
Subtyping with Power Types?

David Aspinall
http://www.dcs.ed.ac.uk/home/da

LFCS, University of Edinburgh, U.K.

Abstract. This paper introduces a typed λ-calculus called λPower , a
predicative reformulation of part of Cardelli’s power type system. Power
types integrate subtyping into the typing judgement, allowing bounded
abstraction and bounded quantification over both types and terms. This
gives a powerful and concise system of dependent types, but leads to
difficulty in the meta-theory and semantics which has impeded the ap-
plication of power types so far. Basic properties of λPower are proved here,
and it is given a model definition using a form of applicative structures. A
particular novelty is the auxiliary system for rough typing, which assigns
simple types to terms in λPower . These “rough” types are used to prove
strong normalization of the calculus and to structure models, allowing a
novel form of containment semantics without a universal domain.
Keywords: type theory, subtyping, dependent types.

1 Introducing Power Types

Power types were introduced in a seminal paper by Cardelli [4]. The notion is
that Power (A) is a type “whose elements are all of the subtypes of the type A,”

A type

Power (A) type

In place of a separate definition of subtyping, a relation between types is induced
by inhabitation of power types, so A ≤ B =def A : Power (B). The rules for
power types are chosen to make this definition sensible. Cardelli called the three
basic rules power introduction, elimination and subtyping:

A type

A : Power (A)
M : A A : Power (B)

M : B
A : Power (B)

Power (A) : Power (Power (B))

The first rule makes the induced subtyping relation reflexive. The second rule is
the characteristic subtyping rule of subsumption, which adds subtype polymor-
phism to the system. The third rule expresses monotonicity of the Power opera-
tor, and together with the second rule, it makes the induced subtyping relation
transitive. Other rules capture the subtyping behaviour of type constructors.
? Summary version. The full version [2] is available from my web page, address above.

Cardelli meant his type system to be used for programming languages with
object-oriented features. Power types can encode bounded type abstraction and
quantification used in OOP with the usual λ-abstraction and dependent func-
tion space, defining Λα ≤ A.M =def λα: Power (A).M and ∀α ≤ A.B =def

Πα: Power (A). B. This is a simplification, since there is no need to add new
constructs. (The work described here grew from a slightly different application:
in ASL+ [1], subtyping models specification refinement, and ΛX ≤ SP .M is
a parameterised specification which can be applied to any refinement of SP .)
Unfortunately, Cardelli’s full power type system is tricky to handle: it has im-
predicative polymorphism via the Type : Type axiom along with other features,
rendering it undecidable, inconsistent when viewed as a logic, and difficult to
give a semantics to. Later work on Quest [6] used power kinds instead, where
Power (A) does not enjoy the status of a type itself.

As far as I know, power types have not been studied extensively since Cardelli’s
work; this is perhaps the first in-depth study. First I define a calculus called
λPower (Section 3). It is almost a fragment of Cardelli’s system, except for a
richer power introduction rule and an equality judgement. Then I give some
brief examples (Section 2), before considering the meta-theory (Section 4) and a
semantics (Section 6). The semantics and some of the meta-theory are based on
rough typing, a way of assigning “rough” non-dependent types to λPower terms
(Section 5). Finally, Section 7 summarizes.

2 Examples in λPower

As a calculus of functions, λPower is no more expressive than the simply-typed
λ-calculus.1 In contrast with Cardelli’s system, it is predicative: we cannot write
a function which operates on any type, so there is no System F style universal
polymorphism. All type operators are parameterised on subtypes of a given
type. Despite this, λPower can express complex typings, because of the powerful
combination of dependent types and arbitrarily nested power types.

2.1 A simple programming example

Suppose int is an atomic type and let ΓPERM be the context:

nat : Power (int),
Upto : nat → Power (nat),
Perm : Πn:nat. Power ((Upto n)→ (Upto n))

Invperm : Πn:nat. (Perm n)→ (Perm n)

Imagine that Upto n stands for the set {m ∈ nat m ≤ n }, and Perm n is the
set of permutations of { 1, . . . , n }, which is a subset of the set of functions from
1 If M is typable in λPower , then the type-erasure of M can be assigned a simple type,

treating Π and Power as families of constants.

Upto n to Upto n. The function Invperm n p yields the inverse of the permutation
p on such a set. Here is a function to apply the inverse of a permutation of
{ 1, . . . , n } to a number in that range:

ApplyPerm =def λn:nat. λp:Perm n. λm:Upto n. Invperm n pm

Using subsumption for Invperm n p, we can get the expected typing:

ΓPERM . ApplyPerm : Πn:nat. (Perm n) → (Upto n) → (Upto n).

which reveals that ApplyPerm n f is in fact a function from Upto n to Upto n.

