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Abstract

An asynchronous superscalar architecture is presented
based on a novel architectural feature calledinstruction
compounding. This enables efficient dynamic scheduling
and forwarding of data based on local information, while
maintaining the advantages of asynchrony in terms of ex-
ploiting actual delays. Results are presented in which stat-
ically and dynamically compounded architectures are com-
pared against an equivalent synchronous superscalar archi-
tecture.

1. Introduction

The design of high clock frequency processors leads to
considerable physical problems in distributing the clock
signal, high power dissipation and poor electromagnetic
(EM) interference characteristics. The asynchronous design
approach has been proposed as a solution to these prob-
lems [8], although the potential of multiple issue asynchron-
ous architectures has not yet been fully explored. This pa-
per introduces a technique called instruction compounding
which better enables the advantages of asynchrony to be ex-
ploited in a superscalar architecture.

2. Synchronous Superscalar Architecture

This section highlights some features of a typical syn-
chronous superscalar pipeline (see Figure 1) with out-of-
order instruction issue. The pipeline is capable of fetching
and executing multiple instructions oneach clock cycle, and
is typically supported by branch prediction and speculative
execution in order to maintain a high instruction bandwidth.

The instruction-issue bufferimplements, in essence, a
limited dataflow capability, in holding instructions while
their operands are being generated, and allowing ready in-
structions to issue out-of-order. The buffer may issue mul-
tiple instructions in a clock cycle to a number of functional

units which operate concurrently. The operation of the in-
struction issue buffer can be split into two phases:wakeup
andselection. The wakeup logic matches results generated
by the functional units to the operands in the issue buffer;
the selection logic determines which of the ready instruc-
tions should be issued to free functional units. These ar-
chitectures may issue dependent instructions in consecutive
clock cycles by waking instructions in the same cycle as
their final operand is being produced. A network of result
buses and bypass logic is used to obtain the correct operand
values on the subsequent clock cycle, which is commonly
termed as data forwarding.

In
st

ru
ct

io
n 

F
et

ch

R
eg

is
te

r 
W

rit
e

F
un

ct
io

na
l U

ni
ts

data forwarding

R
en

am
e

R
eg

is
te

r

O
pe

ra
nd

 F
et

ch

Is
su

e 
B

uf
fe

r
In

st
ru

ct
io

n

Figure 1. Synchronous Superscalar Pipeline

3. Asynchronous Superscalar Architecture

A number of synchronous implementations of the archi-
tectural features described previously already exist. Un-
fortunately imitating these designs within an asynchronous
environment limits the extent to which the advantages of
asynchrony may be exploited. To appreciate this statement
we need to understand better the influence of the control
paradigm on the architecture.

In synchronous architectures, the control mechanism has
a rigid, periodic interaction with the datapath. Operations
are initiated by the control unit and must complete within
fixed multiples of clock cycles. This produces predict-
able and deterministic behaviour which may be exploited.



However the components of such a system must be designed
to minimise the critical path to ensure a low clock period,
even if this path is rarely taken. As a result, functional com-
ponents lie idle for a proportion of the clock period, even
though utilisation is high when measured in clock cycles.
This is essentially a time-driven approach to the design of
the interface between the control and the datapath. In con-
trast, one can implement an event-driven version of this
interface using asynchronous circuits. This exposes ac-
tual delays within the datapath and results in components
being active only when performing useful computations.
A good asynchronous architecture is one which translates
these local timing benefits to a better overall system per-
formance. One way in which this may be achieved is by
exploiting greater sub-instruction parallelism.

In synchronous implementations, both the instruction
buffer and data forwarding mechanisms exploit global syn-
chronisation. In the absence of a clock, a naive implementa-
tion would require a large number of local synchronisations
- swamping any gains of exposing actual delays. We pro-
pose novel architectural ideas for efficiently realising dy-
namic scheduling and data forwarding in a fully asynchron-
ous environment.

3.1. Novel ideas for instruction execution

In this section, we describe the design of an asynchron-
ous superscalar processor, with emphasis on its out-of-order
instruction execution and data-forwarding capabilities.

The basic pipeline, outlined in Figure 2, differs from the
synchronous one described previously in the way that op-
erands are obtained and instructions are scheduled. These
operations are now distributed to execution units associated
with each functional unit.
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Figure 2. Asynchronous Superscalar Pipeline

The efficient operation of these execution units relies on
information being obtained from the compiler in identify-
ing possible candidates for data forwarding. The mech-
anism used to provide such information is calledinstruc-
tion compounding[1]. Instruction compounds provide ad-
ditional information regarding the dependences between in-

structions. This information is used to reduce synchron-
isations between functional units when required to perform
data forwarding and dynamic scheduling. A compound can
be simply defined as a group of dependent instructions. A
more precise definition with respect to the architecture is
given below.

