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Abstract and its inverse is analytic syntax. Finally, in trexursive

typeview [32], the initial algebra is obtained as the solution

We develop a theory of abstract syntax with variable to a recursive (set) equation; this leads one to a treatment of
binding. To every binding signature we associate a cat- syntax within programming languages as exemplified in the
egory of models consisting ofariable setendowed with  ML/LCF approach [15].
compatible algebra and substitution structures. The syntax The first-order view can be problematic. In particu-
generated by the signature is the initial model. This gives alar, when dealing with context-sensitive aspects of syn-
notion of initial algebra semantics encompassing the tradi- tax, it does not account satisfactorily feariable bind-
tional one; besides compositionality, it automatically veri- ing, with its allied notions of scope, free and bound occur-
fies the semantic substitution lemma. rences,a-equivalence, production of fresh variables, and
substitution €.g, in A-calculus, CCS with value passing,
m-calculus, logical quantifiers, and derivative and integral
expressions). Useful context-sensitive extensions of BNF
certainly exist, such as attribute grammars and van Wijn-

. ) ~gaarden grammars; however, they do not in themselves give
It has long been recognised that the essential syntacti-3, gccount of deep structure.

cal structure of programming languages is not that given by one proposal for an abstract treatment, originating with
their concrete or surface syntax—as expressed, say, by &hyrch [7], is that ofigher-order abstract syntaxhere
language deSCI‘Ipt.IOI’] in BNF orlent.ed to parsing (there the jhe ses’ the binding apparatus provided by the typed
parse trges contain much information useless for language,_.zjculus to express all other forms of binding—see [29,
procegsmg). Rathgr, the deep structure of a phrase shoul@z 30, 28]. Normal forms (of ground type) play the
reflect its semantic import. role of first-order terms, but with first-order signatures be-
McCarthy [24] coined the termbstract syntaXor such  jng replaced by second-order ones. (The binding ana-
structure, which is typically given as a tree with its top node logue of trees is provided by therm graphsfirst intro-
labelled by the main semantic constituent, or, equivalently, 4yced by Wadsworth—see,qg, [17].) A form of analytic
by a term of first-order logic. Abstract syntax has bsyn-  syntax is given by matching or unification in associated

thetic and analytic aspects: the former concerns tben- logic programming languages [27, 30]. In implementations,
structorsneeded to form phrases, the latter thesstructors De Bruijn’s terms [9] are used to provide:‘equivalence

(predicatesand selectory needed to take them apart [21]. normal forms”.

Introduction

Burstall [6] contributedstructural recursior—a generalised Unfortunately, in the higher-order abstract syntax ap-
form of primitive recursion—to analytic syntax, with an as- proach, many of the desirable properties mentioned above,
sociated principle o$tructural induction such as accounts of structural recursion and induction, and

The algebraicpoint of view of the ADJ group [14] (see  recursive equations for abstract syntax, are missing, or at
also [32]) regards abstract syntax as the initial algebra (of|east not fully developed (see [26, 25, 10]).
thhg co?structors) ?nd lse?anttlrcrzjgs thset umtquel homomor- In this paper, we provide a (categorical) algebraic view
P! Isnt]h oa sgmar; Ic a.gtiet. r;’_at( Th e}.t ruc ‘f“’?‘ recur of syntax with variable binding. The analogue to univer-
sion then arses from inialty. categoricalview re- sal algebra is the theory of binding algebras originating in
gards the algebras as those of an associated signature fun({,ﬁe work of Aczel [L]—see also [20, 31, 37]. We replace
tor: the initial algebra has an isomorphism as structure Map,|qebras over sets Hyinding algebra’sovérvariable sets

