
Category Theory Lecture Notes

Daniele Turi
Laboratory for Foundations of Computer Science

University of Edinburgh

September 1996 – December 2001



Prologue

These notes, developed over a period of six years, were written for an eighteen lectures
course in category theory. Although heavily based on Mac Lane’s Categories for the Working
Mathematician, the course was designed to be self-contained, drawing most of the examples
from category theory itself.

The course was intended for post-graduate students in theoretical computer science at the
Laboratory for Foundations of Computer Science, University of Edinburgh, but was attended
by a varied audience. Most sections are a reasonable account of the material presented
during the lectures, but some, most notably the sections on Lawvere theories, topoi and Kan
extensions, are little more than a collection of definitions and facts.
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Lecture I

Introduction

Aim

• Learn category theory?

There is a lot to learn and we do not have much time. The crucial notion is that of adjunction
and the course is geared towards getting there as quickly and as naturally as possible. Hard
in the beginning, but it pays-off. Above all we aim to:

• Learn to reason categorically!

When one learns a foreign language it is often advised to listen to the language first, learning
to understand the words before knowing how they are spelled. This is hard at first, but
it pays back. Similarly, in this course we shall try and refrain from relating categories to
other subjects and we shall try and work with examples and exercises from category theory
itself. Surprisingly, one can go a long way without mentioning the traditional examples
from mathematics and computer science: category theory is, by and large, a self-contained
discipline.

Before starting, let us recall what the words category and categorical mean in English:

Category : class or group of things in a complete system of grouping.

Categorical : (of a statement) unconditional, absolute.

(Definitions from the Oxford dictionary.)

1 Universal Problems

In this first lecture we introduce universal problems. Following [Mac86, §II.3], we show that
the recursion theorem is a categorical, compact way of expressing the Peano axioms for the
natural numbers. This leads to Lawvere’s notion of natural number object.

1.1 Natural Numbers in set theory and category theory

What are the natural numbers?

A1 Traditional, set-theoretic answer (Peano, one century ago):

The natural numbers form a set N such that:

1. ∃ zero ∈ N
2. ∀n ∈ N, ∃ succn ∈ N
3. ∀n ∈ N, succn 6= zero ∈ N
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4. ∀n,m ∈ N, succn = succm +3 n = m (injectivity)
5. ∀A ⊆ N (zero ∈ A ∧ a ∈ A +3 succ a ∈ A) +3 A = N

These axioms determine N uniquely up to isomorphism. (We shall prove this categori-
cally in a moment.)

A2 Categorical answer (Lawvere, 60’s):

A natural number object
0 ∈ N s // N

(in Set) consists of

– a set N
– with a distinguished element 0 ∈ N
– and an endofunction s : N // N

which is universal in the sense that for every structure

e ∈ X g
// X

there exists a unique function f : N // X such that

– f(0) = e

– f(s(n)) = g(f(n)) for all n in N

The two characterisations are equivalent:

Theorem 1.1 A1 ks +3 A2

Proof.

(A1 +3 A2) ≡ Recursion Theorem (see proof in [Mac86, page 45].)

(A2 +3 A1)

(1) and (2) by definition, setting N = N , zero = 0 and succn = s(n).

(3) by contradiction: assume s(n) = 0 and consider a structure

e ∈ X g
// X

with:

• X = {e, d}
• g(e) = g(d) = d

Then, by A2, there exists f : N // X such that

f(0) = e f(s(n)) = g(f(n))

But if s(n) = 0 then f(s(n)) = e 6= d = g(f(n)).

(4) Exercise 1.2.

(5) We first express A2 in a really categorical way. For this we need to establish
a language of diagrams.
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Diagrams

Given functions f : X // Y , g : Y // Z, h : X // Z we say that the diagram

X
f
//

h
  

AAAAAAA Y

g

��

Z

commutes if and only if g(f(x)) = h(x) for all x in X. We write then:

g ◦ f = h

Of course, we can add identity functions wherever we want without affecting commutation.
Eg:

X
f
//

idX
��

Y

g

��

X
h
// Z

Another example:

X

h
��

@@@@@@@@
f
// Y

g

��

f ′
// Y ′

g′

��

Z
k
// Z ′

commutes iff k(g(f(x))) = k(h(x)) = g′(f ′(f(x))) for all x in X.

A trivial yet important remark is that every element x of a set can be regarded as a function
from a one-element (ie singleton) set {∗} to X. Moreover, this correspondence is a bijection.
From now on we then write 1 for the generic singleton set and

x : 1 // X

as an alternative (very convenient!) notation for

x ∈ X

Finally, a dashed arrow

X
f
//___ Y

indicates that there is a unique map f from X to Y .

A2 with diagrams We can now rephrase the two equations of A2 (and the uniqueness
condition) as follows:

1

id1

��

0 // N

f
��
�
�
�

s // N

f
��
�
�
�

1 e
// X g

// X
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Proof of Theorem 1.1 (continued)

First note that everything in sight in the diagram

1

id1

��

0 // N

f
��
�
�
�

s // N

f
��
�
�
�

1

id1

��

0
// A

i
��

s|A
// A

i
��

1
0
// N s

// N

commutes, where
i : A // N

is the evident inclusion function associated to A ⊆ N , and

s|A : A // A

is the restriction of s : N // N to A (which we assume it exists by A1.5).

Trivially, also

1

id1

��

0 // N

idN
��

s // N

idN
��

1
0
// N s

// N

commutes, hence, by the uniqueness condition in A2, we have that

i ◦ f = idN

By the following lemma this implies that f is injective:

Lemma 1.2 (Right inverses are injective) Given two composable
functions f and g, if g ◦ f is the identity then f is injective.

We can then conclude that N ⊆ A, since the codomain A of the injective function
f is A ⊆ N .

Theorem 1.3 A2 (hence A1) determines N uniquely up to isomorphism.

Proof. We need to prove that if there exists another structure

1 0′ // N ′
s′ // N ′

satisfying A2 then there exists an isomorphisms between N and N ′. That is, we
would like to establish the existence of f : N // N ′ and f ′ : N ′ // N such that
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f ′ ◦ f = idN and f ◦ f ′ = idN ′ . We are going to find these two functions f and f ′

using the universal property of both structures given by A2:

1

id1

��

0 // N

f

��
�
�
�

s // N

f

��
�
�
�

1

id1

��

0′
// N ′

f ′

��
�
�
� s′

// N ′

f ′

��
�
�
�

1
0
// N s

// N

but also
1

id1

��

0 // N

idN
��

s // N

idN
��

1
0
// N s

// N

hence
f ′ ◦ f = idN

Similarly,
f ◦ f ′ = idN ′

1.2 Universals

. . . there exists a unique function such that . . .

• Existence: define entities

• Uniqueness: prove properties

Theorem 1.4 A universal construction defines an entity uniquely up to isomorphism.

Proof. Very much like for Theorem 1.3.

Exercises

E 1.1 Prove that A2 implies the following (where X ×N is the cartesian product of the sets
X and N):

Primitive Recursion. For every set X with a distinguished element e ∈ X and
a function h : X ×N // X there exists a unique function f : N // X such that

• f(0) = e

• f(s(n)) = h(f(n), n) for all n in N .

Hint : apply A2 to g : X ×N // X ×N , where g(x, n) = (h(x, n), n).
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E 1.2 Use the above primitive recursion to prove that A2 implies the fourth Peano axiom
(injectivity). (Hint. You want to prove that the successor is injective. For this you can use
Lemma 1.2 with respect to predecessor and successor. The predecessor function p : N // N
is definable by primitive recursion.)
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Lecture II

2 Basic Notions

Category theory is the mathematical study of universal properties:

• it brings to light, makes explicit, and abstracts out the relevant structure, often hidden
by traditional approaches;

• it looks for the universal properties holding in the categories of structures one is working
with.

Category Theory vs Set Theory: primitive notions

Set Theory:

• membership and equality of those abstract collections called sets

– an object is determined by its content.

Category Theory:

• composition and equality of those abstract functions called arrows

– understand one object by placing it in a category and studying its relation with
other objects of the same category (using arrows), or related categories (using
functors, ie arrows between categories).

Informatics: we want to understand programs abstractly, independently from their imple-
mentation.

2.1 Categories

A category is a (partial) algebra of abstract functions:

• arrows with identities and a binary composition (partial) operation

– obeying generalised monoid laws.

More formally, a category C consists of:

• A collection Obj
C

of objects A,B,C, . . . ,X, Y, . . ..

• For each pair of objects A and B, a collection C(A,B) of arrows f : A // B from A
to B;

– A is the domain and B is the codomain of f : A // B;
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– the collection of all arrows f, g, h, k, . . . of C is denoted by ArrC;

– arrows are also called maps or morphisms.

• For each object A, an identity arrow idA : A // A.

• For each pair of arrows

A
f
// B

g
// C

a composite arrow
g ◦ f : A // C

These data have to satisfy the following generalised monoid laws.

1. Identity : if A
f
// B, then

idB ◦ f = f = f ◦ idA

2. Associativity : if A
f
// B

g
// C

h // D, then

(h ◦ g) ◦ f = h ◦ (g ◦ f)

Examples

1. Categories freely generated by directed graphs.

2. Degenerate categories such as:

• Sets – ie categories where all arrows are identities.

• Monoids – ie categories with only one object.

• Preorders: categories with at most one arrow between every two objects.

3. 0, 1, · // ·, ω.

4. Opposite categories Cop: obtained by reversing the arrows of given categories C, while
keeping the same objects.

5. Set: the category of (small) sets and functions; composition is the usual function com-
position (and so is in the remaining examples). Note that type matter: the identity on
the natural numbers is a different function from the inclusion of the natural numbers
into the integers.

6. Set∗: pointed sets (ie sets with a selected base-point) and functions preserving the base
point.

7. N: finite ordinals and functions.

8. FinSet: finite sets and functions.

9. Preord: preorders and monotone functions.

10. Poset: partial orders and monotone functions.
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11. Cpo: complete partial orders and continuous functions.