A basic block is partitioned into compounds by group-
ing adjacent dependent instructions. The only constraint in
the selection of compounds is that the resulting graph of
compounds must be a DAG. Within the compounding ar-
chitecture results may only be forwarded between success-
ive instructions within a compound. The example in Fig-
ure 5 illustrates a possible compounding for the code frag-
ment. Instructions 2,3 and 4 are grouped together to form a
compound,each instruction within the compound must be
scheduled consecutively as shown. This allows membership
of a particular compound to be indicated by a singlecom-
pounding bitfor each instruction. When the bit is set the
instruction and the following instruction are both part of the
same compound.

The architecture of an execution unit is shown in Fig-
ure 3. Instructions are issued out-of-order (and asynchron-
ously) from the instruction buffer as soon as it is safe to
do so. This is indicated by forwarding requests from other
execution units, or the setting of future bits as other instruc-
tions issue. Once an instruction is ready and has success-
fully arbitrated for issue then its operands are obtained and
its result is generated. Concurrently, a pipeline determines
whether the result is to be forwarded, both finally converge
in the forwarding unit from where data is actually forwar-
ded. A more detailed description of the operation of these
units follows.
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Figure 3. Execution Unit

Execution units receive results either via the shared re-
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gister bank or directly from other units over the forwarding
network.

In the absence of global synchronisation, communica-
tion via the register bank is implemented through the use of
a register locking mechanism [6]. A status bit is attached
to eachphysical register to indicate when its contents is
valid. In addition, afuture bit is associated with each re-
gister to indicate whether the instruction which will write
to the register has been issued. Future bits guarantee the
availability of results and are used to determine when an in-
struction may issue safely, without resulting in a deadlock.
Both register status and future bits are reset during register
renaming when a new physical register is mapped.

Once an instruction is dispatched to an execution unit,
each of its operands which cannot be forwarded must read
its register future bit. This is achieved by queuing each
read operation in one of two read queues. After a future
bit is read, the status of the corresponding operand in the
instruction buffer is updated. This write is made using an
instruction buffer write port. This operation is illustrated in
Figure 4.
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Figure 4. Future Bit Read Operation

The instruction buffer dispatches instructions out-of-
order depending on the status of their operands. The oper-
and status is updated via the instruction buffer write ports,
either by successfully reading a future bit (as described be-
fore), or by receiving a forwarding request (to be described).
These operations are equivalent to an instructionwakeup
phase in a synchronous pipeline. Each write port is asso-
ciated with an issue port. If a write wakes an instruction
in the buffer, then the write port is blocked until the issue
request is granted. This limits the number of arbitrating in-
structions to the number of write ports, which is desirable in
asynchronous architectures (due to the delay of multi-way
arbiters). Each write is made directly to a particular buffer
entry - this is possible as both forwarding requests and fu-
ture bit reads are tagged with the instruction’s buffer entry.

Each entry in the buffer contains information about a par-
ticular instruction’s operands, their status and forwarding
bits, the operation to be performed at the functional unit,
the instruction’s compounding bit and the location of the
next instruction in the compound. The forwarding bits as-

sociated with each operand indicate whether the result will
be forwarded, or fetched from the register bank. These bits
are initially set in the instruction dispatch unit.

Once an instruction has issued, it proceeds to the oper-
and fetch stage, and should its compounding bit be set (it
forwards its result), then it is also sent to the early unit input
buffer. The future bit associated with its destination register
will be set to indicate that the result is being generated.

The early unit queries the next instruction in a compound
to determine if forwarding is possible. This query orfor-
warding requestis also used to update the status of the oper-
and. A detailed description of this operation is given below.

� The early unit receives each instruction which is a
member of an instruction compound (bar the final in-
struction) and makes a forwarding request to the next
instruction in the compound. The location (execution
unit and buffer entry) of this instruction is obtained
within the instruction dispatch unit.

� The forwarding request must arbitrate for access to
the instruction buffer. Forwarding requests are then
queued before they access a particular entry via a write
port.

� When a forwarding request is made to a particular in-
struction in the buffer, then one of two situations will
arise:

– The status of all other operands has been updated
through future bit reads. In this case, data for-
warding is possible and the instruction may issue.

– Future bit reads are pending for one or more op-
erands. In this case it is not possible to issue
the instruction and data forwarding must be can-
celled. The operand which would have been for-
warded is now obtained from the register bank,
and its forwarding bit is reset to reflect this.

� The early unit will receive either an acknowledgement
or cancellation signal. This information is used to de-
termine whether or not to forward the data at the for-
warding unit.