2.2 Subtyping type operators and families

Systems of higher-order subtyping extend subtyping to type-constructors. The
prototypical one is F≤ω [5], in which one can declare a type variable ranging
over type operators, F ≤ (λβ ≤ nat. List(β × β)). A system with dependent
types instead of polymorphism is λP≤ [3], in which one can declare a variable
ranging over type families, G ≤ (λx:nat.Vecnat(5∗x)). In the first case, F ranges
over constructors that map a subtype β of nat to a subtype of List(β × β); in
the second case G ranges over constructors that map an element x of nat to a
subtype of the type of vectors of numbers with 5∗x elements. Both systems have
a pointwise rule for subtyping operators and a corresponding application rule:

Γ, α : K . A ≤ B
Γ . λα:K.A ≤ λα:K.B (sub-λ)

Γ . H ≤ J Γ . J C : K
Γ . H C ≤ J C (sub-app)

The second premise of (sub-app) ensures that the application J C is well-typed;
this implies that H C is also well-typed. Here’s an example using (sub-app):

Gn ≤ (λx:nat.Vecnat(5 ∗ x))n
(λx:nat.Vecnat(5 ∗ x))n ≤ Vecnat(5 ∗ n)

Gn ≤ Vecnat(5 ∗ n)

(where n : nat in the context). This is derived using conversion and transitivity.
In λPower , there is no rule directly corresponding to (sub-λ). Indeed it is

impossible to prove anything with the form Γ . λα:K.A : Power (C). The rules
above are hard to interpret semantically, because the interpretation of λα:K.A :
Power (C) must be considered pointwise rather than as a subset inclusion, so the
meaning of Power would depend on its context in a term.

Perhaps surprisingly, power types can express similar typings without the
pointwise rules. Suppose that F is a subtype of a type-constructorH with domain
K; this is like asking F to be an element of Πα:K. Power (H α), since each

application F M must be a subtype of HM . This “η-like” expansion for Π-
types works uniformly2 and we can declare:

F : Πβ: Power (nat). Power (List(β × β))
G : Πx:nat. Power (Vecnat (5 ∗ x))

To derive Gn ≤ Vecnat(5 ∗ n) we need only one use of ordinary application:

G : Πx:nat. Power (Vecnat (5 ∗ x)) n : nat

Gn : Power (Vecnat (5 ∗ n))

Substitution in the application rule for dependent products takes place of conver-
sion and transitivity needed before, so derivations in λPower can be more direct.3

2.3 λPower as a logical framework

λPower is related to λP, which underlies the Edinburgh LF [9]. It’s quite easy to
see that λPower can be used in the same way as λP. Let υ be an atomic type.
Then declare a universe of types by writing U =def Power (υ). We can use U
in place of Type in LF, to declare the term formers and judgements of a logic.
If Γ . A : U and Γ, x : A . B : U, then we do not have Γ . Πx:A.B : U,
but rather Γ . Πx:A.B : Power (Πx:A. υ). Since λP lacks quantification or
abstraction over types, this difference has little effect, and we can translate any
λP judgement into one which holds in λPower .4 With power types we can declare
one syntactic category to be a subtype of another, or one judgement to be a
subtype of another, so that every proof of the first judgement is also a proof of
the second. This is also possible in the proposals studied in [11, 3], but λPower

goes beyond both these systems by allowing refinements of the universe U itself.

Gardner proposed doing this [8] to help adequacy proofs. She defined a frame-
work ELF+ which distinguishes between terms that represent: object-level syn-
tax, proof terms, and other terms. To emulate ELF+ in λPower , declare three
subtypes: Sort : Power (U), Judge : Power (U), and Type : Power (U).

An encoding where power types are useful is higher-order logic (HOL). Sim-
ple types τ of the form ι, o, and τ ⇒ τ are encoded in an LF type dom : Type,
with i, o : dom, ⇒: dom → dom → dom and obj : dom → Type. HOL terms
with domain τ are represented as elements of obj(τ). ELF+ improves this, show-
ing dom and obj to be artifacts of the encoding, inhabiting Type, and typing
obj : dom → Sort, showing that elements of obj(τ) correspond to object logic
syntax. But in both LF and ELF+, the proliferation of obj quickly pollutes large
terms. In λPower , we can remove it altogether and declare dom : Power (Sort). The

2 This idea also appears in Crary’s λK system which has power kinds [7].
3 But practical effects on type-checking algorithms have not been investigated yet.
4 Perhaps, moreover, λPower is conservative over λP under this translation.

mapping obj is now implicit; the representation of the logic becomes more con-
cise, yet no less accurate. For example, the application term former becomes:

app : Πs, t: dom. (s⇒ t)→ s→ t

instead of
app : Πs, t: dom. obj(s⇒ t)→ obj(s)→ obj(t).

Although simple, it is important to emphasise that this example goes beyond
many other subtyping proposals. Power types apply uniformly; other systems
would have to be extended with sub-kinding to cope with this example.

3 The System λPower

Let V be a fixed countable infinite set of variables and K be a set of atomic type
constants. The set TK of pre-terms is given by:

T ::= K | V | λV:T.T | T T | ΠV:T.T | Power (T)

(writing T as short for TK). For meta-variables I use x, y, . . . ∈ V, κ, . . . ∈ K,
and A,B, . . . ,M,N, . . . ∈ T. Usual conventions are used for writing pre-terms.
A pre-context is a sequence of variable declarations x1 : A1, x2 : A2 . . . where no
variable is declared more than once. The empty pre-context is sometimes written
〈〉, otherwise it is invisible. I use Γ and variants to range over pre-contexts.