12. Mon: monoids and monoid homomorphisms.

13. Grp: groups and group homomorphisms.

14. SL: semi-lattices and join-preserving functions.

15. Top: topological spaces and continuous functions.

16. Met: metric spaces and non-expansive functions.

17. CMet: complete metric spaces and non-expansive functions.

2.2 Functors

A functor is a homomorphism of categories

F : C // D

ie a morphism of categories preserving the structure, namely identities and composition.

Formally, a functor F : C // D consists of a function X � // F (X) from the objects of C to
the objects of D and a function f � // F (f) from the arrows of C to the arrows of D such that:

F (idX) = idFX F (g ◦ f) = F (g) ◦ F (f)

Thus functors preserve all commuting diagrams, hence, in particular, isomorphisms.

Functors between sets are functions, between preorders are monotone functions, between
monoids are monoid homomorphisms, between groups are isomorphisms (because a group
is a category with one object and where every map has an inverse, and functors preserve
isomorphisms).

For every category C, there is an evident identity functor

IdC : C // C

Moreover, there is a composition G ◦ F : B // D of functors F : B // C and G : C // D,
namely (G ◦ F )(X) = G(F (X)) and (G ◦ F )(f) = G(F (f)).

A category C is small if its collection Obj
C

of objects and its collection ArrC of arrows are sets; it is
locally small if the collection C(A,B) of arrows from A to B is a set for each pair of objects A and
B. N is small, while the category Finset is only locally small, although every finite set is isomorphic
to a finite ordinal. In the above examples, the categories 5, 6, and from 8 to 17 are not small, but only
locally small.

Cat is the corresponding category of all (small) categories and functors between them.

E 2.1 Check that Cat, the category of all small categories, is indeed a category, ie check
that the identity and the associative laws hold.
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Lecture III

2.3 Initial and Final Objects

An object is initial in a category C if for every object X in C there exists a unique arrow in
C from it to X. (It need not exist!)

Initial objects are unique up to isomorphism.

Notation for ‘the’ initial object: 0.

An object is final (or terminal) in a category C if for every object X in C there exists a
unique arrow in C from X to it. (Again, a category may have no final object.) Note that:

A final in C iff A initial in Cop

therefore,

final objects are unique up to isomorphism.

Notation for ‘the’ final object: 1.

The initial object in a preorder is the bottom element, if it exists; the final object is the
top. In Set the initial object is the empty set, while the final object is the (unique up to
isomorphism) singleton set. In Cat the initial object is the empty category 0, with no objects
nor arrows, and the final object is the category 1 with only one object and one arrow (the
identity).

2.4 Comma Categories

Crucial for this course is Lawvere’s notion of a comma category. Given a category C, an
object A of C and a functor U : D // C, the comma category (A ↓ U) is the category of
arrows from A to U , with objects 〈Y, h : A // UY 〉 given by arrows of C of type A // UY ,
where Y can range over the objects of D. The homomorphisms f : 〈Y, h : A // UY 〉 //

〈Y ′, h′ : A // UY ′〉 are given by arrows f : Y // Y ′ of D such that Uf ◦ h = h′. I like to
draw all this as follows.

C D
Uoo

A
h //

h′ !!DDDDDDDD UY

Uf
��

Y

f
��

UY ′ Y ′

Please try and conform to this notation (with U going from right to left) as we shall use it
extensively throughout the course.
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Exercises

E 2.2 Write down the proof that initial objects are unique up to isomorphism.

E 2.3 (We shall need this later on.) Just write down the more general notion of comma
category (T ↓ U) involving two functors T and U with the same codomain

B
T //

C D
Uoo

that we have seen in the lecture. Also, write the two ‘projection’ functors P : (T ↓ U) // B

and Q : (T ↓ U) // D.

3 Universality

A universal arrow from an object A of C to a functor U : D // C consists of an initial
object in the comma category (A ↓ U), ie an object FA of D and arrow ηA : A // UFA of
C which are universal in the sense that for every Y of D and every h : A // UY of C there
exists a unique arrow h] : FA // Y in D such that Uh] ◦ ηA = h. Diagrammatically:

C D
Uoo

A
ηA //

h
!!DDDDDDDD UFA

Uh]

��

FA

h]

��
�
�
�

UY Y

It is at first hard to get accustomed to switching between the two categories C and D along
the functor U and in getting the right order in the quantifications involved, but this notion
is to category theory what the ∀ε∃δ formulation of continuity is to analysis. It is important
to realize that the object FA is by no means initial in D: there might be more than one
arrow from FA to Y , but h] is the unique arrow such that the triangle in the above diagram
commutes.

Exercise

E 3.1 (Important! ) Try and prove the following theorem.

Theorem 3.1 In the above situation, assume that, for every object A of C there
is a universal arrow ηA : A // UFA from A to U . This defines a function F from
the objects A of C to objects FA def= FA of D. Then, by universality, this extends
to a functor F : C // D in the opposite direction of U .
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Lecture IV

Proof of Theorem 3.1 The action of F on arrows is defined as follows:

C D
Uoo

A
ηA //

f
��

UFA

UFf
��

FA

Ff
def
= (ηB◦f)]

��
�
�
�

B ηB
// UFB FB

Using universality one can prove that F is a functor F : C // D, that is:

F idA = idFA Fg ◦ Ff = F (g ◦ f)

2

Example 3.2 A monoid M = 〈M, e,m〉 consists of a carrier set M and an associative mul-
tiplication operation m : M ×M //M with a unit e ∈M :

m(x,m(y, z)) = m(m(x, y), z) m(x, e) = x = m(e, x)

for all x, y, z in M . A monoid homomorphism is a function between carriers which respects
unit and multiplication. It is easy to see that monoids and their homomorphisms form a
category Mon.

There is a trivial yet powerful forgetful functor

Set oo Mon : U

which maps a monoid 〈M, e,m〉 to its carrier M and a homomorphism f : 〈M, e,m〉 //

〈M ′, e′,m′〉 to itself f : M //M ′ by forgetting that it is a homomorphism.

An important property of this forgetful functor is that for every set A there is a universal
arrow from A to U , which gives rise, by the above theorem to a functor

F : Set //Mon

This F maps a set A to the set A∗ of finite words over A, with concatenation as multiplication
and with the empty word ε as unit. The universal arrow ηA : A // UFA = A∗ maps an
element a of A to the one letter word 〈a〉. For every monoid 〈M, e,m〉 and every function
h : A //M , there exists clearly only one monoid homomorphism h] : FA // 〈M, e,m〉 such
that h]〈a〉 = h(a).

Can you think of more similar examples?
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Note that we can describe the category Mon without using elements as follows. A monoid
consists of a set M together with functions m : M ×M //M and e : 1 //M such that

M ×M ×M id×m
//

m×id
��

M ×M
m

��

M ×M m
//M

M × 1
id×e

//

∼=
&&LLLLLLLLLL M ×M

m

��

1×Me×id
oo

∼=
yyrrrrrrrrrr

M

Monoid homomorphisms f : 〈M, e,m〉 // 〈M ′, e′,m′〉 are then functions f : M // M ′ such
that the diagrams

M ×M
f×f

//

m

��

M ′ ×M ′

m′

��

M
f

//M ′

1
e

��~~~~~~~~
e′

  
AAAAAAAA

M
f

//M ′

commute.

Exercises

E 3.2 (Important.) Consider the particular case of comma category when (T ↓ U) is with
respect two parallel functors T,U : B // C (ie, B = D). Assume there is a functor

τ : B // (T ↓ U)

such that
P ◦ τ = Q ◦ τ = IdB (identity functor on B)

(Recall: P and Q are the evident projection functors.) The question is: how would a generic
such τ look like? Again, here spell out the details of the functor τ , looking at the type of
τ(X) and of τ(f) for generic X and f in B.

E 3.3 Given another parallel functor V : B // C and a functor

ϑ : B // (U ↓ V )

such that
P ◦ ϑ = Q ◦ ϑ = IdB

can you define a ‘composite’ functor

ϑτ : B // (T ↓ V )

such that
P ◦ (ϑτ) = Q ◦ (ϑτ) = IdB?

13



Lecture V

4 Natural Transformations and Functor Categories

Given two parallel functors T,U : B // C, a natural transformation from T to U is a
functor

τ : B // (T ↓ U)

such that
P ◦ τ = Q ◦ τ = IdB

In other words, it is a mapping of each object A of B to an arrow

τA : TA // UA

of C such that, for every arrow f : A // B of B, the diagram

TA
τA //

Tf
��

UA

Uf
��

TB τB
// UB

One usually writes either τ : T · // U or τ : T +3 U for such a natural transformation.

Theorem 3.1 (continued) Given a functor U : D // C, if for every object A of C there
exists a universal arrow ηA : A // UFA from A to U , we know that the function F from
objects of C to objects of D extends, by universality, to a functor F : C // D in the opposite
direction of U . Moreover:

• The arrow ηA is natural in A
η : Id +3 UF

Proof. By definition,

A
ηA //

f
��

UFA

UFf
��

B ηB
// UFB

commutes for every arrow f : A // B of C. 2

Thus, for instance, the function A // A∗ mapping an element a of A to the one letter word
〈a〉 is natural in the set A. Any more examples?

Given another parallel functor V : B // C and a natural transformation ϑ : U +3 V , one can
define a composite

ϑ ◦ τ : T +3 V

by putting
(ϑ ◦ τ)A

def= ϑA ◦ τA

14



TA
τA //

(ϑ◦τ)A

%%

Tf
��

UA

Uf
��

ϑA // V A

V f
��

TB τB
//

(ϑ◦τ)B

99UB
ϑB
// V B

Note that this composition is associative because defined in terms of the composition of arrows
in C. Also note that, given any functor T from B to C, there is also an evident identity natural
transformation

idT : T +3 T (idT )X
def= idTX

For every two categories B and C, one can then form the functor category CB having as
object functors from B to C and as arrows natural transformations between them. Intuitively,
objects of CB are diagrams of “shape” B and arrows are morphisms which preserve this shape.