*Research supported by the EU TMR research programme. Formally, variable sets are (covariapesheavesand the




fundamental idea is to turn contexts into the “index cate- out. In particular, we envisage a type theory based on the
gory” of the presheaves. internal language of our semantic universe for manipulating
We obtain a notion obinding signaturen which bind- abstract syntax with binding. Again, structural induction
ing is again expressed by second-order types, but now usprinciples for reasoning about abstract syntax with binding
ing a special presheaf of variables or, equivalently, by a should be available within our framework.
first-order signature extended with a notiondifferentia- Second, the investigation of more sophisticated syntax in
tion (cf. [16]). Our models, thdinding algebrasare then our setting will be pursued. Multi-sorted binding signatures
presheaves endowed with both an algebra structure (corre{like the simply typedi\-calculus) can be easily accommo-
sponding to the operations in the signature) and a substitu-dated; various linear settingsf(operads [22]), in contrast
tion structure compatible with each other. to the cartesian one explored here, also seem to fit; type
Abstract syntax is the initial such model, with the algebra theories with dependent types are yet to be tackled. Con-
structure obtained as the solution to a recursive (presheafyections between our approach and the general theory of
equation and substitution defined by an associated structuragubstitution provided bglubs[18, 19] will also be investi-
recursion. The unique homomorphism from the syntax to gated.

another modeligitial algebra semanticspreserves the con- ~ Third, theories of operational semantics with binding
structors {e., is compositional) and the extra substitution Will be developed along the lines of [36]. Preliminary
structure {e,, verifies the semantic substitution lemma).  results indicate that some interesting syntactic formats of

o _ _ well-behaved operational rules for languages with variable
Organisation of the paper. We start in Section 1 by ad-  pinding can be obtained.

voc%ting the use of the category of (covariant) presheaves

Set” as a suitable mathematical universe in which to deal .

with syntax with variable binding. The index categdtis a 1. The universe of types
skeleton of the category of finite sets and functions; it pro-
vides a notion of cartesian context allowing for exchange,
weakening, and contraction. The structurSet™ relevant

to modelling variable binding is studied in detail.

We present the universe of types within which we work.
Our intent is to consider a notion of type broad enough to
encompassyntax with variable bindingand, more gener-

The study of signatures with variable binding in our a}lly, algebras for pinding signatures) in a framewc_>rk with
framework is carried out in Section 2. Our main result here rich type structurei(e., type constructors and operations on

is that the presheaf of terms (with binders) associated to atypes). To motivate our choice we start by examining the
(binding) signature has an abstract universal characterisaStructure of the set of-terms.
tion as a free algebra over a presheaf of variables. This re-A. In the course of our discussion we will consider the set
sult is exploited in two directions: to give implementations of (untyped)A-termsAv., given by the following grammar.
of abstract syntax (with variable binding)la De Bruijn,
and to provide semantics by initiality. These two applica- reVar u= z; (1€NF) |
tions are exemplified using thecalculus. t€Avar == x| Azt | tite

Section 3 is devoted to substitution. We treat both single-
variable and simultaneous substitution. The former is han-
dled by introducing the notion afubstitution algebrathe
latter first by the elementagbstract clonesnd then, more
abstractly, as certaimonoidsin the category of presheaves.
The three presentations are shown to be equivalent. We als
define two “categorical programs” for substitution by struc-
tural recursion.

In Section 4, we define the category of models of a bind-
ing signature; the presheaf of terms is the initial such model.
We exemplify the corresponding initial algebra semantics

In untyped settings, the treatment of the operataas a
binder is typically dealt with by introducing the notion of
free/bound variable. However, as is well-known and com-
monly used in typed settings, this information may be pre-
éented by judgements, consisting of a term together with a
context, subject to a well-formedness condition. To sim-
plify the exposition we will consider the following well-
formedness rules which provide canonical representatives
for a-equivalence classes of-terms by the method of
De Bruijn leveld9].

again using the\-calculus. This semantics, besides being 1<i<n T1ye e Ty gt F 1

compositionglautomatically verifies theemantic substitu- 1. _’w; F o, Ti,..., &y - Xxn+1.t

tion lemma (1)
xl,...,xnl—tl .131,...7l‘n|_t2

Future work. Various directions for further work are pos- T1,. . 2o F tits

sible; we mention but a few here. First, the syntactic coun-
terpart of our treatment of substitution bgtegoricalstruc- Conceptually, the passage from the approach based on
tural recursioni(e., parameterised initiality) will be worked  free/bound variables to the one based on contexts consists



in turning the free-variable functidfV : Av,, — P(Var) We are now in a position to spell out the structure\of
into extra structure on terms. As we will see, the latter view-
point is important for bringing out the structure of ttype

A of A-terms (modulaxv-equivalence). As a first step in this
direction notice that contextsratify A-terms. Indeed, for
all n € N, we have a bijective correspondence

