) as distinguished from particular models
of computation (how it is computed); but it massively broadens the scope of our investi-
gation from notions of computable function to much more general notions of “computable
operation”. In terms of theoretical computer science, this allows us to take account of the
full expressive power of real programming languages, where non-functional features are
frequently considered indispensable. In terms of mathematical logic, it greatly extends
the scope of what we are able to bring together within a coherent framework. Though
not technically difficult or complex, we regard this new framework as the most important
breakthrough to have been made during the project.

Our paper at the Trento Realizability Workshop [Lon99a] represented a halfway stage
towards the discovery of this new perspective: here the emphasis was on achieving a seman-
tic understanding of fine-grained differences in computational power between languages
whose class of computable functions was the same. The main conceptual breakthrough
was presented more explicitly in an unpublished note [Lon99b] which has been circulated
amongst our colleagues via the Internet. We have since then been occupied with reaping
the benefits of this insight—a task which we expect to engage us for some time yet.

In the proposal we promised a survey paper bringing together current knowledge on
extensional notions of computability. In the light of the new breakthrough, we decided
to extend the scope of this survey to non-extensional notions. As a result, the form of
the survey has now expanded to a series of three substantial papers. An overview of
the material for the whole series was presented in three lectures at the Logic Colloquium
2000. Part I, a historical survey of the main ideas of higher-type computability [Lon01la],
has now been submitted for publication in the Logic Colloquium proceedings. Parts II
and III are each about half-completed, and working drafts of them are available online
[Lon01b, Lon01c]. We have some intention of turning this series of papers into a monograph
at a later date.

2. Algebraic operations and effects

A different approach to non-functional computation is via Moggi’s notion of the computa-
tional lambda calculus, with its monadic semantics; here “effects” provide non-functional
features. A previous paper [PP01la] by Plotkin and Power had shown that one could relate

operational and denotational semantics, for so-called algebraic effects, such as (probabilis-
tic) nondeterminism and printing (but not states, or exceptions).

The algebraic operations involved (e.g. probabilistic choice) satisfied a naturality con-
dition. In further work this was shown to be insufficiently strong, and a parametrised
version was needed (incorporated in the final version of [PP01a]). The paper [PP01b] by
Plotkin and Power explores this parametrised version, giving a number of equivalent char-
acterisations, including a “generic element” one of a kind familiar from Lawvere’s work on
algebraic theories.

3. Sequentially realizable functionals

Part of the original proposal concerned the detailed study of one particular notion of
computability: that embodied by the sequentially realizable (SR) functionals (there called
the intensionally-sequential functionals). Here we have stuck very closely to what we
proposed. A detailed theoretical study of the SR functionals appeared in our long paper
[Lon98a]. This consolidates what we knew at the time of the proposal and includes some
subsequently discovered material, such as a simple presheaf characterization of the SR
functionals. We feel that the theoretical understanding of this type structure is now
essentially complete, in the sense that any further questions about it could now be answered
more or less routinely.

On the practical side, we have considered some possible programming applications
of SR functionals, e.g. to general search algorithms and exact real number computation.
Early on in the project we produced a Standard ML source file (available on the web
[Lon98b]) containing some programming examples to explain the idea of SR-based pro-
gramming. Though short and simple, this seems to have been an effective way of dissem-
inating our ideas and has enjoyed a significant circulation in the functional programming
community. We later consolidated the ideas into a paper presented at ICFP 1999 [Lon99c¢].

However, in the course of this work (and in our subsequent experiments in real number
computation, see 5 below), we did not discover much in this area that we did not already
know at the time of the proposal, and we now feel that these potential programming
applications of SR functionals, though intriguing, are of less practical significance than we
had originally hoped. The main practical importance of the theory of SR functionals, we
now believe, lies in their implications for the design of program logics, to which we turn
next.

4. Logics for programming languages

In September 1999 we realized that our state of theoretical knowledge was now sufficient
to realize a long-standing ambition of Fourman’s: to give a proof system in a “naive” spirit
for most of Standard ML, which is complete relative to first-order arithmetic. This also
realizes the intentions of the Extended ML project of Sannella et al in the 1980s and 90s.

Our approach to Standard ML is to provide logics for three sublanguages of increasing
size and difficulty: a functional fragment,! a fragment including most everyday uses of
exceptions, and a fragment which also includes some simple “first order” uses of refer-
ences and even continuations. This approach builds on our theoretical work inasmuch as
these sublanguages correspond to three mathematically natural notions of computability
of which we have a good semantic understanding, and we allow these notions to guide the
precise formulation of what is in each sublanguage.? Moreover, the understanding of the

!Tn the sense of the SR functionals (see 3). Here these turn out to have several practical advantages over
using the usual and more restricted notion of functional program, e.g. the logic is simpler to axiomatize and
has better decidability properties; and it allows us to apply a simple style of reasoning to programs with
functional behaviour that make internal use of non-functional features (such as memoization operations).