Not all pre-terms make sense. The well-formed pre-terms consist of terms
and types, defined in Definition 3.1 below. These are not disjoint; types are also
terms of the calculus. Terms and types are defined via three judgement forms:

. Γ Γ is a well-formed context
Γ . M : A In context Γ , M has type A
Γ . M = N : A In context Γ , M and N are equal at type A

These judgements are defined simultaneously by the rules shown at the end of
the paper. The system λPower is close to a predicative fragment of Cardeilli’s
original system [4]; the difference is that we use an equality judgement in the
presentation, and the more powerful (refl). Here is a brief outline of the rules.

Context formation (Figure 2). These rules are standard. The judgement
Γ . A : Power (B) serves to say that A is a well-formed type, as well as asserting
that A is a subtype of B. This is a general pattern.

Typing rules (Figure 1). Most rules are standard. The rule (atomic) in-
troduces atomic types; each atomic type is a subtype of itself, so is self-evidently
well-formed. The rule-scheme (refl) is novel, it expands to this:

Γ . M : Πx1:A1. . . .Πxn:An. Power (B)
Γ . M : Πx1:A1. . . .Πxn:An. Power (M x1 · · ·xn)

Reflexivity of subtyping for types is the case that n = 0. For each n > 0,
the rule (refl) asserts reflexivity of subtyping for n-ary type-valued functions5

(the example in Section 2.2 motivates this). The rule (Π) generalises the usual
contravariant subtyping rule for function spaces to dependent products. The last
premise is a well-formedness check.

Equality rules (Figure 2). These rules are standard.

Definition 3.1 (Terms, types and subtypes). We say that M is a Γ -term
if for some A, Γ . M : A, A is a Γ -type if for some B, Γ . A : Power (B),
and A is a subtype of B in Γ if Γ . A : Power (B).

The adjective “well-formed” emphasises that a pre-term can be typed in the
calculus, as required by Definition 3.1. There are three derived judgement forms:

Γ . A ≤ B =def Γ . A : Power (B)
Γ . A type =def for some B, Γ . A : Power (B)
Γ . A = B =def for some C, Γ . A = B : Power (C)

Section 4 shows that these definitions make sense.

4 Properties of λPower

The development begins with showing derivability of several rules: that the in-
duced subtype relation is a pre-order, and that type equality is reflexive and
symmetric. I distinguish derivable rules from those which are admissible but
not derivable because in the semantics we consider some important admissible
rules (namely, substitution and thinning) as part of the system, making sure they
are valid in every model. Some authors add these “important” admissible rules
to the presentation but this spoils the inductive proof of several meta-properties.

Notation 4.1. Let Γ ≡ x1 : A1, . . . be a pre-context. Let Dom(Γ) =def {x1, . . . }
be the set of variables Γ declares, Γ |xi =def x1 : A1, . . . , xi−1 : Ai−1 be the re-
striction of Γ up to xi−1. Define Γ (xi) =def Ai, viewing Γ as a partial mapping
Γ : V ⇀ T. Define Γ ⊆ Γ ′ iff every declaration xi : Ai in Γ also appears in Γ ′.

I use J to range over judgements of the system, and Γ . J for a judgement with
context Γ . A simultaneous substitution is a partial map from variables to pre-
terms; a renaming is the special case of a simultaneous substitution which is a
bijection on a subset of V. Substitution is extended to contexts and judgements
componentwise, e.g., if Γ ≡ x1 : A1, . . . then Γ [N/x] ≡ x1 : A1[N/x], x2 :,

We first prove by induction on derivations that the usual good properties for
subtyping systems hold: context formation, renaming, thinning, substition and
5 A technical note: (refl) adds a case of η-subject reduction to the sytem; if y :
Πx:A. Power (B) then with (λ) we get λx:A. y x : Πx:A. Power (y x), but we need
(refl) to get y : Πx:A. Power (y x).

bound narrowing (replacing x : A with x : A′ where A′ : Power (A)). Next we
show the important formation and type correctness properties.

Proposition 4.2 (Formation).

1. Γ . λx:A.M : C =⇒ Γ . A type and ∃B. Γ, x : A . M : B.
2. Γ . M N : C =⇒ ∃A,B. Γ . M : Πx:A.B and Γ . N : A.
3. Γ . Πx:A.B : C =⇒ Γ . A type and Γ, x : A . B type.
4. Γ . Power (A) : C =⇒ Γ . A type.

Proposition 4.3 (Type correctness).

1. Γ . M : A =⇒ Γ . A type.
2. Γ . M = N : A =⇒ Γ . A type and Γ . M,N : A.