The order in which results are consumed from a partic-
ular execution unit must be guaranteed to be the same as
the order in which they are sent. This is only possible by
cancelling the forwarding of certain results. The alternative
of issuing an instruction whenever it receives a forwarding
request is not possible without introducing the possibility of
deadlock.

Another potential deadlock condition involving the early
unit is controlled by the release of instructions from the in-
struction buffer. Instructions are only released when there is
no possibilityof filling the early unit input buffer. TheR++
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signal in Figure 3 is used to maintain a count within the in-
struction buffer and implement such a mechanism. If the
queue was to block instruction issue, then deadlock could
occur.

Operand fetch obtains register and forwarded result data.
Forwarded results are received into an individual queue for
each sender. This is necessary as the order in which for-
warded results are sent is only guaranteed with respect to a
single execution unit. In both the cases of register operands
and forwarded results, operand fetch will stall until the data
is available.

3.2. A Simple Example

In this section we illustrate the operation of the datapath
through a simple example (see Figure 5) of forwarding and
dynamic scheduling.

(2)  r1=mem[r2]

(1)  r5=mem[r2+4]

(3)  r2=r1*321

(4)  r3=r2+r5

2

4

3

1

Figure 5. Example Compounds

Instructions 2,3 and 4 are compounded, while instruc-
tion 1 remains a singleton compound. Alternatively, com-
pounds (2,3) and (1,4) could have been created. For simpli-
city, we assume in this example that the logical and physical
registers used for each instruction have the same identifiers.
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Figure 6. Future bit Read Queues

The following description shows how instructions are is-
sued and obtain forwarded data.

� All instructions are dispatched to their respective ex-
ecution units. In this case, a single memory unit (for
instructions 1 and 2) and ALU (for instructions 3 and
4) are present.

� Future bit read operations are queued for all register
operands (see Figure 6). Communication between in-
structions 2,3 and 4 are handled by forwarding opera-
tions and do not require future bit reads.

� We now concentrate on the execution of instructions
2 and 3. Instruction 3 requires no future bit read and
only awaits a forwarding request from instruction 2.
Instruction 2 issues after its operand’s status bit is up-
dated upon completion of the future bit read for re-
gister 2 (from q1 at the memory unit).

� The instruction proceeds to both the operand fetch
stage and the early unit. The latter makes a forwarding
request to instruction 3. Causing it to generate a for-
warding acknowledge signal and to issue. Forwarding
cannot be cancelled in this case as the instruction has
no register operands.

� Once the result for instruction 2 is generated, thefor-
warding unit will receive both a result and forward
request response - in this case an acknowledgement.
The result will then be sent to the ALU’s memory unit
result queue, where instruction 3 will obtain the result
during its operand fetch stage.

3.3. Dynamic Compounding

In the architecture presented so far instruction com-
pounds are identified at compile-time. An alternative ap-
proach is to construct the compounds dynamically as in-
structions are read. This section describes an implementa-
tion of dynamic compounding, which extends compound-
ing beyond basic block boundaries.

The implementation is based on a table being maintained
within the register renaming, or issue stages of the datapath.
An entry exists for eachphysical register and contains the
following information:

� A forward bit to indicate that this result is to be for-
warded. A destination in the form of a functional unit
and instruction buffer entry is also present if the com-
pounded bit is set.

� An executed flag, which is set once the instruction gen-
erating the result for this entry’s register has queried
the table.

An entry in the forwarding table is cleared when an in-
struction obtains its physical register destination. A sub-
sequent read of this register may then be forwarded. This
requires the compounded bit to be set in the table and the
location of the instruction requiring the result to be recor-
ded. A result may only be forwarded once, as in the static
case, and only while theexecuted flagis clear. This flag
is set when the instruction producing the result queries the
table to see if the result is to be forwarded. This query takes
place in an extra stage prior to the early unit. The details of
the implementation have been omitted, as it is only used to
explore the limits of compounding in this context.
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4. Evaluation

We compare asynchronous architectures operating with
statically and dynamically generated compounds to a syn-
chronous superscalar machine. We also include results for
a queue-based asynchronous architecture, which offers lim-
ited dynamic scheduling but lacks data forwarding.

All functional units share the same architectural para-
meters, as described (see Table 1). The delays used within
the asynchronous architectures, as listed in Table 2, these
are expressed as a percentage of the synchronous architec-
ture’s clock period.

Parameter Number
No. of instrs. fetched per memory cycle 4
Complex ALU (ALU, logic, shift., mult.) 1
ALU (ALU, logic) 2
Memory Unit 1
Logical Registers 32
Physical Registers 64
Instruction buffers per Functional Unit 16

Table 1. Architectural Parameters

Component Delay (% Cycle time)
Memory Access 100
Register Access 100
Future Bit read/write 60
Instruction Buffer Issue 50
Instruction Buffer Write 30
FU to FU communication
Request (requires arbitration) 45
Acknowledge 30
Data 30
Instruction Delays
ALU (add/shift) 50
Logical 20
Set/Move/Clear 0
Load/Store 100

Table 2. Asynchronous Component Delays

The following list gives additional implementation de-
tails specific to each model.