2The relevant theory for the third sublanguage has been worked out informally but not consolidated
yet. A programming language characterization can be given using the notion of restartable exception due
to Ian Stark; a more semantic characterization can be given via a refinement of the van Oosten-Longley

relationships between these three notions, as arising from our general framework, tells us
how the logics for these three fragments are to be tied together.

Longley and Aspinall spent three man-months prototyping our ideas in the theorem
prover Isabelle. This experience confirmed the feasibility of our approach, and formed the
basis of the proposal for the new EPSRC-funded project GR/N64571: “A proof system
for correct program development” [FFLO0O], which commenced in January 2001. The fact
that enough theory is now in place to attempt this is probably the biggest practical benefit
to have flowed from the previous project so far.

5. Exact real number computation

During the first half of the project we investigated questions of computability for operations
related to real numbers, with respect to the notions of “computability” embodied by
various programming languages. Here we enjoyed very fruitful interaction with Martin
Escardé (in Edinburgh until the end of 1999). Some of our results are reported in [Lon99a].

Later we spent some time conducting programming experiments in Standard ML to
try to provide efficient realizations of some of these operations (e.g. exact integration).
We discovered that the use of Ian Stark’s ingenious “restartable exception” primitives
(implemented using continuations) offered major gains in both expressivity and efficiency.
Longley and Aspinall invested about two man-months of effort in the implementation
of a system that would demonstrate these ideas. Unfortunately, however, this did not
take us beyond the substantial amount of groundwork required to build an efficient exact
calculator, to the point where our system does anything really interesting. Nevertheless,
we are still very hopeful that ideas will lead to some kind of genuinely feasible exact
integration, and we hope to devote some more time to this in the future. One particular
challenge which seems to us to be within striking distance is to improve on the current best
known upper bound on the area of the Mandelbrot set (surprisingly, the area is known
only to within about 3%).

6. Computability for abstract types

Data abstraction is a key ingredient in modern programming methodologies, and a sig-
nificant part of the original proposal concerned questions of computability for abstract
datatypes. We have devoted less time to this than we originally planned, having decided
instead to pursue the unexpected advances in non-extensional notions of computability
(see 1).

We have, however, obtained one theorem which will significantly help us in axiom-
atizing program logics for abstract types (as in 4). a logical characterization of those
abstract datatypes which are observationally equivalent to retracts of simple types (we
provisionally call such abstract datatypes translucent). As noted in the proposal, notions
of computability for simple types extend trivially to retracts of simple types, but what
had escaped our notice was that a very large class of abstract datatypes—including all
the usual implementations of stacks, queues, sets, multisets and lookup tables, and the
type of theorems in an LCF-style theorem prover—could be systematically interpreted in
this way. From the point of view of program logics, this means we can reason both about
elements of abstract types up to observational equivalence, and about implementations of
abstract type signatures up to observational indistinguishability. This material has not
yet been written up—this will be an early priority for our future work.

We have also discovered a few counterexamples which suggest that outside the realm
of translucent datatypes, questions of computability become very hard indeed. However,
we are not aware of any abstract types used in functional programming practice which are
not translucent.

combinatory algebra.

Project Plan Review

As already mentioned, the discovery of a more general framework for notions of com-
putability than the one we originally had in mind (see 1 above) greatly expanded the
scope of the first half of the proposed project; and almost all the departures from our
original plan stem from this development. On the one hand, we decided to broaden the
scope of the promised “extended survey paper” to embrace this extra generality, and this
has resulted in the more ambitious series of three papers in preparation. On the other
hand, having opted to spend more time studying non-extensional computability notions,
we were able to spend less time on later parts of the proposal such as the study of abstract
types.

We proposed and advertised a student project at MSc level to develop parts of our
exact real number computation system, but unfortunately no students volunteered.