The few basic equality rules of Figure 2 have some important admissible rules
as consequences, proved using the propositions above. These include congruence
rules for the type constructors, and rules of subsumption, conversion and sub-
stitution for the equality judgement itself. For details, see [2]. An important
intermediate stage is proving the transitivity of type equality, using this rule:

Γ . A = B : Power (C)
Γ . A = B : Power (B)

(eq-sub-refl)

This shows that type equality is “absolute”, in the sense that the derivability of
A = B : Power (C) is not affected by the choice of C when A and B are types
such that A,B : Power (C).6 In general, we expect this for type equality, but not
necessarily for term equality. It is typical for subtyping calculi that the equality
of two terms may vary across their common types. The semantics considered
later reflects these ideas.

4.1 Further properties

We would like to prove more about the λPower system than the properties in
the previous section. One desirable property is the important practical property
of subject reduction: If Γ . M : A and M −�βη M

′, then Γ . M ′ : A too.
Unfortunately it seems difficult to prove for λPower . The key is a generation
principle, which gives a way of decomposing derivations by stating how a par-
ticular judgement was derived. Proposition 4.2 is a weak generation principle,
but it is not strong enough. For a judgement Γ . N : C, we need a principle
which connects C with the judgements about subterms of N asserted to exist.
For the λ-case, a first approximation might be this: if Γ . λx:A.M : C then
C = Πx:A′. B′, where Γ . A′ ≤ A and there is a B such that Γ, x : A . M : B
and Γ, x : A′ . B ≤ B′. This captures the observation that after applying
6 If there is a C′ such that B : Power (C′) then A = B : Power (C′) too by

(eq-sub-refl), (Power), and subsumption for equality.

(λ) there can be several subsumptions and conversions through which Πx:A.B
mutates into C:

x : A . M : B
λx:A.M : Πx:A.B....
λx:A.M : Cj Cj ≤ Cj+1

λx:A.M : Cj+1
(sub)

....
λx:A.M : Ck Ck = Ck+1

λx:A.M : Ck+1
(conv)

....
λx:A.M : C

The cut-like rules (sub) and (conv) make it hard to prove the statement di-
rectly, because to “join up” the arbitrary Ci’s in the intervening typings we nant
to use the generation principle being proved. It is worse than this, because (refl)

can introduce other detours, so the putative statement above needs altering.
The traditional syntactic solution to this problem is to give a syntax-directed

reformulation of the system, eliminating the cut-like rules. Unfortunately this
technique does not apply easily to λPower . The sticking point is bounded operator
abstraction which makes it hard to prove substitution lemmas in the syntax-
directed system before proving other properties which depend on substitution.
A related solution involves giving a revised definition of the subtyping relation
from the outset, on pre-terms. This too is difficult for power types, which have
no separate subtyping judgement anyway. The problem remains open.

5 Rough Type-checking

Although λPower is a dependently-typed calculus, we can approximate type-
checking using “rough” types without term dependency. Rough type-checking
is useful because it enforces a structural well-formedness property that is neces-
sary for typability in the full system. Two pre-terms which are in the full typing
relation of λPower have related rough types, and two terms which are equal in the
equational theory have the same rough type. The idea of rough type-checking
comes from [12], which suggested that rough types could be used to give a se-
mantics to ASL+. This is done for λPower in Section 6. Another application of
rough types is the proof of strong normalization for λPower [2].

5.1 Rough typing system

Given a set K of atomic types, the set TyK of rough types over K consists of
type constants, arrow types, and power types, defined by the grammar:

Ty ::= K | Ty ⇒ Ty | P(Ty)

(writing Ty as short for TyK). I use τ, υ, . . . to range over Ty. There are two
rough typing judgements, using filled triangles:

I Γ Γ is a roughly-typable context
Γ I M : τ M has rough type τ in Γ

The judgements are defined inductively by the rules in Figure 3. Notice that full
λPower contexts are used in the rough typing judgements.

One can understand the rough typing rules as an abstract interpretation
of terms-in-context, which follows set-theoretic intuitions for the calculus. The
rough type of a term tells us what kind of beast it denotes: lambda terms denote
functions and have arrow rough-types; atomic types and power types denote
collections of values and have power rough-types. A term Πx:A.B has a rough
type of the form P(τ ⇒ υ), indicating that it denotes a collection of functions.

Example 5.1. To illustrate rough typing, recall the example context ΓPERM from
Section 2.1. We can derive these rough typings:

ΓPERM I Perm : int ⇒ P(int ⇒ int)

ΓPERM I Invperm : int ⇒ (int ⇒ int)⇒ (int ⇒ int).

At once we see how “rough” this is: Perm and Invperm were defined on nat, but
nat gets replaced by the atomic type int.

In general, rough typing judgements — or to be more precise, their translation
got by mapping τ ⇒ υ to Πx:τ. υ — do not hold in the full λPower type system.
Certainly we do not have:

ΓPERM . Perm : int → Power (int → int)

because, for starters, Perm is not defined on all of int. In Proposition 5.4, we
prove that typability in the full calculus guarantees rough typability. The above
example shows that the converse fails, since:

ΓPERM, i : int I Perm i : P(int ⇒ int)

but Perm i cannot be typed in the full system7.
It is easier to establish properties of the rough-typing system than the full

system, because the types are non-dependent and subtyping has been removed.
First, we have the usual thinning, substitution and also strengthening properties
for the rough type system. Then we can prove decidability and subject reduction.