Example 4.1 Take

B = 1
f
((

g
66 2

Then an object X of CB is a functor

1
f
((

g
66 2

X // C

that is, a diagram

X1

Xf
**

Xg

44 X2

in C. An arrow τ between two such diagrams X and Y is a natural transformation τ : X +3 Y ,
that is a pair of arrows τ1 and τ2 in C

X1

Xf
**

τ1
��

Xg

44 X2

τ2
��

Y1

Y f
**

Y g

44 Y2

such that

• τ2 ◦Xf = Y f ◦ τ1

• τ2 ◦Xg = Y g ◦ τ1

15



For every two categories C and B there exists a ‘constant’ functor

∆ : C // C
B

called the diagonal functor mapping an object C of C to the constant diagram of shape B
in C where all objects are copies of C and all arrows are copies of idC : C // C. Thus:

(∆C)(B) def= C (∆C)(h) = idC

for every object B and every arrow h of B. Similarly, ∆ maps an arrow f : C // C ′ to the
constant natural transformation

(∆f)B
def= f : (∆C)(B) // (∆C ′)(B)

for every B in B.

Example 4.2 Let B be the category · · with two objects and no arrows (apart from the
identities). Then

C
· ·

is the category of pairs (C1, C2) of objects of C. The diagonal functor

∆ : C // C
· ·

acts as follows.
C

f
��

� //

C

f
��

C

f
��

C ′ C ′ C ′

Consider now a (not necessarily universal) arrow from a generic object (C1, C2) of C · · to
the above diagonal functor

C
· · oo C : ∆

That is, an object of ((C1, C2) ↓ ∆). By definition, this consists of two arrows f1 : C1
// C

and f2 : C2
// C of C. As a useful convention, let us write them as follows:

C1

f1   
AAAAAAA C2

f2~~}}}}}}}

C

(1)

Exercises

E 4.1 Consider two parallel functors T,U : C // D, a functor G : D // E, a functor
F : B // C, and a natural transformation τ : T +3 U .

a) Try and define a natural transformation, say Gτ , of type

GT +3 GU

16



b) Try and define a natural transformation, say τF , of type

TF +3 UF

E 4.2 Assume the universal arrow from a generic object (C1, C2) of C · · to ∆C exists,
where ∆ is the diagonal functor from C to C · · . Describe it.

E 4.3 Same as the previous exercise but for the category of Example 4.1 instead of Example
4.2.

17



Lecture VI

5 Colimits

5.1 Coproducts

A coproduct of two objects C1 and C2 of a category C is a universal arrow the object
(C1, C2) of C · · to ∆C exists, where ∆ is the diagonal functor from C to C · · . A moment
thought shows that such a universal (if it exists!) consists of an object of C, which we denote
by C1 + C2, together with two arrows

C1
ι1 // C1 + C2 C2

ι2oo

such that for every pair of arrows as in (1) there exists a unique arrow (which we denote
[f1, f2]) making the following diagram commute.

C1

f1

��
>>>>>>>>>>>>

ι1 // C1 + C2

[f1,f2]

�
�

��
�
�

C2

f2

��������������

ι2oo

C

Equationally:
f1 = [f1, f2] ◦ ι1 [f1, f2] ◦ ι2 = f2

Terminology. The object C1 + C2 is called the coproduct (or sum) of C1 and C2; the
arrows ι1 and ι2 are the first and second injection of the coproduct; the arrow [f1, f2] is the
copairing of f1 and f2. With respect to the general definition of universal arrow, we have
that:

• C1 + C2 = F(C1,C2)

• (ι1, ι2) = η(C1,C2)

• [f1, f2] = (f1, f2)]

Clearly, by Theorem 3.1, if C has all coproducts then + is a functor.

Remark. A coproduct puts two objects together while keeping them distinct, that is, keeping
the ability to do a case analysis.

5.2 Coequalisers

For B = 1
u
((

v
66 2 , we have already described the category CB. Let us change notation

though, and rather than explicitly writing the functor X from B to C we consider directly
the objects of CB as parallel arrows

X

f
**

g
44 X ′ (2)

18



in C.

Note that before we used the symbols f and g for the arrows of B, while now we use them
for a generic object of CB. You should now write the arrows of CB using this new notation.
After having done this you should be able to see an arrow from (2) to the diagonal functor
corresponding to this category as an arrow h : X ′ // Z such that

h ◦ f = h ◦ g

The coequaliser of two parallel arrows X

f
**

g
44 X ′ in C is the universal arrow (if it exists)

from them (regarded as an object of CB) to the diagonal functor CB oo C : ∆. Spelling out
the details, it consists of an object C and an arrow q : X ′ // C of C such that

q ◦ f = q ◦ g

and, moreover, every h : X ′ // Z such that h ◦ f = h ◦ g factorises uniquely through q;
formally, the latter means that there exists a unique arrow h] : C // Z in C such that
h] ◦ q = h. Diagrammatically:

h ◦ f = h ◦ g X

f
**

g
44 X ′

q
//

h
  

AAAAAAAA C

h]

��
�
�
�

Z

5.3 Pushouts

For
B = 1

u
����� v

��
===

2 3

we have that the objects of CB are diagrams in C of the form

X1

f

}}||||||||
g

!!BBBBBBBB

X2 X3

and arrows to the diagonal functor are pairs of arrows h and k making the diagram

X1

f

}}||||||||
g

!!BBBBBBBB

X2

h
!!CCCCCCCC X3

k
}}{{{{{{{{

Z

(3)
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commute. Equationally: h ◦ f = k ◦ g.

The universal such an arrow (if it exists) is called the pushout of f and g. Spelling out the
details, it consists of a pair of arrows p and q in C such that p ◦ f = q ◦ g

X1

f

}}||||||||
g

!!BBBBBBBB

X2

p
!!CCCCCCCC X3

q
}}{{{{{{{{

P

(4)

and with the universal property that for every commuting square as in (3) there exists a
unique arrow r such that r ◦ p = h and r ◦ q = k. Diagrammatically:

X1

f

}}||||||||
g

!!BBBBBBBB

X2

h

��

p

!!CCCCCCCC X3

k

��

q

}}{{{{{{{{

P

r

��
�
�
�

Z

The diagram in (4) is then called a pushout square.

When f = g, the pushout of f and f is called the cokernel pair of f .

5.4 Initial objects as universal arrows

The initial object (if it exists) in a category C is easily seen to be the universal arrow from the
unique object of the final category 1 (with one object and no arrow apart from the identity)
to the unique functor from C to 1. But then note that

C
0 ∼= 1

where 0 is the initial category with no object, hence the initial object of C is the universal
arrow from the unique object of C0 to the diagonal functor ∆ : C // 1.

Exercises

E 5.1 (Important.) Use universality to prove that in every category with coproducts the
following holds:

a) C1 + C2
∼= C2 + C1

b) (C1 + C2) + C3
∼= C1 + (C2 + C3)

20



c) C + 0 ∼= C (where 0 is the initial object in C)

E 5.2 Prove that the following law holds for the copairing operation.

For all arrows f1 : A1
// C, f2 : A2

// C, h : C // D,

h ◦ [f1, f2] = [h ◦ f1, h ◦ f2]

E 5.3 Let C(A,C) be the set of arrows from A to C in C.

Prove that in every category C with coproducts the following isomorphism (of sets!) holds:

C(A1, C)× C(A2, C) ∼= C(A1 +A2, C)

Hint. Do not use universality but just note that one side of the isomorphism is:

(A1
f1
// C, A2

f1
// C) � // A1 +A2

[f1,f2]
// C

E 5.4 Prove that the disjoint union

X + Y ∼= X
·
∪ Y def= {(0, x) | x ∈ X} ∪ {(1, y) | y ∈ Y }

of two sets X and Y is the coproduct of X and Y in Set, the category of sets and functions.
(Hint: the left injection X // X + Y maps x to 〈0, x〉.)

E 5.5 Recall N is the category of finite ordinals

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2}, . . .

and all functions. Prove that in N coproduct is addition:

n+m ∼= n+m

E 5.6 The coproduct in Mon, the category of monoids and monoid homomorphisms, of two
free monoids A∗ and B∗ is simple:

A∗ +B∗ ∼= (A+B)∗

Prove this.

Can you construct the coproduct X + Y of two monoids X and Y that are not free? (It is
not easy! You still need to use the coproduct in Set and free monoids, but also quotient by a
suitable equivalence relation.)
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Lecture VII

5.5 Generalised Coproducts

Let S be an arbitrary set (regarded as a category, ie objects are elements of S and all arrows
are identities). An S-coproduct is a universal arrow from an object of CS to the corresponding
diagonal functor. This generalises the (binary) coproduct. One writes∐

s∈S
Cs

for the coproduct of an S-indexed family of objects Cs in C and

ιs : Cs //
∐
s∈S

Cs

for the s-th injection. One also has a generalised notion of copairing which we shall call
cotupling.

5.6 Finite Colimits

Proposition 5.1 A category with pushouts and initial object has also coproducts.

Proof. We can use the pushout square

0

~~}
}

}
}

  
A

A
A

A

C1

p
  

AAAAAAA C2

q
~~}}}}}}}

P

to define
C1 + C2

def= P, ι1
def= p, ι2

def= q

One can check that this is a coproduct. 2

Proposition 5.2 A category with coproducts and coequalisers has also pushouts.

Proof. The pushout of
X1

f

}}||||||||
g

!!BBBBBBBB

X2 X3

is obtained by first taking the coproduct X2 +X3 and then the coequaliser of the two parallel
arrows ι1 ◦ f and ι2 ◦ g of type X // X2 +X3. 2

Remark 5.3 A coequaliser is a pushout of parallel arrows. An initial object is a ∅-coproduct.
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5.7 Colimits

A colimit for a functor J : B // C is nothing but a universal arrow from J to the diagonal
functor ∆ : C // C

B. Let us try and understand this concise definition in more elementary
terms. First of all we have learnt to see a functor J : B // C as a diagram of shape B in C.
A generic arrow τ : J +3 ∆Y from J to ∆ is then a cone under J consisting of a vertex Y
(which is an object of C) and one arrow

τB : JB // Y

(of C) for each object B of B making the triangle

JB

τB
!!BBBBBBBB
Ju // JB′

τB′
}}{{{{{{{{

Y

for every arrow u : B // B′. In other words, all the subcones commute.

With a slight abuse of notation we shall also write τ : J +3 Y for such a cone.