The structure of A. Since contexts stratify terms, it follows
that the operations on contexast on them. Indeed, every
functionp : m — n in F (thought of as a renaming of
variables) induces an action

Ae(n) = Ay (n) : t— [t]a (2) Ag(m) ————= Ay(n)
h >~y def e
where Ao (m) A—()> An(n)
€ alp
An) ¥ {teAvar | 21, an F Y,
whereA,(p) : t +— t{x,p1/x1,. .., 2pm/Tm}, Which is

def
Aa(n) = { [tla [t € Avar NEV(E) S {1, 0 } } functorial in the sense that

Ag(idn) =ida,my » Ae(p' 0 p) = Ae(p') o Melp)

o foralln e Fandforallp: n =n’andp’ : n’ >n" inF.
nAe(n 1) + Ae(n) x Ae(n)  —= Ae(n)  (3)  Thatis,A, is an object of the presheaf category
tEN > T et
€
teA(n+1) — Axpiq.t F = Set” |

(t1,t2) € Ag(n) x Ae(n) = tits which we take to be ouuniverse of types Following
where, by abuse of notation, we write for the set common usage, thedgpesare referred to apresheaves
{1,....n}. see [23]. ClearlyA,, is also a presheaf ifi. The presheaf

Y of variablesVar is given, forn € F andp in IF, by

Next, note that the well-formedness rules (1) induce (and in
fact correspond to) the following bijection: for alle N,

To conclude the analysis of the structure/ofwe first
need to examine the structure of contexts. Var(n) ={ z1,...,2n }, Var(p):z,—x, .

The _structure_ of contexts. The notion_ of context rel_ev_ant For a slightly more involved example consider the presheaf
to this paper is that of (untypedprtesian contextThis is L : F — Set with L(n) given by the left hand side of the
reflected in the operations which we allow for context ma- bijection (3) and equipped with the functorial action

nipulation: exchangeweakening andcontraction These

qperations, when closed under composition, yield all func- L(p) d:eprrAg(eridl) + Ae(p) % Ag(p) (5)
tions between contexts. Thus we take the category of carte-
sian contextd to be the full subcategory et with ob- for everyp in FF.
jects{ 1,...,n } (n € N) representing generic abstract An important non-syntactic example is provided by the
contexts withn variables. (Note thaf is isomorphic to the  presheaf of operationéfrom A to B) (A, B) for objects
category of finite cardinals and functions.) A, B in a cartesian categog.

A conceptual description of the categdfys as the free
cocartesian category on one object (seg [23, § VIII.4, (A, B)(n) = C(A™, B) ©)
Lemma 1]). As such, it may be understood as being gener- (A, B)(p) : fr=Ffo(mp1,...,Tp,)

ated from an initial object (the generic abstract empty con- ) _
text) by an operation of context extensidp;) + 1, with ~ forn € Fandp : m = nin F. In particular, the presheaf
a generic abstract context with one variallle,Following (A, A) is the so-callectlone of operationson A.

this viewpoint, we will henceforth consider the categéry Recall that a magf : A — B between presheaves
as equipped with a chosen coproduct structure andB in F is a natural transformationg., an indexed fam-
ily of functions{ f,, : A(n) — B(n) in Set },,cr Subject

. TSI L B to the following naturality condition: for alb : m - n in

) _ ) F, fn. o A(p) = B(p) o fm. The bijection (2) yields an iso-
In partlcular, we hayatommoperguonslof exchange, weak- morphism of presheavels = A, in F. More interestingly,
ening, and contraction, respectively given by: notice that the particular implementation.bterms (mod-
ulo a-equivalence) adopted in our exposition by the method
of De Bruijn levels is reflected in the mathematical struc-
oldg: 0—1 , (4) tures under consideration. Indeed, the bijection (3) yields a
¢ df [idy,id;]:2—1 . natural isomorphism of presheavesz A, in F if and only

def
s = [newp,oldy]:2—2 |
def
A\ =



if the chosen coproduct structure Bris taken to be the one

with old,, (i) = 7 (1 < ¢ < n)andnew,, = n+1 (cf.the rule

for A-introduction in (1)). We will see in the next section

that an implementation of-terms (modulax-equivalence)
by the method oDe Bruijn indices[9] is also available in
our framework.