Proposition 5.2 (Properties of rough typing).

1. If Γ I M : τ , then τ is the unique such rough type.
7 to prove this rigorously we need to use a generation principle or model construction.

2. Rough type-checking and rough type-inference are decidable.8

Proposition 5.3 (Subject reduction for rough typing). If Γ I M : τ
and M −�βη M

′, then Γ I M ′ : τ too.

The agreement property below is the important connection between rough
types and typing in full λPower , claimed at the beginning of this section.

Theorem 5.4 (Agreement of rough typing).

1. If . Γ then I Γ .
2. If Γ . M : A then for some τ ∈ Ty, Γ I M : τ and Γ I A : P(τ).
3. If Γ . M = N : A then for some τ ∈ Ty, Γ I M,N : τ and Γ I A : P(τ).

6 Semantics

Subtyping calculi have two basic kinds of model. With a typed value space, we
may choose a coercion semantics, where each use of subsumption is modelled
by the insertion of a coercion from type to supertype. If A ≤ B, there is a map
cA,B : JAK→ JBK. This is a general setting, but it requires a coherence property
of the interpretation, to show that different ways of putting coercions into a
coercion-free judgement have the same interpretation. The coherence property
can be difficult to establish. The other kind of model is a containment semantics
in which subtyping is interpreted as containment between types: JAK ⊆ JBK.
There is no problem of coherence in this case, but there is a difficulty with
the rule for subtyping Π-types. In the syntax we have int → int ≤ nat → int,
but this does not hold as a set-theoretic inclusion; Z → Z 6⊆ N → Z when the
semantic→ is set-theoretic function space. This is usually solved by interpreting
nat → int as the collection of all partial functions defined at least on N; then
the inclusion Z ⇀ Z ⊆ N ⇀ Z holds. But then we need a universe of values over
which to form this “collection of all partial functions,” and this is what leads to
an untyped value space in containment semantics. Typically, the untyped value
space is the domain of a model of the untyped λ-calculus, and the denotation of
a term is defined using its type-erasure [10]. But it is a surprising overkill to base
a semantics for a calculus as simple as λ≤ (the extension of λ→ with subtyping)
on a model of the untyped λ-calculus which requires a universal domain.

For power types, a containment semantics is natural and is the intended
model for ASL+. I shall and give a containment semantics for λPower which
is nevertheless based on a typed value space. Rough types make this possible.
Whenever A ≤ B, then A and B have the same rough type P(τ), say, and so
both may be interpreted as subsets of the interpretation of τ : JAK ⊆ JBK ⊆ JτK.
Since every type Πx:C.D has a rough type of the form P(τC ⇒ τD), we can
form the “collection of all functions with domain at least JCK” using JτCK as a
8 assuming we can decide syntactic identity of atomic types, i.e., whether κ ≡ κ′.

universe, instead of a universal domain. The final ingredient is the equational
theory of subtyping, where the equality of two terms may depend upon the
type at which they are viewed. To deal with this, we use PERs rather than
sets. The following sections give an abstract model definition for λPower based on
these ideas, beginning from applicative structures. The reason for an abstract
definition is to capture both the intended model and a term model; the term
model is unusual for using an external equality notion rather than quotients
(because of this extensionality is not assumed from the start). Space reasons
prevent description of the term model here, see [2] for details.

6.1 Structures

A λPower applicative structure is similar to a typed-applicative structure for λ→

It provides semantic domains for every rough type; the domains are sets.

Definition 6.1 (λPower applicative structure). A λPower applicative struc-
ture D = 〈D,Const,App〉 consists of a family of sets {Dτ }τ∈Ty ; a constant
Const(κ) ∈ DP(κ) for each κ ∈ K, and a mapping Appτ,υ : Dτ⇒υ → Dτ → Dυ
for each τ, υ ∈ Ty. Type annotations τ, υ are sometimes omitted for brevity. ut

Notation 6.2. Given a set S, REL(S) is the set of relations on S, REL(S) =def

Pow(S × S). If R ∈ REL(S), then dom(R) = { a a R a }. A relation is a partial
equivalence (PER) if it is symmetric and transitive; PER(S) is the set of PERs
on S. The notation a 7→ f(a) stands for the function mapping a to f(a).

Example 6.3 (Full hierarchy structure). Given a family of sets and PERs C =
{Cκ, Rκ ∈ PER(Cκ) }κ∈K, the full hierarchy FC on C has Fκ = Cκ, Fτ⇒υ =
Fτ → Fυ, FP(τ) = REL(Fτ), App(f,m) = f(m), and Const(κ) = Rκ. ut

In the full hierarchy structure, FP(τ) is the set of all relations over Fτ , rather
than the set of all PERs. This is for a technical reason: because the interpreta-
tion in the full structure (Example 6.7) is defined over rough types, the type-
constructors are not guaranteed to construct PERs.