A colimit for J is then a universal such cone. That is, a cone µ : J // ColimJ which is
universal in the sense that every cone τ : J +3 Y factorises uniquely through µ; that is, there
exists a unique arrow τ ] : ColimJ // Y in C such that for every B in B the triangle

JB

µB
��

τB

$$HHHHHHHHH

ColimJ
τ ]

//___ Y

commutes.

Please note that this triangle, in contrast with the previous one, does not involve the arrows of B.

Terminology: µ is the colimiting cone of J , the vertex ColimJ of the colimit is the colim-
iting object of J , and τ ] is mediating arrow corresponding to τ given by the universal
property of the colimit.

Theorem 5.4 A category with coequalisers and generalised coproducts is cocomplete in
the sense that it has all (small) colimits:

Given J : B // C, for B small, ColimJ is the coequaliser of the parallel arrows

∐
u∈ArrB

J(dom(u))
f
..

g
00

∐
B∈Obj

B

JB

where f is the copairing of the family of arrows

J(dom(u))
ιdom(u)

//
∐
B∈Obj

B

JB

and g is the copairing of the family of arrows

J(dom(u)) Ju // J(cod(u))
ιcod(u)

//
∐
B∈Obj

B

JB
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Moreover, the universal cone µ : J +3 ColimJ at an object B is

JB
ιB //

∐
B∈Obj

B

JB
q
// ColimJ

where q is the coequalising arrow.

Proof. We shall prove this theorem later on (using duality). 2

Exercises

E 5.7 An arrow X
f
// Y in C is epi if, for every pair of parallel arrows Y

g
))

h

55 Z in C,

g ◦ f = h ◦ f

implies that
g = h

In Set the epi arrows are the surjective functions.

Prove that f is epi if and only if the following square is a pushout (more precisely, a cokernel
pair).

X

f

��

f
// Y

idY
��

Y
idY
// Y

E 5.8 In Set coequalisers exist. Indeed, the coequaliser q : Y // C of two parallel functions
f, g : X // Y is obtained by quotienting Y by the least equivalence relation E ⊆ Y × Y
containing all pairs 〈f(x), g(x)〉 for x in X.

Check that this is really the case, proving that such a quotient enjoys the universal property
of coequalisers.

E 5.9 We have constructed in two previous exercises coproducts and coequalisers in the
category Set of sets and functions. Now use Proposition 5.2 to construct pushouts in Set.

Do the same in Mon.
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Lecture VIII

6 Duality and Limits

Duality Principle

Every categorical property, structure or theorem expressed in terms of diagrams
of arrows has a dual such – obtained by reversing the arrows.

Note: you reverse arrows but not functors! But you do reverse natural transformations
(because they are families of arrows).

Examples

Statement Dual Statement

X
f
// Y X

f
oo Y

X = dom(f) X = cod(f)

X
id // X X

idoo X
h = g ◦ f h = f ◦ g

isomorphism isomorphism
initial object 0 final object 1

initial objects are unique up to iso final objects are unique up to iso
universal arrow from A to U : D // C universal arrow from U : D // C to A

coproducts products
coequalisers equalisers

pushouts pullbacks
colimits limits

...
...

6.1 Universal arrows from a functor to an object

Given a functor U : D // C and an object A of C, a universal arrow from U to A consists
of an object, say, GA of D and an arrow εA : UGA // A of C such that for every object Y
of D and every arrow h : UY // A of C there exists a unique arrow h[ : Y // GA such that
εA ◦ Uh[ = h. Diagrammatically:

D
U //

C

Y

h[

��
�
�
� UY

h

""DDDDDDDDD

Uh[

��
�
�
�

GA UGA εA
// A

25



6.2 Products

The dual of a coproduct is called a product. Formally, given two objects C1 and C2 of a
category C, their product (if it exists) consists of an object C1 × C2 of C and two arrows
π1 : C1×C2

// C1 and π2 : C1×C2
// C2 of C such that for every object A of C and every pair

of arrows f : A // C1 and g : A // C2 of C there exists a unique arrow 〈f, g〉 : A // C1×C2

such that f = π1 ◦ 〈f, g〉 and g = π2 ◦ 〈f, g〉. Diagrammatically:

A

f

��������������

〈f,g〉
�
�

��
�
�

g

��
>>>>>>>>>>>>

C1 C1 × C2π1

oo
π2

// C2

Terminology. π1 and π2 are the first and second projection of the product, respectively;
〈f, g〉 is the pairing of f with g.

C1 + C2 C1 × C2

= =
universal arrow universal arrow
from (C1, C2) from ∆ : C // C

· ·

to ∆ : C // C
· · to (C1, C2)

E 6.1 Dualise C1 + C2
∼= C2 + C1, (C1 + C2) + C3

∼= C1 + (C2 + C3), C + 0 ∼= C;

6.3 Equalisers

The dual of a coequaliser is called an equaliser. Formally, given two parallel arrows

X

f
**

g
44 X ′

in C, their equaliser consists of an object E and an arrow e : E // X of C such that

f ◦ e = g ◦ e

and, moreover, every h : Z // X such that f ◦ h = g ◦ h factorises uniquely through e;
formally, the latter means that there exists a unique arrow h[ : Z // E in C such that
e ◦ h[ = h. Diagrammatically:

f ◦ h = g ◦ h Z

h[

��
�
�
�

h

  
@@@@@@@@

E e
// X

f
**

g
44 X ′

Terminology. E is called the equalising object.
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Coequaliser of X ⇒ X ′ Equaliser of X ⇒ X ′

= =
universal arrow universal arrow

from X ⇒ X ′ from ∆ : C // C
·⇒ ·

to ∆ : C // C
·⇒ · to X ⇒ X ′

6.4 Pullbacks

The dual of a pushout is called a pullback. Formally, given two arrows with a common
codomain

X2

f
!!BBBBBBBB X3

g
}}||||||||

X1

their pullback consists of a pair of arrows p and q in C such that f ◦ p = g ◦ q

P
p

}}{{{{{{{{
q

!!CCCCCCCC

X2

f
!!BBBBBBBB X3

g
}}||||||||

X1

(5)

and with the universal property that for every pair of arrows h and k in C such that f◦h = g◦k
there exists a unique arrow r such that p ◦ r = h and q ◦ r = k. This is expressed in the
following diagram, where everything in sight commutes:

Z

h





k

��

r

��
�
�
�

P

p
}}{{{{{{{{

q
!!CCCCCCCC

X2

f
!!BBBBBBBB X3

g
}}||||||||

X1

The diagram in (5) is then called a pullback square.

When f = g, the pullback of f and f is called the kernel pair of f .

Note that the category B such that a pullback is a universal arrow from the diagonal functor
∆ : C // C

B, where
B = 2

u ��
=== 3

v�����

1
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and not
B = 1

u
����� v

��
===

2 3

as in the case of pushouts.

E 6.2 Dualise the following statements.

• a category with coproducts and coequalisers has pushouts;

• a category with initial object and pushouts has coproducts.

6.5 Monos

The notion of a monic arrow is dual to that of an epi arrow: an arrow Y
f
// Z in C is monic

if, for every pair of parallel arrows X

g
))

h

55 Y in C,

f ◦ g = f ◦ h

implies that
g = h

In Set the monic arrows are the injective functions.

We can now generalise Lemma 1.2.

Proposition 6.1 (Right inverses are monic) Given two composable arrows f and g, if
g ◦ f is the identity then f is monic.

Dually, left inverses are epi.

Right inverses are called sections and left inverses are called retractions.

E 6.3 Dualise the following statement.

• f is epi iff X

f
��

f
// Y

idY
��

Y
idY
// Y

is a pushout square;
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6.6 Limits

A limit for a functor F : B // C is a universal arrow from F to the diagonal functor
∆ : C // C

B. That is, a cone µ : LimF // F which is universal in the sense that every cone
τ : Y +3 F factories uniquely through µ; that is, there exists a unique arrow τ ] : Y // LimF
in C such that for every B in B the triangle

Y
τB

zzvvvvvvvvv

τ ]

��
�
�
�

FB
µB // LimF

commutes.

Terminology: µ is the limiting cone of F , LimF is the limiting object of F , and τ ] is
mediating arrow corresponding to τ given by the universal property of the limit.

Exercises

E 6.4 Pasting Lemma. [Mac97, page 72, exercise 8]

Assume everything in sight in the following diagram commutes.

·

��

// ·

��

// ·

��
· // · // ·

(Assign your favourite names to the objects and arrows.)

• If both squares are pullbacks, prove that the outside rectangle (with top and bottom
edges the evident composites) is a pullback.

• If the outside rectangle and the right-hand square are pullbacks, prove that so is the
left-hand square.

E 6.5 Pullbacks of monics are monic.

Consider a square
· //

m′

��

·
m

��
· // ·

which is a pullback.

First prove that if m is monic then also m′ is monic; next dualise this property.

E 6.6 First prove that equalisers are monic; next dualise this property.

E 6.7 Dualise the notion of colimit and the theorem saying that a category with coequalisers
and generalised coproducts has all (small) colimits (Thm 5.4). Try and prove the theorem.
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E 6.8 The category Set of sets and functions has equalisers. The equalising object for two
parallel functions f, g : X // X ′ is the set

E
def= {x ∈ X | f(x) = g(x)}

The exercise consists in first checking that this is indeed the case and then use it to give an
explicit description of pullbacks in Set in terms of cartesian products and equalisers.
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Lecture IX

7 Adjunctions

“The multiple examples, here and elsewhere, of adjoint functors tend to show that adjoints
occur almost everywhere in many branches of Mathematics. It is the thesis of this book that
a systematic use of all these adjunctions illuminates and clarifies these subjects.” [Mac97]

Category theory is the study of universal properties, formalised in terms of the notion of
universal arrow. Constructions are canonical when they enjoy a universal property, but what
does actually give rise to such constructions? The answer is – adjunctions.

We introduce adjunctions using, once more, universal arrows, and later show how, in turn,
adjunctions define universal arrows. It is important to bear in mind that each of the three
equivalent presentations of adjunctions that we study has its own relevance and that a full
understanding of this deep notion requires an understanding of all three presentations.