Note that, as the passage frdhto F is given by precompo-
sition, it preserves equational structures. In particular, the
monad((—)+1, { id, +w },{ id,, + c }) onF yields the
monad(d, up, contract) on F.

We examine some propertiesdfFirst we note that, by
constructiong has both a left and a right adjoint; hence it

We conclude with a description of the type constructors Preserves both limits and colimits (as a simple calculation

and the operations on typesf.([11]) in the universeF that

will also show). These adjoints are given by the following

will be needed in the rest of the paper. As an application, natural bijective correspondences

we will show how type constructors may be used to provide

a structural definition of the preshdabf (5).

The structure of F. The categoryF is a well-known and
interesting topos (see [28VII1.4]). Many of the construc-

X —0A
XxV—A

0A—Y
A—(V+1)Y)

@)

Second, observe that the first correspondence above shows

tions that follow in this and later sections can be cast in that
the language of topos theory. However, we do not empha-

sise this viewpoint here; rather we adopt a presentation that

generalises to otheontexts

Sums, products, and exponentiafsis a complete and co-

0(=) = ()Y, 8)

and states that the elements of typé in the contextX
are the elements of typé in the extended context x V.

complete cartesian closed category, with limits and colimits Finally, we note the important fact that the diagram

computed pointwise (see [23]).
V: The presheaf (ofbstract variablesV € F is obtained

old new 1

A% oV

©)

by embedding the generic abstract context with one variable,

in F into F via Yoneda. Explicitly,V is the embedding of
F in Set given by

Vin)=n (neF); V(p)=p (pinF).

d: The type constructor (fazontext extensigny : 7 — F
is obtained from the operation of context extengjen+1 :
F — F by precomposition:

52 € (Qo((—)+1)

In elementary terms, fod € F, the preshead A is given,
forn € Fandp in T, by

(0A)(n) = A(n+1),  (64)(p) = Alp+id1) ;

and, forf : A — Bin F,the mapdf : A — 0B is
given by

(6f)n=far1: A(n+1) —B(n+1)

Thus, intuitively, an element of typ®A in the contextn is
an element of typel in the extended context+ 1.
The operations on contexts extend fr@hto F in the

(nel)

same vein. For instance, the operations in (4) respectivel

give rise to the natural transformatiogsap : 62 —> §2,
up : Id —> 4, contract : 6> —> § with the following
explicit descriptions: ford € F andn € F,

A(d, +s): An+2)— A(n+2) ,
A(id, +w) : A(n) — A(n+1) ,
A(d, 4+¢): An+2) —An+1) .

swa pA,n
upA,n

contracta

is a coproduct irf.

It should be clear that the tydeof (5) equals the struc-
tured typeV + A, + Ay x Ap. We will show in the next
section that the inductive typeX .V + 46X + X x X charac-
terises the preshedfof A\-terms (modulax-equivalence).

2. Binding signatures and their algebras

We show that the universg provides a suitable setting
for modelling binding signatures and their algebras. In par-
ticular, we obtain a characterisation of syntax with variable
binding by initiality, which generalises the well-known re-
sult for the first-order case [14]. This yields a notion of
abstract syntax with variable bindinfpr which an initial
algebra semantics is available.

Syntax with variable binding. A binding signature [31]

¥ = (0,a) consists of a set obperationsO equipped

with anarity functiona : O — N*. An operator of ar-

ity (n1,...,nx) hask arguments and binds; variables in

thei-th argument] < i < k). Forinstance, the signature of

the A-calculus has an operator of aritl)), viz. \-abstraction
Ywith one argument and binding one variable, and an opera-

tor of arity (0, 0), viz. application with two arguments and

binding no variables.

The terms associated to a binding signature over a set
of variables (ranged over hy) are given by the following
grammar.
te Ty = (@, w, ) )

x| o((x1,. .., @n, ) t1,-.



whereo is an operator of arityn,, ..., ng). Obvious defi-
nitions for free/bound variables amdequivalence apply to
these terms.

Analogous to the case of thecalculus, for any binding
signature, there is a presheaf of terms (uptequivalence)
TV, € F given by

TVa(n) € { o | FVE) C {z1,...,20 } }
TValp) it = t{xp /21, .., Zpm/Tm}

foreveryn € Fandp : m = ninF.