� The queue-based asynchronous architecture simply is-
sues instructions to execution units consisting of an
instruction queue, operand fetch stage and functional
unit pipeline.

� The synchronous machine’s instruction buffer is dis-
tributed amongst the functional units.

� In the case of the compounding architecture,each in-
struction buffer is split in two. One buffer is used to
hold instructions which may receive forwarded data,
and the other for those which will not. Two future bit
read queues and ports are shared between each buffer,
within each execution unit. Read operations were as-
signed in a round-robin fashion to the queues.

� The forwarding table (for dynamic compounding) in-
curs no delay due to reading, writing or arbitration.
In this case, dynamic compounding is simply used to
explore the possible advantages of extending compiler
based compounding beyond basic blocks.

Results where obtained using a trace-driven, event-based
simulator. The benchmarks used arecjpeg(spec95), bubble
sort, queens, compress(spec92), xlisp (spec92) andfgrep.
Instruction compounds were selected using a greedy graph
partitioning algorithm with a maximum compound length
of 10. No optimisations were performed on the schedule
of compounded instructions, or for the queue-based asyn-
chronous model.

Results showing the IPC (a cycle is defined in terms of a
memory access operation for all the models) for each pro-
cessor model are presented in Figure 7. Perfect branch pre-
diction, memory disambiguation and instruction fetch band-
width are assumed.

Queued

Statically Compounded

Dynamically Compounded

Synchronous Superscalar

FGREP BUBBLE COMPRESS CJPEG QUEENS XLISP
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Figure 7. IPC for different processor models

The percentage of operands which were compounded
either statically or dynamically and the actual percentage
of operands obtained via forwarding are given in Figure 8.
These differ due to the need to cancel some forwarding op-
erations to avoid deadlock at run-time.

It can be seen from the results that the synchronous
processor only outperforms the dynamically compounded
model in one case (cjpeg). Static compounding performs
worse than dynamic in all cases, only outperforming the
synchronous model in the case ofbubble sortandcompress.

These preliminary results are encouraging, and they will
improve with compiler optimised static compounding. We
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Compounded (Static) Forwarded  (Static) Compounded (Dynamic) Forwarded (Dynamic)
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Figure 8. Percentage of operands compoun-
ded and results actually forwarded

are currently investigating a combined SW/HW approach to
support forwarding across basic blocks.

Techniques also exist for exposing greater fine grained
parallelism. For example, higher utilisation of the register
read ports may be possible if the operand fetch stage is re-
designed to permit each port to be accessed independently.
This would allow both ports to be used if two instructions
only require a single register fetch each. The overhead in-
volved in implementing such aggressive techniques to ex-
pose further parallelism is current being evaluated.

5. Related Work

The effect of asynchrony on processor architecture has
been explored in earlier work [3, 2], which introduced the
notion of a fine-grained network of asynchronous agents
called amicronet. Although this work was limited to scalar
architectures many of the ideas and techniques for distrib-
uting control have been applied here.

Notable asynchronous processor implementations in-
clude an asynchronous MIPS R3000 [5] processor and the
Amulet 2 [7], an asynchronous implementation of the ARM
processor. Each makes some attempt to implement data
forwarding, such as register bypassing in the case of the
R3000 at the register bank, and by implementing last use
registers in the Amulet 2 processor. A result forwarding
mechanism designed for inclusion in the latest Amulet pro-
cessor is presented in [4]. Here a small parallel FIFO is
used to forward results between instructions currently in the
pipeline. Each of these techniques have been developed for
use within a scalar processor and their application to dy-
namically scheduled superscalar machines is limited. One
reason for this is the large number of outstanding instruc-
tions and possible forwarding situations.

6. Conclusions

We have presented a novel architecture for exploiting
asynchrony in superscalar architectures. To our knowledge
this is the first detailed study into the performance advant-
ages of an asynchronous multiple issue architecture.

We achieve better performance by two means: reducing
run-time synchronisation and by exploiting fine-grained
parallelism. Two techniques are used to achieve these
aims. Firstly, instruction compounding reduces run-time
synchronisations by generating forwarding information at
compile time. Secondly, the early unit and future bits ex-
pose additional parallelism by allowing events to occur as
early as possible while avoiding deadlock.

By understanding the interplay between compilers and
architectures we aim to realise fully the performance poten-
tial of asynchronous multiple issue architectures.
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