7.1 From Universal Arrows to Adjunctions

The hypotheses of Theorem 3.1 suffice to define an adjunction. Indeed, we can extend that
theorem as follows.

Theorem 7.1 Given a functor U : D // C, if for every object A of C there exists a universal
arrow ηA : A // UFA from A to U , then the following holds:

1. The function F from objects of C to objects of D extends, by universality, to a functor

F : C // D

in the opposite direction of U .

2. The arrow ηA is natural in A
η : Id +3 UF

3. For every object Y of D there is a universal arrow εY : FUY // Y from F to Y obtained
by universality:

C D
Uoo

UY

idUY $$JJJJJJJJJ
ηUY // UFUY

UεY
��

FUY

εY
def
= (idUY )]

��
�
�
�

UY Y

4. The arrow εY is natural in Y
ε : FU +3 Id
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Proof. The proof of (1) is Theorem 3.1. The proofs of (2) and (4) are an immediate conse-
quence of the way F and ε are defined. Before proving (3) let us restate the theorem in a
more schematic way. Our hypothesis:

∀A ∈ C
∃ηA : A // UFA

such that
∀f : A // UY

∃!f ] : FA // Y s.t. f = Uf ] ◦ ηA

The first part of the theorem gives:

∀h : A // B

Fh
def= (ηB ◦ h)] : FA // FB

The third part consists of

∀Y ∈ D

∃!εY
def= (idUY )] : FUY // Y s.t. idUY = UεY ◦ ηUY

plus the claim that the following holds:

∀g : FA // Y

∃!g[ : A // UY s.t. g = εY ◦ Fg[

Existence of g[.

g[
def= A

ηA // UFA
Ug
// UY

Note that, g[ is defined in such a way that it makes

g = (g[)]

hence it suffices to show that
(g[)] = εY ◦ Fg[

But this follows from the naturality of η.

Uniqueness of g[. Assume given a k : A // UY such that g = εY ◦Fk. We have k] : FA // Y .
If k] = εY ◦ Fk then k] = g = (g[)], hence we would have the desired result that k = g[. But
this again follows from the naturality of η. 2

We can now dualise:
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C
Uoo D C

F // D

∀A ∈ C : A
ηA // UFA ∀Y ∈ D : FUY

εY // Y

∀f :A //UY
∃!f]:FA //Y s.t. f=Uf]◦ηA

∀g:FA //Y
∃!g[A //UY s.t. g=εY ◦Fg[

∀h:A //B

Fh
def
= (ηB◦h)]:FA //FB

∀k:X //Y

Uk
def
= (k◦εX)[:UX //UY

F extends to a functor opposite to U U extends to a functor opposite to F

η : Id +3 UF ε : FU +3 Id

∀Y ∈D
∃!εY

def
= (idUY )]:FUY //Y s.t. idUY =UεY ◦ηUY

∀A∈C
∃!ηA

def
= (idFA)[:A //UFA s.t. idFA=εFA◦FηA

ε : FU +3 Id η : Id +3 UF

∀g:FA //Y
∃!g[:A //UY s.t. g=εY ◦Fg[

∀f :A //UY
∃!f]:FA //Y s.t. f=Uf]◦ηA

g[
def= Ug ◦ ηA f ]

def= εY ◦ Ff

g = (g[)] f = (f ])[

Note that ( )] and ( )[ are each other’s inverse; that is, writing C(A,B) for the (possibly
large) set of arrows from A to B in C, we have the following bijection:

D(FA, Y ) ∼= C(A,UY )
f ] oo � f

g � // g[

Exercise

E 7.1 Prove that the operation ( )] associated to a universal arrow ηA : A // UFA from A
to U is natural in the sense that, for every f : A // UY ,

∀h : A′ // A

(f ◦ h)] = f ] ◦ Fh
and

∀k : Y // Y ′

(Uk ◦ f)] = k ◦ f ]

(The first is by naturality of η and the second by definition.)

Dually, for every g : FA // Y ,

∀k : Y // Y ′

(k ◦ g)[ = Uk ◦ g[
and

∀h : A′ // A

(g ◦ Fh)[ = g[ ◦ h
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7.2 Adjunctions

Definition 7.2 An adjunction from a category C to a category D is given by a pair of
opposite functors

C

F
))
D

U

ii

and, for all A in C and Y in D, a bijection

ϕA,Y : D(FA, Y ) ∼= C(A,UY )

which is natural in the sense that, for every g : FA // Y ,

∀k : Y // Y ′

ϕ(k ◦ g) = Uk ◦ ϕ(g)
and

∀h : A′ // A

ϕ(g ◦ Fh) = ϕ(g) ◦ h

Notation and terminology. The above adjoint situation is denoted by

C

F
))

⊥ D

U

ii

or by 〈F a U,ϕ〉 and F is the left adjoint of U , while U is the right adjoint of F ; also,
ϕ−1(f) and ϕ(g) are the left and right adjuncts of f and g respectively.

The above shows that we already know two situations where we can ‘construct’ an adjunction,
namely when we have a universal arrow from A to U for every object A of C or, equivalently,
when we have a universal arrow from F to Y for every object Y of D.

An example is given by a category C which has all colimits of shape B:

C
B

Colim
��

a

C

∆

UU

The dual case is for a category C with all limits of shape B:

C
B

Lim
		

a

C

∆

II

An other example is the adjunction from Set to Mon, with the forgetful functor as right
adjoint and the free monoid functor as left adjoint.
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Lecture X

7.3 From Adjunctions to Universal Arrows

We have seen that universal arrows give rise to adjunctions. We now prove the converse.

First note that the naturality conditions for an adjunction 〈F a U,ϕ〉 are equivalent to the
following: for every f : A // UY ,

∀k : Y // Y ′

ϕ−1(Uk ◦ f) = k ◦ ϕ−1(f)
and

∀h : A′ // A

ϕ−1(f ◦ h) = ϕ−1(f) ◦ Fh

Theorem 7.3 An adjunction

C

F
))

⊥ D

U

ii ϕA,Y : D(FA, Y ) ∼= C(A,UY )

determines:

i) a natural transformation
η

def= ϕ(idF ) : IdC +3 UF

with ηA : A // UFA universal from A to U for every object A of C and such that
ϕ(g) = Ug ◦ ηA. Such η is called the unit of the adjunction.

ii) a natural transformation
ε

def= ϕ−1(idU ) : FU +3 IdD

with εY : FUY // Y universal from F to Y for every object Y of D and such that
ϕ−1(f) = εY ◦ Ff . Such ε is called the counit of the adjunction.

Moreover the triangular identities

U
ηU +3

idU �&
FFFFFFFF

FFFFFFFF UFU

Uε
��
U

F

Fη

��

idF

�&
FFFFFFFF

FFFFFFFF

FUF εF
+3 F

hold for such η and ε.

Proof. (Unit.) For every f : A // UY put

f ]
def= ϕ−1(f)

We have that f = Uϕ−1(f) ◦ ϕ(idFA) because, by the naturality of ϕ, Uϕ−1(f) ◦ ϕ(idFA) =
ϕ(ϕ−1(f) ◦ idFA). This shows existence. Uniqueness is similar, since if we have a g such that
f = Ug ◦ ϕ(idFA) then the same reasoning as above shows that ϕ(g) = f , hence g = ϕ−1(f).
This also gives:

ϕ(g) = Ug ◦ ϕ(idFA)
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(Counit.) By duality, this also prove the counit case.

(Triangular identities.) We prove the first triangular identity – the proof of the second is
dual.

UεY ◦ ηUY = UεY ◦ ϕ(idFUY ) = ϕ(εY ◦ idFUY ) = ϕ(εY ) = idUY

2

Corollary 7.4 ϕ is completely determined by its value at idF . 2

Sometimes adjunctions are denoted using unit and counit instead of the bijection ϕ:

〈F a U, η, ε〉

Corollary 7.5 Adjoint functors determine each other uniquely up to isomorphism. 2

Proposition 7.6 Let F and U be two opposite functors

C

F
))
D

U

ii

Let α : IdC +3 UF and β : FU +3 IdD be two natural transformations such that the following
triangular identities hold:

U
αU +3

idU �&
FFFFFFFF

FFFFFFFF UFU

Uβ
��
U

F

Fα
��

idF

�&
FFFFFFFF

FFFFFFFF

FUF
βF

+3 F

Then F is left adjoint to U . 2

Exercises

E 7.2 Naturality of ϕ. We have called a bijection of hom-sets

ϕA,Y : D(FA, Y ) ∼= C(A,UY )

natural if for every g : FA // Y ,

∀k : Y // Y ′

ϕ(k ◦ g) = Uk ◦ ϕ(g)
and

∀h : A′ // A

ϕ(g ◦ Fh) = ϕ(g) ◦ h

The exercise consists in showing that this is naturality in a formal sense, namely with respect
to the following functors associated to the (possibly large) sets D(FA, Y ) and C(A,UY ). Note
that the exercise is easy once you understand how these (very important) functors act.
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The claim is that ϕ is natural in Y with respect to

D

D(FA, )
// SET

Y

k

��

� //

� // D(FA, Y )

k◦( )

��

3 g

Y ′
� // D(FA, Y ′) 3 k ◦ g

and

D

C(A,U( ))
// SET

Y

k

��

� //

� // C(A,UY )

Uk◦( )
��

3 f

Y ′
� // C(A,UY ′) 3 Uk ◦ f

and it is natural in A with respect to the contravariant functors

C
op

C( ,UY )
// SET

A
� //

� // C(A,UY )

( )◦h
��

3 f

A′

h

OO

� // C(A′, UY ) 3 f ◦ h

and

C
op

D(F ( ),Y )
// SET

A
� //

� // D(FA, Y )

( )◦Fh
��

3 g

A′

h

OO

� // D(FA′, Y ) 3 g ◦ Fh

E 7.3 Do you see what an adjunction boils down to in case the two categories are preorders
and the two functors are order-reversing functions?

E 7.4 Composition of Adjoints.

Show that if

C

F
))

⊥ D

U

ii

F
((

⊥ E

U

ii
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then

C

FF
((

⊥ E

UU

ii

What are the unit and counit of FF a UU?
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Lecture XI

7.4 Adjoints for Preorders

See [Mac97, §IV.5].