6.2 Environments and interpretations

For each roughly-typable context Γ , we define a semantic domain DΓ by induc-
tion on Γ , setting D〈〉 = { ? } and DΓ,x:A = DΓ ×Dτ , where Γ I A : P(τ) and
{ ? } is some singleton set. A Γ -environment is a nested tuple η ∈ DΓ . Because
we use a name-free denotation, if Φ is a renaming on Dom(Γ) then η is a Φ(Γ)-
environment iff it is a Γ -environment. Given a Γ -environment η ∈ DΓ , we can
define a projection function from the variables of Γ :

η〈〉(y) undefined, for all y.

ηΓ, x:A(y) =
{

snd(η), if y ≡ x,
(fst η)Γ (y) if y 6≡ x.

So if Γ |x I Γ (x) : P(τ), then ηΓ (x) ∈ Dτ . Thinning between environments is
defined using this projection notation. If Γ1 ⊆ Γ2, η1 ∈ DΓ1 and η2 ∈ DΓ2 , then
η1
Γ1 ⊆ η2

Γ2 iff ηΓ1
1 (x) = ηΓ2

2 (x) for all x ∈ Dom(Γ1). The notation η|xi stands
for the restriction of a Γ -environment η to variables declared before xi, meaning
the shorter tuple fstn−i(η) where xi is the ith variable of n declared in Γ .

Unlike a partial function environment, this tupled form has an explicit notion
of the domain DΓ associated to a context. We need this because relations over
DΓ are used in the soundness proof. Using tuples gives us an interpretation
function reminiscent of the semantics of λ→ in (set-like) CCCs.

Definition 6.4 (λPower interpretation). A λPower interpretation in D consists
of a meaning function JΓ I − : τK− : T ⇀ DΓ → Dτ , for each roughly-typable
context Γ and τ ∈ Ty, such that whenever Γ I M : τ and η ∈ DΓ , then
JΓ I M : τKη ∈ Dτ , and for each τ ∈ Ty, a mapping Relτ : DP(τ) → REL(Dτ)
Type annotations τ may be omitted for brevity. ut

When a ∈ DP(τ), I sometimes use Ra as shorthand for Relτ (a). The map-
ping Rel models the behaviour (or extension) of elements denoting types, just
as App models the extension of elements denoting functions. It is part of the in-
terpretation so we can consider different “views” of types in the same structure.
Definition 6.4 does not require a priori that Ra is a PER, for the reason outlined
before; instead the soundness theorem will imply that any type of λPower denotes
a PER. This differs slightly from other model definitions for dependent types
which use a partial definition, proved to be total on well-typed terms. Instead
we require that an interpretation is defined on all roughly-typed terms.

6.3 Models

We will use some constructions on relations. Let D be a λPower interpretation.
Given R ∈ REL(Dτ) and G ∈ dom(R) → REL(Dυ), we define Π(R,G) ∈
REL(Dτ⇒υ), Pwr(R) ∈ PER(DP(τ)) by:

f Π(R,G) g iff ∀a, b. (a R b) =⇒ App(f, a) G(a) App(g, b).
a Pwr(R) b iff Rel (a) = Rel (b) ∈ PER(Dτ) and Rel (a) ⊆ R.

Fact 6.5. If R ∈ PER(Dτ) and G(a) = G(b) ∈ PER(Dυ) whenever a R b,
then Π(R,G) ∈ PER(Dτ⇒υ).

Definition 6.6 (λPower environment model). A λPower environment model
for a structure D is an interpretation for D such that the following 9 conditions
are satisfied, for all suitable roughly-typable terms. For roughly-typable contexts
Γ, Γ1, Γ2 and all η ∈ DΓ , η1 ∈ DΓ1 , η2 ∈ DΓ2 with η1

Γ1 ⊆ η2
Γ2 ,

CONST JκKη = Const(κ).
CONST2 RJκKη ∈ PER(Dκ).

VAR JxKη = ηΓ (x).
APP JM NKη = App(JMKη, JNKη).

FAMILY If for all a, b (a RJAKη b) =⇒ RJBK〈η, a〉 = RJBK〈η, b〉, then
RJΠx:A.BKη = Π(RJAKη, a 7→ RJBK〈η, a〉).

SUBSET RJPower (C)Kη = Pwr(RJCKη).
ABS If ∀d, e. d RJAKη e =⇒ JMK〈η, d〉 RJBK〈η, d〉 JNK〈η, e〉, then

∀d, e. d RJAKη e =⇒ App(Jλx:A.MKη, d) RJBK〈η, d〉 JNK〈η, e〉.
THIN If Φ is a renaming on Dom(Γ1) such that Φ(Γ1) ⊆ Γ2, then JΦ(Γ1) I

Φ(M) : τKη1
= JΓ2 I M : τKη2

SUBST If Γ1 ≡ Γ, x : A, Γ ′, Γ2 ≡ Γ, Γ ′[N/x] then JΓ1 I MKη1
= JΓ2 I

M [N/x]Kη2
provided η1

Γ1(x) = JΓ I NKη1|x ∈ Rel (JΓ I AKη1|x). ut

Axioms CONST, VAR, APP are standard. CONST2 requires that atomic types
denote PERs. FAMILY and SUBSET define the extension of the denotation of
types of the form Πx:A.B and Power (C). ABS ensures the soundness of the
three equality rules which mention the λ-constructor.