Abstract syntax with variable binding. To give the ab-
stract characterisation of'V, we consider algebras of
binding signatures. Recalling that an operator of arity
(ni)1<i<k bindsn; variables in the-th argument and that

0 is a type constructor for context extension it is natural to
interpret an operation of arityn,,...,n;) on a presheaf
Ae Fasamap™ (A) x ... x §"(A) — A, and hence

to define ax-algebra over a preshedfe F as a map

I

o€ O
a(o)=(ni)i<i<k

SM(A) x ... x 6™ (A) — A

Thus, to a binding signatur® = (0, a) we associate the
functorX : F — F given by

I

oeO
a(0)=(ni)i<i<k

II o)

1<i<k

(10)

wherenew(j) = new,4;1 (1 < j < n;) andold(j) =
old,(j) 1 <j < n).

Theorem 2.1 The presheaf of term§V, associated to a
binding signatureX (equipped with the syntactic algebra
structure) is a freé-algebra on the presheaf of variables
V.

We show how the above general result may be used to im-
plement abstract syntax. To this end recall that the under-
lying presheaf of a fre&-algebra on a presheaf may be
computed as the union of the chain

0CX+X0)CX+X(X+%(0)C---

obtained by iterating the functok + > on the empty
presheaf.

In the particular case of the free algebfaon the
presheaf of variable¥ for the signature of the-calculus
YA (X) = 60X + X x X this calculation amounts to the fol-
lowing inductive definitionsA(n) = {t |nkt } (n € F)
where

1<1<n
n F var(i)

n+lk-t
n F lam(t)

n tl nk tg
n = app(t,t2)

and, forp: m = ninF,

A(p)(t) = case t of

var(7) = var(pi)
lam(t") = lam(A(p+1idy)(t))
app(t1,t2) = app( A(p)(t1), Alp)(t2) ) -

This abstract view yields particular implementations of

and define the category of algebras associated to the signay_terms according to different choices of the coproduct

ture X as the category:-Alg, with objects given byalge-
brash : A — A and morphismg : (A, h) — (A", k')
given by mapsf : A — A’ that arehomomorphidn the
sense thaf o h = k' o X(f). This approach fits into the

paradigm of categorical algebra [4, 5]. However we remark
that the general theory allows for the treatment of more so-
phisticated notions of signature (incorporating equational
theories and thus enabling us to deal with notions such as

A-models) which will not be considered in this extended ab-
stract.

As is well-known (seee.g. [4]), the forgetful functor
¥-Alg — F : (A, h) — A has a left adjoint provid-
ing the freeX-algebra on a presheaf; which, for a presheaf
X € F,is aninitial (X + X)-algebra.

The presheaf of termq'V, of a binding signature
¥ = (0, a) has asyntactic algebra structure [7(9],co
given, at stage, by the mapping sending the tuple of terms
<ti>1§i§k to the term

0( (xnew(l)v s 7$new(ni))-ti
{21/ o1a(1)s -+ T/ Tota(n) } J1<i<k 5

structure on the categol For instance, ibld,, (i) =i+ 1

(1 <i<n)andnew, =1 (n € N) then the presheak

implementsA-terms by the method of De Bruijn indices;

as one can notice, for example, from the fact that, for
:m—=>ninT,

(The reader may wish to consider examples invohsngp
and up.) Of course, the implementation of-terms by
the method of De Bruijn levels is obtained by choosing
old, (i) =i (1 <i<mn)andnew, =n+1(n €N).

Jifi=1 .
, otherwise .

lam(var 1)
lam(var pi)

A(p)(lam(var i))

A glance at initial algebra semantics.To consider inter-
pretations of the\-calculus letfold : D < D : unfold be
a retraction in a cartesian closed categofi3].

The clone of operation&D, D) € F (see (6)) admits a
canonical interpretation of variables V. —- (D, D) given
by

n — C(D", D)
T = W s



and may be equipped with an algebra structure Put in

(D,D)+ (D, D) x (D,D) — (D, D) as follows

c(D"*',D) — ¢(D",D)
f > foldo A(f) ,

¢(D", D) x C(D", D)
(f,x)

As A is the freeXy-algebra onV, it follows from Theo-
rem 2.1 that : V — (D, D) has a uniquéaomomorphic
extension—] : A — (D, D) characterised as

— C(D", D)
> evo (unfoldo f,x) .