8 Preservation of Limits and Colimits

A functor F : C // D preserves colimits of shape B if for every functor H : B // C then:

1. if ColimH exists then also ColimFH exists and ColimFH = F (ColimH), and

2. if µ : H +3 ∆ColimH is a colimiting cone for H then

FH
Fµ +3 F∆ColimH ∼= ∆FColimH ∼= ∆ColimFH

is a colimiting cone for FH.

Theorem 8.1 Left adjoints are cocontinuous in the sense that they preserve colimits.

Dually, right adjoints are continuous, ie they preserve limits.

This theorem is often used to prove that a functor is not an adjoint.

In order to prove the theorem we need the following lemma.

Lemma 8.2 Adjunctions lift to functor categories:

C
B

FB
**

⊥ D
B

UB
jj

C

F
))

⊥

∆

OO

D

U

ii

∆

OO
FB∆ = ∆F, UB∆ = ∆U

where, for all H : B // C and K : B // C,

FB(H) def= FH, UB(K) def= UK

that is,
FB = F ◦ ( ), UB = U ◦ ( )

Proof. Unit and counit of FB a UB are defined using unit and counit of F a U : for every H
in CB,

ηBH
def= ηH , εBK

def= εK

Then the proof follows from the triangular identities for F a U instantiated at H and K. 2
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Proof of the Theorem. Use composition of adjoints, uniqueness of adjoints, the fact that
adjunctions lift to functor categories, and the fact that (assuming that all colimits and limits
of shape B exist) ∆ is right adjoint to Colim and left adjoint to Lim. For colimits:

C
B

FB
++

⊥

` Colim





D
B

UB
kk

` Colim





C

F
**⊥

∆

JJ

D

U

jj

∆

JJ
FB∆ = ∆F, UB∆ = ∆U

FColim a ∆U , ColimFB a UB∆, and ∆U = UB∆ imply that FColim ∼= ColimFB, hence

FColimH ∼= ColimFBH ∼= ColimFH .

This proves (1). Try and prove (2) as an exercise. 2

Note that this implies, for instance, that the coproduct of two free monoids A∗ and B∗ over
objects A and B of a category with coproducts C is (A + B)∗, since ( )∗, together with its
canonical monoid structure, is left adjoint to the forgetful functor U : Mon // Set.

Another application of the theorem gives us that if a functor is a left adjoint then it preserves
epis, because epis are colimits, namely suitable pushouts as shown in an exercise. Dualising
this, right adjoints preserve monos.

As mentioned above, the theorem is also useful to prove that a functor has no adjoint. For
instance, let A be an object of a complete category C: why, if A is not the final object 1 then
the functor product with A

×A : C // C

cannot have a left adjoint?

Exercises

E 8.1 Study Freyd’s Adjoint Functor Theorem [Mac97, §V.6].

E 8.2 This is important: try and do it!

Given an adjunction 〈F a U, η, ε〉 from C to D, define a functor T and a natural transformation
µ as follows, where T 2 def= T ◦ T :

T
def= UF : C // C µ

def= UεF : T 2 +3 T

Prove that then the following diagrams (monoid laws in some sense!) commute.

T 3
Tµ +3

µT
��

T 2

µ

��
T 2

µ
+3 T

T
ηT +3

idT �$
AAAAAAA

AAAAAAA T 2

µ

��

T
Tηks

idTz� }}}}}}}

}}}}}}}

T

Hint. For the triangles use the triangular identities of the adjunction.
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Lecture XII

9 Monads

A monad T = 〈T, η, µ〉 on a category C consists of

• an endofunctor T : C // C on C,

• a ‘unit’ η : IdC +3 T and

• a ‘multiplication’ µ : T 2 +3 T

such that the diagrams

T 3
Tµ +3

µT
��

T 2

µ

��
T 2

µ
+3 T

T
ηT +3

idT �$
AAAAAAA

AAAAAAA T 2

µ

��

T
Tηks

idTz� }}}}}}}

}}}}}}}

T

commute.

Exercise 8.2 shows that:

Theorem 9.1 Every adjunction gives rise to a monad. 2

Thus, in particular, the adjunction we have seen from Set to Mon gives rise to a monad
mapping an object X to the free monoid X∗ over it (and forgetting the monoid structure).

9.1 Algebras of a Monad

We have seen how to get from adjunctions to monads. We now look at the converse.

Definition 9.2 Given a monad T = 〈T, η, µ〉 on a category C, the (Eilenberg-Moore) category
T -Alg (or CT ) of T -algebras has objectsX = 〈X,h〉 given by an objectX of C and a morphism
h : TX // X of C satisfying the following T -algebra laws:

T 2X
Th //

µX
��

TX

h
��

TX
h
// X

X
ηX //

idX !!DDDDDDDD TX

h
��

X

The (homo)morphisms f : 〈X,h〉 // 〈X ′, h′〉 of T -Alg are given by morphisms f : X // X ′

such that

TX
Tf
//

h
��

TX ′

h′

��

X
f
// X ′

commutes. 2

41



Example 9.3 For every object X of C, the multiplication of the monad µX : TTX // TX
is a T -algebra; note that µX is also T -algebra homomorphism from 〈T 2X,µTX〉 to 〈TX, µX〉.

There is an evident forgetful functor

UT : T -Alg // C

mapping an algebra 〈X,h〉 to its carrier X, as in the forgetful functor of monoids. The natural
question to ask then is whether this functor has an adjoint. We start by considering whether
we can build a functor in the opposite direction at all. Well, we know that µX : TTX // TX
is a T -algebra, for every object X; moreover, by naturality of µ, we have that

T 2X
T 2f
//

µX
��

T 2X ′

µX′

��

TX
Tf
// TX ′

commutes for every map f : X // X ′. Because T is a functor, this assignments give then
rise to a functor

F T : C // T -Alg

Theorem 9.4 (Every monad is defined by its algebras.)

For every monad T = 〈T, η, µ〉 on a category C, the above functor F T is left adjoint to the
forgetful functor UT .

Proof. The unit ηT of the adjunction is simply the unit η of the monad; the value of the
counit εT at a T -algebra 〈X,h〉 is simply the structure map h : F TUT 〈X,h〉 = TX // X.
For such ηT and εT the triangular identities are trivial (exercise). 2

Exercises

E 9.1 Finish off the proof of Theorem 9.4.

E 9.2 Prove that for every monoid M = 〈M, e,m〉, the endofunctor

×M : Set // Set

mapping a set X to the set X ×M is a monad. (Hint. Unit and multiplication of the monad
are defined in terms of the two operations e and m of the monoid.)

E 9.3 What are the algebras of the monad of the previous exercise?
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Lecture XIII

9.2 Comparison Functors

An adjunction 〈F a U, ν, ε〉 from C to D is a resolution for a monad T = 〈T, η, µ〉 on C if
T = UF , η = ν, µ = UεF . Clearly, the above adjunction 〈F T a UT , ηT , εT 〉 is a resolution
for the monad T . The following theorem shows that actually it is the final resolution (in a
suitable sense):

Theorem 9.5 Comparison of adjunctions with algebras.

For every resolution 〈F a U, η, ε〉 from C to D of a monad T there exists a unique comparison
functor K : D // C

T such that UTK = U and KF = F T :

D
K //_______

U

��

a

C
T

UTww

a

C

F

WW
FT

77

Proof. The functor K maps an object Y of D to the morphism UεY : TUY // UY , which
is a T -algebra structure because of one triangular identity for the adjunction F a U and
naturality of the counit ε. The action of K on arrows is f � // Uf and this clearly gives a
functor. One can easily check that this is the unique functor which satisfies the two equations
above. 2

The above comparison functor is an isomorphism if and only if the functor U ‘creates’ suitable
coequalisers (Beck’s Theorem [Mac97, Thm VI.7.1]). This is true for the forgetful functors
associated to each category of algebras in the traditional sense (eg, monoids, groups, semi-
lattices, etc), hence the ordinary notion of algebraic variety is encompassed by the notion
of algebras of a monad [Mac97, §VI.8]. Try and see as an exercise how the algebras of the
free monoid monad ( )∗ look like and what is the isomorphism given by the corresponding
comparison functor.

9.3 Free Algebras

The above theorem shows that the category CT of T -algebras is final (in a suitable sense)
among the resolutions of the monad T . The initial resolution also exists and is of interest.
It is given by the category of free T -algebras. Equivalently, for every resolution F a U from
C to D of T one can consider the category with objects of the form FA and maps simply all
the maps FA // FB in D. There is a way to reduce every such representation to a canonical
one which does not depend on the choice of the resolution. The trick is to use the bijection
of the adjunction to have everything expressed in terms of C and T , rather than D and F .
Indeed we have that, since D(FA, Y ) ∼= C(A,UY ), in particular

D(FA,FB) ∼= C(A,UFB) = C(A, TB)

This leads to the following definition.
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Definition 9.6 The Kleisli category CT of a monad T = 〈T, η, µ〉 on a category C has objects
given by the very same objects of C and morphisms A //

T B given by morphisms A // TB
in C. The identity on an object A is given by the unit of the monad at A, ie ηA : A // TA,
and composition of f : A // TB with g : B // TC is defined ad µC ◦Tg ◦ f : A // TC. The
monad laws ensure that this is indeed a category. 2

The following two opposite functors

FT : C // CT (A
g
// B) � // (A

g
// B

ηB // TB)

UT : CT // C (A
f
// TB) � // (TA

Tf
// T 2B

µB // TB)

give another resolution FT a UT of the monad T which is initial:

CT
L //_______

UT

��

a

D

U
ww

a

C

FT

XX
F

77

(Cf [Mac97, §VI.5].)

One can easily show that, in any category C with final object and coproducts, the endofunctor
1 + : C // C is a monad (with evident unit and multiplication). For C = Set, its Kleisli
category is the category pSet of sets and partial functions, and its category of algebras is the
category Set∗ of pointed sets and point-preserving functions; the (super-unique!) comparison
functor between the two categories is an isomorphism.