Example 6.7 (Full hierarchy model). We define an interpretation by:

Rel (A) = A

JΓ I x : τ Kη = ηΓ (x)

JΓ I κ : P(κ)Kη = Rκ

JΓ I λx:A.M : τ ⇒ υKη = a 7→ JΓ, x : A I M : υK〈η, a〉
JΓ I M N : υKη = App(JΓ I M : τ ⇒ υKη, JΓ I N : τKη)

JΓ I Πx:A.B : P(τ ⇒ υ)Kη = Π(RJAKη, a 7→ RJBK〈η, a〉)

JΓ I Power (A) : P(P(τ))Kη = Pwr(RJAKη) ut

Lemma 6.8. The interpretation defined in Example 6.7 is a model of λPower .

Here, RJΠx:A.BKη is not automatically a PER, since the uniformity condition
that a RJAKη b =⇒ RJBK〈η, a〉 = RJBK〈η, b〉 may fail. For example, if B ≡ zx,

the “rough-soundness” requirement that η(z) ∈ Dτ⇒P(υ) does not force the value
of z at one element of Dτ to be related to the value at another. This is why we
generalized to relations. PERs are only guaranteed for well-formed terms.

6.4 Soundness

Here we show that when Γ . M : A, then JMKη is in the domain of the relation
RJAKη, and when Γ . M = N : A, then JMKη is related to JNKη by RJAK.
Moreover, Rel (JAKη) is a PER on Dτ , where Γ I A : P(τ). But we can only
expect soundness if the environment η satisfies the context in a suitable way.
The interpretation of a context Γ is defined by combining the interpretations of
its components. Let S and T be sets, R ∈ REL(S), and G ∈ dom(R)→ REL(T).
Then we define Σ(R,G) ∈ REL(S × T) by:

p Σ(R,G) q iff π1(p) R π1(q) and π2(p) G(π1(p)) π2(q)

Fact 6.9. If R ∈ PER(S) and G(a) = G(b) ∈ PER(T) whenever a R b, then
Σ(R,G) ∈ PER(S × T).

Definition 6.10 (Interpretation of contexts). Given a model for D and
a roughly-typable context Γ , we define JΓ K ∈ REL(DΓ) by induction on Γ , by
J〈〉K = { (?, ?) } and JΓ ′, x : AK = Σ(JΓ ′K, η 7→ RJΓ ′IA: P(τ)Kη). We say η1, η2 ∈
DΓ are related environments satisfying Γ iff η1 JΓ K η2.

Fact 6.11. If Γ is roughly-typable and η1 JΓ K η2, then for all x ∈ Dom(Γ),
ηΓ1 (x) RJΓ |xIΓ (x): P(τ)Kη1|x

ηΓ2 (x).

Lemma 6.12. Suppose that RJAKη ∈ PER(Dτ) and that d RJAKη e =⇒
RJBK〈η, d〉 = RJBK〈η, e〉 ∈ PER(Dυ) for all d, e. Then in any model:

WEAK-EXT If ∀d, e. d RJAKη e =⇒ JMK〈η, d〉 RJBK〈η, d〉 JNK〈η, e〉, then
∀d, e. d RJAKη e =⇒ App(Jλx:A.MKη, d) RJBK〈η, d〉 App(Jλx:A.NKη, e)

ETA If ∀d, e. d RJAKη e =⇒ App(JMKη, d) RJBK〈η, d〉 App(JNKη, e), then
∀d, e. d RJAKη e =⇒ App(Jλx:A.M xKη, d) RJBK〈η, d〉 App(JNKη, e)

Theorem 6.13 (Soundness for models).

1. If . Γ then JΓ K ∈ PER(DΓ).
2. If Γ . M : A, then ∀η1, η2 ∈ DΓ , η1 JΓ K η2 =⇒ JMKη1

RJAKη1
JMKη2

.

3. If Γ . M = N : A, then ∀η1, η2 ∈ DΓ , η1 JΓ K η2 =⇒ JMKη1
RJAKη1

JNKη2
.

Corollary 6.14 (Soundness of Typing). If Γ . M : A, then for all η,
η ∈ dom JΓ K =⇒ JMKη ∈ RJAKη.

7 Conclusions

This paper introduces the type system λPower , a predicative fragment of Cardelli’s
original power type system [4]. Power types provide a cunning way of dealing with
the subtyping judgement at the same time as the typing judgement. At first sight
it appears to be a simplification, because two separate concerns are combined
into one. However, the generalisation which occurs from using Power (A) as both
a term and a type leads to complication of the meta-theory.

The semantics of λPower is set-based, but uses partial equivalence relations to
interpret equality. The subtyping relation induced by power types is understood
as inclusion between PERs. In contrast to other semantics for subtyping or
dependent types, the intended model is made by “carving out” from a classical
set-hierarchy, without using a universal domain. Every term in λPower has a rough

type which is either an atomic type, or one of the forms τ ⇒ υ or P(τ), where τ
and υ are rough types. These rough types are used to structure the set hierarchy.