Research Impact and Benefits to Society

Several of our results have already been taken up and used by other researchers. Stre-
icher and his students in Darmstadt have adopted our general framework for notions of
computability and have obtained some interesting further results (e.g. in [LS00, Roh01]).
Rosolini et al have considered our general framework from a more categorical point of
view. Royer has carried our work on the SR functionals into the area of higher type com-
plexity: his work has confirmed a conjecture of ours, and has furnished evidence that the
models we consider lend themselves naturally to a complexity-theoretic analysis [Roy00].
Sannella et al have considered the use of prelogical relations in the context of data refine-
ment, and drawing on our expertise in higher-type computability we were able to supply
an example showing that the extra generality offered by prelogical relations was essential
[HLSTO00]. On a more informal level, we have enjoyed much mutually beneficial inter-
action with Abramsky, whose work on linear and process realizability has close affinities
with ours.

The long term benefit to society of our work will probably manifest itself mostly in its
impact on technology for correct software development.

Explanation of Expenditure

The expenditure on the project has been much as originally planned, except that Aspinall
was employed for 2 months to work with Longley on Isabelle prototyping of program logics
and on implementation of an exact real number package; and Power was employed for 4
months to work with Plotkin on the study of non-functional computation features via
algebraic operations.

Further Research or Dissemination Activities

Whilst we feel we have been very active in disseminating our results through conference
presentations and other lectures and seminars, both nationally and internationally, we
have not yet completed the task of turning all these results into published papers. The
most significant outstanding task is to complete the series of three papers [Lon0la, Lon01b,
Lon01c] which will embody the central insights gained during the project and offer a more
unified perspective on the whole subject area. Work on the whole series is more than half
completed, and we expect to finish all three papers within the next six months at the
outside. These papers, together with the already completed paper [Lon98a], will represent
the principal concrete deliverables of the project.

As regards further research, our new EPSRC-funded project [FFLO0O] will build on
some of our results and apply them in a more practically oriented research area: that of
building proof systems for program verification (see 4 above). We believe this project will

represent a significant step towards one of the major long-term goals of the theoretical
computer science community. The consolidation of our work on abstract types (see 6) will
also fit well into this project.

References

[FFL0OO] M.P. Fourman, J.D. Fleuriot, and J.R. Longley. A proof system for correct program
development. Case for support for EPSRC grant GR/N64571., 2000.

[HLSTO00] F. Honsell, J. Longley, D. Sannella, and A. Tarlecki. Constructive data refinement. In
Proc. FOSSACS, Berlin, March 2000.

[Lon95] J.R. Longley. Realizability Toposes and Language Semantics. PhD thesis, University
of Edinburgh, 1995. Available as ECS-LFCS-95-332.

[Lon98a] J.R. Longley. The sequentially realizable functionals. Technical Report ECS-LFCS-
98-402, Department of Computer Science, University of Edinburgh, 1998. To appear
in Annals of Pure and Applied Logic.

[Lon98b] J.R. Longley. When is a functional program not a functional program?: a walkthrough
introduction to the sequentially realizable functionals. Standard ML source file, avail-
able from http://www.dcs.ed.ac.uk/home/jrl/, 1998.

[Lon99a] J.R. Longley. Matching typed and untyped realizability. In L. Birkedal, J. van Oosten,
G. Rosolini, and D.S. Scott, editors, Proc. Workshop on Realizability, Trento, 1999.
Published as Electronic Notes in Theoretical Computer Science 23 No. 1, Elsevier.
Available via http://www.elsevier.nl/locate/entcs/volume23.html.

[Lon99b] J.R. Longley. Unifying typed and untyped realizability. Electronic note, available at
http://www.dcs.ed.ac.uk/home/jrl/unifying.txt., 1999.

[Lon99c] J.R. Longley. When is a functional program not a functional program? In Proc. 4th
International Conference on Functional Programming, Paris, pages 1-7. ACM Press,
1999.

[Lon0la] J.R. Longley. Notions of computability at higher types I. Submitted to Proceedings
of Logic Colloquium 2000, 2001.

[Lon01b] J.R. Longley. Notions of computability at higher types II. In preparation, 2001.

[Lon01lc] J.R. Longley. Notions of computability at higher types III. In preparation, 2001.

[LS00] P. Lietz and T. Streicher. Impredicativity entails untypedness. Submitted for publi-
cation, 2000.

[PP0la] G.D. Plotkin and A.J. Power. Operational semantics for algebraic effects. In Proc.
FOSSACS, 2001. To appear.

[PP01b] G.D. Plotkin and A.J. Power. Semantics for algebraic operations. To appear in MFPS
2001, 2001.

[Roh01] A. Rohr. A universal realizability model for sequential computation. PhD thesis, Uni-
versity of Darmstadt, 2001. To appear.

[Roy00] J.S. Royer. On the computational complexity of Longley’s H functional. Presented

at Second International Workshop on Implicit Computational Complexity, UC/Santa
Barbara, 2000.