Exercises

E 9.4 Consider the powerset endofunctor on Set

PX = {α ⊆ X} P(f)(α) = {fx | x ∈ α}

This is a monad, with the singleton function as unit and the ‘big union’ operation as multi-
plication:

ηX : X // PX x � // {x}

µX : P2X // PX A � //
⋃
A =

⋃
α∈A

α

Prove that its algebras are complete semilattices and its maps are join-preserving functions.

Next, prove that the Kleisli category of the powerset monad has sets as objects and binary
relations as arrows. (Hint. Note that a function of type X // PY is the same as a relation
R ⊆ X × Y .) What is composition?

E 9.5 Read the Introduction of [Mac97].
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Lecture XIV

10 Lawvere Theories

The traditional way of defining an algebraic theory is by giving a set of operators and some
axioms. For instance, the algebraic theory of groups consists of a multiplication of arity 2,
an inverse of arity 1, and a unit of arity 0 together with the following axioms:

(x · y) · z = x · (y · z), x · x−1 = e = x−1 · x, x · e = x = e · x

A group is then a model (in the sense of first-order equational logic) for this theory, that is,
a set G and operations of type G2 // G, G // G, G0 = 1 // G validating the axioms. This,
however, is only one of the possible presentations of the theory of groups. Indeed, if we use
just one operator t of arity 3 (think of t(x, y, x) as x · y−1 · z) and the axioms

t(x, x, y) = y = t(y, x, x), t(t(x, u, z), y, v) = t(x, t(y, z, u), v) = t(x, u, t(z, y, v))

we are still defining the same theory, in the sense that its models are again exactly groups.

We have seen that monads (and their algebras) allow for a presentation-independent account
of algebraic theories, but, as their name suggests, they do not reveal much of the structures
giving rise to them. An alternative approach which, while being independent from the choice
of presentation, still treats the operators as primitive data is in terms of Lawvere theories, a
categorical formulation of the notion of clones (ie suitably closed sets of operations) used in
universal algebra [Coh81].

Definition 10.1 A Lawvere theory is a category L with finite products and with a distin-
guished object A such that every other object of L is a finite power of A:

∀X ∈ ObjL. X ∼= An (for some n ∈ N)

The object A is called the fundamental object of L. An arrow ω : An // A of L is called an
n-ary operation (and, in particular, arrows of type A0 = 1 // A are called constants). One
can regard operations of arity n as terms with By the universal property of products, we have

L(An, Am) ∼= L(An, A)m (6)

that is, every arrow α : An // Am is the tupling of m operations αi : An // A (i = 1, . . . ,m).

Note that every Lawvere theory L has to contain at least the projections

π
(n)
i : An // A

since L has finite products.

Definition 10.2 A model (or algebra) of a Lawvere theory L consists of a product preserving
functor

M : L // Set

(More generally, one can consider models to be product preserving functors M : L // C,
where C is any category with finite products.)
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The value M(A) of the model M at the fundamental object A is the carrier of the model.
Let us put

|M| def= M(A) (7)

Since M preserves finite products, we have

M(An) ∼= (MA)n = |M|n

thus the image under M of an n-ary operation α of L is a function

Mα : |M|n // |M|

A natural transformation θ : M +3 N between two models is easily seen as an algebra
homomorphism. Indeed, if

(MA)n
(θA)n

//

Mα
��

(NA)n

Nα
��

MA
θA

// NA

commutes for every operation α : An // A then θ is natural, because every map of L is given
by tupling operations and the models preserve finite products (hence projections).

For every Lawvere theory L we have thus a category Mod(L) with L-models as objects and
natural transformations between them as arrows. The definition in (7) extends to a (forgetful)
functor

|−| : Mod(L) // Set

This has a (free model) left adjoint

FL : Set //Mod(L)

For every finite set S with n elements,

FL(S) = L(AS , ) ∼= L(An, ) : L // Set

Thus, the carrier of the free model over a set of n generators is the set FL(S)(A) = L(An, A)
of all n-ary operations of L.

Given a set of operators, one can easily generate the Lawvere theory associated to it: the
n-ary operations correspond to terms with (possibly) n variables; in particular, projections
correspond to variables. In general, Lawvere theories are in 1-1 correspondence with finitary
monads on Set, for a suitable notion of ‘finitary’. The latter are, in turn, in 1-1 correspon-
dence with ordinary algebraic theories. These correspondences extend to models of algebraic
theories, algebras of finitary monads on Set, and ordinary algebras.

Note. Lawvere theories are not treated in [Mac97]. I used material from [Law73b], [Wra75] and [Bor94].
You might want to have a look at [Coh81] for an account of universal algebra which also contains (in
the 1981 edition) a chapter on Category Theory and Universal Algebra, including Lawvere theories.
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Exercises

E 10.1 Let Nop be the opposite of the category of natural numbers and all functions. Show
that Lawvere theories are equivalent to product preserving functors

N
op // C

that are bijective on objects.

E 10.2 Consider, for any set A, the functor (product with A)

×A : Set // Set X � // X ×A

Prove that it preserve colimits.

Hint. Show that it has a right adjoint, namely the exponential functor

( )A : Set // Set X � // Set(A,X) h � // h ◦ ( )

mapping a set X to the set of all functions from A to X. The counit εX : XA × A // X of
the adjunction maps a pair 〈f, a〉 to f(a), ie it is evaluation.
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Lecture XV

11 Cartesian Closed Categories

Recall that we have ‘internalised’ the notion of element using maps from the final object;
that is, we have regarded maps x : 1 // X from 1 to an object X as elements x of X.
Now, intuitively, a cartesian closed category is a category which can ‘think’ of its own arrows
as being functions, that is, a category with internal notions of function space, evaluation,
composition, etc.

For functions, the key idea is that the evaluation of a function f : A // X is a universal
arrow from the functor product with A in Set

×A : Set // Set

to X.

Definition 11.1 Let A be an object of a category C with binary products. The right adjoint
of ×A : C // C, if it exists, is denoted by

( )A : C // C

and is called the exponential functor; the corresponding counit is called the evaluation
map and we denote it by

evAX : XA ×A // X .

Note that Cat has exponentials, namely functor categories.

One way to denote exponentials XA is as A +3 X. This stems from a logical reading of the
adjunction. Indeed, in a preorder P with meets ∧, if we interpret ≤ as logical entailment `
(sorry for the overloading, but please do not read this as adjunction but as entailment here!)
and ∧ as conjunction, then the above adjunction is nothing but the well-known deduction
theorem:

a ∧ b ` c
a ` (b +3 c)

The exponential XA gives the desired notion of internal function space. For instance, we can
now define an internal notion of composition:

CB ×BA // CA

CB ×BA ×A
id×evAB// CB ×B

evBC // C

If a category C has final object, binary products and exponentials, then we have:

1×A ∼= A
f
// B

1
pfq
// BA
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The map pfq, an internal element of BA, is called the name of f .

Note that we can apply and compose names of functions. For instance:

1
pfq
// BA 1 a // A

1
〈 pfq,a〉

// BA ×A
evAB // B

Definition 11.2 A cartesian closed category (CCC) is a category C with binary prod-
ucts, exponentials, and terminal object, that is, the following functors have right adjoints:

C
! // 1 C

∆ // C
· ·

C
×A
// C

for every A in C.

11.1 Curry-Howard-Lawvere Isomorphism

I strongly recommend to read Dana Scott’s seminal article on the relationship between carte-
sian closed categories and the λ-calculus [Sco80], both for its form and its content.

Exercises

E 11.1 Prove that in a CCC, just like in arithmetic, the following holds:

1. 1A ∼= 1

2. X1 ∼= X

3. (X × Y )A ∼= XA × Y A

4. XA×B ∼= (XA)B

Hint : 1 and 3 are trivial, while for 2 and 4 use transpositions and the uniqueness of adjoints.

E 11.2 Recall the contravariant functor

C( , A) : Cop // Set

from the naturality exercise (Exercise 7.3.4) on adjunctions. Prove that, for all functors
K : Cop // Set, any natural transformation

τ : C( , A) +3 K

is completely determined by its value at the identity idA : A // A on A.

Hint. Use the naturality of τ and the fact that we start from a set of arrows to prove that

τX(f) = (Kf)(τA(idA))

for every arrow f : X // A.
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Lecture XVI

12 Variable Sets and Yoneda Lemma

First a definition we shall use later: a functor H : C // D is full (resp. faithful) if the function

C(X,Y ) // D(FX,FY ) f � // Hf

is surjective (resp. injective).

We now consider the functor category SetC
op

for a given small category C. Functors X :
C

op // Set are called presheaves over C and can be regarded as sets varying over C or
C-sets: for each object c of C we have a set Xc – the (variable) set X at stage c. The
functoriality of X corresponds to a ‘right action’ of C on X: for every map f : c′ // c in C
we have a function (we are in Set!) Xf : Xc // Xc′ mapping the elements x of the set X at
c to elements x.f of X at stage c′. Using the notation x.f = X(f)(x) we have just introduced
we can write the functoriality condition of X as

x.(f ◦ g) = (x.f).g x.id c = x

for every g : c′′ // c′, which explains why we can speak of a right action of C over X. The
elements x of Xc are also called elements of sort c.

A canonical example of variable set is given by the representable functor

yC(c) def= C( , c) : Cop // Set

for every object c in C. (Cf the naturality exercise (Exercise 7.3.4) on adjunctions.) The
following proposition tells us that in fact the map

yC : C // SetC
op

c � // C( , c)

is a full and faithful functor embedding C into SetC
op

.

Proposition 12.1 For all objects c and d in C, every natural transformation from C( , c) to
C( , d) is of the form

C( , h) : C( , c) +3 C( , d)

for some map h : c // d in C. 2

The proof of this fact, in turn, is a corollary of the following lemma, due to the Japanese
categorist Yoneda (and so the above embedding yC is called the Yoneda embedding of C into
the category of presheaves over C).