Several important results are established. Unfortunately, there are still gaps
in the meta-theory of λPower : ideally, we would like to prove a generation principle
and thus prove subject reduction for λPower , which seems less straightforward
than might be hoped (but no counterexamples have been found).

Acknowledgements. I’m especially grateful to Don Sannella who sug-
gested that I study ASL+ [12], from which λPower grew. The work here first
appeared in my thesis supervised by Sannella [1]. I am grateful to many people
I discussed this work with during its evolution, including L. Cardelli, A. Com-
pagnoni, H. Goguen, M. Hofmann, B. Pierce, and A. Tarklecki. More recently,
the referees for CSL 2000 provided very useful and detailed comments (some
questions are addressed only in [2] due to lack of space here).

References

[1] David Aspinall. Type Systems for Modular Programs and Specification. PhD
thesis, Department of Computer Science, University of Edinburgh, 1997.

[2] David Aspinall. Subtyping with power types. Draft full version. LFCS, University
of Edinburgh, 2000.

[3] David Aspinall and Adriana Compagnoni. Subtyping dependent types. In
E. Clarke, editor, Proceedings, Eleventh Annual IEEE Symposium on Logic in
Computer Science, pages 86–97, New Brunswick, New Jersey, 1996. IEEE Com-
puter Society Press.

[4] Luca Cardelli. Structural subtyping and the notion of power type. In Confer-
ence Record of the Fifteenth Annual ACM Symposium on Principles of Program-
ming Languages, pages 70–79, San Diego, California, January 13–15, 1988. ACM
SIGACT-SIGPLAN, ACM Press.

[5] Luca Cardelli. Notes about Fω<:. Unpublished manuscript, October 1990.
[6] Luca Cardelli and Giuseppe Longo. A semantic basis for Quest. Journal of

Functional Programming, 1(4):417–458, 1991.
[7] Karl Crary. Type-theoretic Methodology for Practical Programming Languages.

PhD thesis, Cornell University, 1998.
[8] Philippa Gardner. Representing Logics in Type Theory. PhD thesis, Department

of Computer Science, University of Edinburgh, 1992.
[9] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. JACM,

40(1):143–184, 1993.
[10] John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
[11] Frank Pfenning. Refinement types for logical frameworks. In Informal Proceedings

of the 1993 Workshop on Types for Proofs and Programs, pages 315–328, May
1993.

[12] Donald Sannella, Stefan Soko lowski, and Andrzej Tarlecki. Toward formal de-
velopment of programs from algebraic specifications: Parameterisation revisited.
Acta Informatica, 29:689–736, 1992.

. Γ

Γ . κ : Power (κ)
(atomic)

. Γ x ∈ Dom(Γ)

Γ . x : Γ (x)
(var)

Γ, x : A . M : B

Γ . λx:A.M : Πx:A.B
(λ)

Γ . M : Πx:A.B Γ . N : A

Γ . M N : B[N/x]
(app)

Γ . M : A Γ . A : Power (B)

Γ . M : B
(sub)

Γ . M : Π~x: ~A. Power (B)

Γ . M : Π~x: ~A. Power (M ~x)
(refl)

Γ . M : A Γ . A = B : Power (C)

Γ . M : B
(conv)

Γ . A′ : Power (A)
Γ, x : A′ . B : Power (B′)
Γ, x : A . B : Power (C)

Γ . Πx:A.B : Power (Πx:A′. B′)
(Π)

Γ . A : Power (B)

Γ . Power (A) : Power (Power (B))
(Power)

Fig. 1. Typing rules

. 〈〉
(empty)

. Γ Γ . A : Power (B)

. Γ, x : A
(extend)

Γ . M : A

Γ . M = M : A
(eq-refl)

Γ . N = M : A

Γ . M = N : A
(eq-sym)

Γ . M = N : A Γ . N = P : A

Γ . M = P : A
(eq-trans)

Γ, x : A . M = M ′ : B

Γ . λx:A.M = λx:A.M ′ : Πx:A.B
(eq-λ)

Γ . M = M ′ : Πx:A.B
Γ . N = N ′ : A

Γ . M N = M ′N ′ : B[N/x]
(eq-app)

Γ, x : A . M : B Γ . N : A

Γ . (λx:A.M)N = M [N/x] : B[N/x]
(eq-β)

Γ . M : Πx:A.B

Γ . λx:A.M x = M : Πx:A.B
(eq-η)

Fig. 2. Context and equality rules

I 〈〉

I Γ Γ I A : P(τ)

I Γ, x : A

I Γ

Γ I κ : P(κ)

I Γ Γ |x I Γ (x) : P(τ)

Γ I x : τ

Γ I A : P(τ) Γ, x : A I M : υ

Γ I λx:A.M : τ ⇒ υ

Γ I M : τ ⇒ υ Γ I N : τ

Γ I M N : υ

Γ I A : P(τ) Γ, x : A I B : P(υ)

Γ I Πx:A.B : P(τ ⇒ υ)

Γ I A : P(τ)

Γ I Power (A) : P(P(τ))

Fig. 3. Rough typing rules