Lemma 12.2 (Yoneda.) For all presheaves X : Cop // Set, there is a bijection (in Set!)
between the set of natural transformations from yC(c) = C( , c) to a variable set X and the
elements of X at the stage c:

SetC
op

(yC(c), X) ∼= Xc
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Proof. First note that any natural transformation

τ : C( , c) +3 X

is completely determined by its value at the identity id c : c // c on c. Indeed, the naturality
of τ implies that the diagram

c C(c, c)

( )◦f
��

τc // Xc

( ).f

��

c′

f

OO

C(c′, c) τc′
// Xc′

commutes for every map f : c′ // c. This is a diagram of functions, hence τc′(e ◦ f) = τc(e).f
for all e ∈ C(c, c), ie for all endomaps e : c // c on c. In particular, we can take e = id c and
obtain

τc′(f) = τc(id c).f

Now, clearly, the desired bijection can be obtained by mapping a natural transformation τ :
yC(c) +3 X to τc(id c) ∈ Xc and, conversely, an element x of Xc to the natural transformation
(f : c′ // c) � // x.f . 2

I learned to look at presheaves as C-sets from [Law89]. I would like now to quote the following
passage from that paper which beautifully explains what the Yoneda lemma really tells us:

For any C-set X and any object a of C, the set of elements of X of sort a is
naturally identifiable with the set of SetC

op
-morphisms from C( , a) to X. It

is thus justified, as well as extremely useful, to adjoin to the parenthetically-
introduced abuse still a further abuse of notation and to henceforth regard the
elements of X of sort a as morphisms a // X in SetC

op
; thus the action of C on

any C-set becomes a special case of composition of morphisms

c′
f
//

xf
��

@@@@@@@ c

x

��

X

now all in SetC
op

as does the application of a morphism ϕ to an element, and the
homogeneity (naturality) property of every X // Y in SetC

op
becomes a special

case of the associativity of composition in SetC
op

:

c′
f
//

xf
��

@@@@@@@ c

x

��

ϕx

  
@@@@@@@@

X ϕ
// Y

Proposition 12.3 For every small category C, the category SetC
op

is cartesian closed.
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Proof. Assume the exponential XY exists for two presheaves X and Y over C. Then, by
Yoneda,

XY (c) ∼= SetC
op

(yC(c)× Y,X) (8)

for every object c in C. For the rest of the proof see, eg, [MM92, Prop. I.6.1, pg 46]. 2

Note that there is also a dual Yoneda embedding, namely

C
op // SetC c � // C(c, )

and a corresponding lemma.

Not surprisingly, the Yoneda embedding yC has a universal property. First note that SetC
op

pointwisely inherits all limits and colimits from Set thus, in particular it is cocomplete.

Proposition 12.4 For every functor H from C to any cocomplete category E there exists a
unique cocontinuous (ie colimit preserving) functorH] : SetC

op
// Set such thatH]◦yC = H.

C

yC //

H
##FFFFFFFFFF SetC

op

H] cocontinuous
��
�
�
�

E

Proof. It is a consequence of the fact that every C-set X is a (canonic) colimit of a diagram
of representable functors. (See, eg, [Mac97, §III.7].) 2

Thus SetC
op

is the free cocomplete category over C and the fact that yC is full and faithful
implies that even if C may miss some or all colimits, we can always regard it as part of the
larger category SetC

op
which does have all colimits. Note that this almost gives us a left

adjoint to the forgetful functor from the category of cocomplete categories and cocontinuous
functors to the category of all categories, except from the fact that we would need a Yoneda
embedding not only for small but also for large categories (and in that case yC would be the
universal arrow from C to such forgetful functor).

Exercise

E 12.1 (Important.) Let 2 be the two-elements set {true, false}. For every subset S of a given
set X we have a corresponding characteristic function:

φS : X // 2 φS(x) =
{

true if x ∈ S
false otherwise

Prove that
S //

��

1

true
��

X
φS
// 2

is a pullback square (where S // X is the evident inclusion function and S // 1 is the unique
arrow from S into the terminal object 1).
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Lecture XVII

13 Set theory without sets

13.1 Subobject Classifiers

Two monic arrows m : S � X and m′ : S′ � X with a common codomain are equivalent if
there is an isomorphism f : S ∼= S′ such that m′ ◦ f = m. A subobject of X is an equivalence
class of monic arrows into X. Write Sub(X) for the set of all subobjects of X. If the category
has pullbacks then this extends to a functor Sub : Cop // Set. In the sequel we shall identify
subobjects with the monic arrows representing them.

Recall that a category with terminal object and pullbacks has finite limits.

Definition 13.1 A subobject classifier for a category C with finite limits consists of an object
Ω (of C) and a monic arrow true : 1� Ω universal in the sense that for every monic S � X
there exists a unique arrow φS : X // Ω such that

S //
��

��

1��
true
��

X
φS
//___ Ω

is a pullback square.

In other words there is an isomorphism

Sub(X) ∼= C(X,Ω)

S � X

X // Ω

natural in X.

An example is clearly 2 in Set. But also sets over time X : ω // Set have a subobject
classifier which gives “time till truth”: it is the constant presheaf

N∞
p
// N∞

p
// N∞

p
// · · ·

where N∞ is the set of natural numbers with infinity and p is the predecessor function (map-
ping n + 1 to n, while leaving 0 and ∞ unchanged). Then 0 is true, n is ‘n steps till true’,
and ∞ is ‘never true’. In general:

Proposition 13.2 The category SetC
op

of presheaves over a small category C has a subobject
classifier.

Proof. See, eg, [MM92, §I.4]. 2
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13.2 Topoi

If a category is cartesian closed and has a subobject classifier then one can define a power
object

PX
def= ΩX

for every object X of C. Note that then:

S � X

X // Ω
1 // PX

In the case C = Set, PX is the powerset of X and the above correspondences boil down to the
fact that subsets are the same as predicates and the same as elements of powerset. Note also
that the evaluation map X × ΩX // Ω is nothing but the element predicate X × PX // Ω.

Definition 13.3 An elementary topos is a cartesian closed category E with all finite limits
and a subobject classifier.

Examples: the category Set of ordinary sets, but also all categories SetC
op

of variable sets.

Exercises

E 13.1 We know from Proposition 13.2 that every category of presheaves has a subobject
classifier Ω. Use Yoneda to show that

Ω(c) ∼= Sub(yC(c))

for every object c of C.

E 13.2 Nice – it gives a very powerful notion!

For any category E, a functor

C
J // D

induces a functor

E
C

( )◦J
oo E

D

between the functor categories ED and EC; its action on an object H of ED, ie on a functor
H : D // E, is simply precomposition with J :

C
J // D

H // E

The question is: how does a universal arrow from a generic object G of EC to the functor
( ) ◦ J : ED // E

C look like? It is a pair (L, ηG) with L : D // E and ηG : G +3 LJ such
that . . . ?

Hint. Beware that the difficulty is in the fact that our objects are functors and our maps
are natural transformations. The diagram I would like to see should have the functors writ-
ten as arrows rather than as objects; the fact that composition with J is a simple (meta)
functor makes it possible to express the universal property of the universal arrow in not too
complicated a diagram, although you need three dimensions.
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Lecture XVIII

14 Kan Extensions

The first edition of [Mac71] ends with a section entitled ‘All concepts are Kan extensions’.
Here we introduce Kan extensions using, once more, universal arrows. In fact, (left) Kan
extensions are the answer to Exercise 13.2:

Definition 14.1 A left Kan extension of a functor G : C // E along a functor J : C // D is
a universal arrow 〈LanJG,α〉 from G (regarded as an object of the functor category EC) to

E
C

( )◦J
oo E

D

Thus it consists of a functor
LanJG : D // E

and a natural transformation
α : G +3 LanJG ◦ J

which are universal in the sense that for every functor H : D // E and every natural trans-
formation ϕ : G +3 H ◦ J there exists a unique natural transformation ϕ] : LanJG +3 H
such that ϕ = (ϕ])J ◦ α.

E
C

E
D

( )◦J
oo

G
α +3

ϕ
!)JJJJJJJJJJ

JJJJJJJJJJ LanJG ◦ J

(ϕ])J
��

LanJG

ϕ]

��
�
�
�

�
�
�

H ◦ J H

More elementary, the left Kan extension of G along J consists of a diagram

C
J //

α +3

G

��

D

LanJG

��

E

such that for all diagrams

C
J //

ϕ +3

G

��

D

H

��

E

there exists a unique ϕ] : LanJG +3 H such that ϕ = (ϕ])J ◦ α.

Alternatively, we can state this in terms of the following bijection natural in H:
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LanJG +3 H

G +3 HJ

Dually, a right Kan extension of G along J is a universal arrow 〈RanJG, β〉 from

E
C

( )◦J
oo E

D

to G:
C

J //

βks

G

��

D

RanJG

��

E

HJ +3 G

H +3 RanJG

Proposition 14.2 Colimits are left Kan extensions.

Proof. First note that objects and arrows of a category C are in 1-1 correspondence with
functors of type 1 // C and natural transformations between them, respectively. Next, note
that a cone from a functor F : B // C to an object X : 1 // C is a natural transformation
from F to X◦ !, where ! is the unique functor from B to the terminal category 1. It is then
clear that:

ColimF ∼= Lan!F

and the colimiting cone is the natural transformation of the Kan extension. 2

Dually, limits are right Kan extensions.

Proposition 14.3 A functor has a right adjoint if and only if the left Kan extension of the
identity along F exists and is preserved by F .

Proof. See [Mac97, Thm X.7.2]. 2

Further examples: essential geometric morphisms of presheaves and of monoid actions in
particular.

15 2-Categories

See [Mac97, §XII.3].
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Further Reading

The aim of this course was to learn to reason in a categorical way. I hope we have achieved
this. Now you should be in the position to easily access Mac Lane’s book [Mac71]. In
particular, Chapters IV, V, and VI will strengthen your understanding of adjunctions, limits,
and monads, Chapter VII will introduce you to monoidal categories, and Chapter X to Kan
extensions. The new edition [Mac97] also contains important material on topos theory, 2-
categories, bicategories, and presheaves. Beyond that, I would recommend categorical logic
and fibrations [Jac99, Pho92], enriched category theory [Law73a], and any further writing by
Lawvere such as [Law70, Law69, Law91].

Links

• <http://www.mta.ca/∼cat-dist/categories.html>

• <http://www.acsu.buffalo.edu/∼wlawvere/>
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