[var,lam,app]

V+OoA+AXA = A
V+6[[—]]+[[—]]X[[—]]l lH
V +6(D,D) + (D,D) x (D,D) — (D,D) >
and which can be easily shown to be the traditiorah-

positional interpretation functionA(n) — C(D", D)
(n € N) of A\-terms [33].

3. Substitution

A program for substitution. To motivate the more abstract
development to follow, and to link our approach to program-
ming, we start by writing a (categorical) recursive program

for substituting\-terms in the type theory af.

Let A (the presheaf ak-terms) be the free algebra on the

presheaf of variable¥ for the signature of the--calculus

> (see Theorem 2.1 and the discussion after it). We aim at

defining an operation
oc:0AxA—A

that, roughly speaking, given a pdir, u) consisting of a
termt with anewvariable {.e., a term in an extended con-
text) and a termu, substitutes: for the newvariable int.
Using that

0N =0V 4+ §6A + 6A x 6A

(sinceA = uX.V+46X + X x X andd preserves sums and
products) we can define a recursive programodfdry case
analysis on its first argument. The definition is as follows

o(t,u) = case t of
x: 0V => f[(z,u)
t':00A = lam( do(swap t';upu))
t17t2 (0N > app( O—(tlau)70(t23u) )

(11)

where, using thaiV = V + 1 (see (9)), thévasic substitu-
tion 3 : 0V x A — A is defined as

= var(y)
= u

B(z,u) = case x of old(y)

new

(12)

elementary terms, the natural
on : A(n+1) x A(n) — A(n) (n € F) is given by

family

on(t,u) = case t of

var(7) = caseiof old,(j) = var(y)
new, = u

lam(¢") = lam( op41(swap,, t',up,, u) )

app(ti,t2) = app(on(t1,u), on(tz, u))

Note that the substitutiom,, (lam(t'), u) proceeds bgwap-
ping (the indices for) the binding and the new variables in
t' € A(n + 2), and by subsequently using the substitution
operatiorns,, 1 with theweakenedrgumentip,, (u) (where
indices are shifted appropriately).

Interestingly, using thai(X) = XV (see (8)), we have
that the definition (11) corresponds to the following one

o(t,u) = case t of
x:V+1 = casexof old(ly) = var(y)
new = u
' (AV)Y = lam(My:V.o(dz:V.tzy, u))
ti,ta : AV = app(o(ty,u),o(tz,u))

which resembles the traditional definition of substitution.
For instance, note that by construction the equality

t':(AV)ViEo(Ax:V.am( Ay : V.t'ay ), u)
=lam( Ay : V.o( Az : V.t'zy, u))

holds.

As we show below, the above definition of substitution
amounts to a definition bgtructural recursion Hence in
our approach, unlike in the traditional one (sedy, [3]),
the well-definedness of the substitution operation need not
be established separately.

Definition of substitution by structural recursion. For
a binding signatures, let px : XTX — TX be a free
Y.-algebra over the presheaf.

To define a substitution operation

o:6(TV) x TV —=TV

for the presheaf of term¥'V by structural recursion we
proceed as follows. First, with the aid of the followieg-
changenatural isomorphisms

5”((5X) ~ (XV)VX---XV ~ (XV><--~><V>V ~ 5(5“X)
we define a distributive law
RS E->> (13)

of the endofuncto® over the monad in an obvious way.
Second, we observe that this construction yields a natural

isomorphism(dV + ) o0 § 2 § o (V 4 X); from which, by



theuniformity propertyof the fixed-point operator (see [12,
Theorem 7.3.12 (6)]), it follows that the-algebra

Y
S6(TV) = 62(TV) 22X §(TV)

is free overdV. Finally, using that> has astrength
str: L(A) x X — X(A x X), we leto be the unique ho-
momorphic extension of a basic substitutigras in (12).
That is, we define to be the unique map such that the dia-
gram

2(5(TV)) x TV =5 S(5(TV) x TV) —=Z= 51TV
Py xid
§R(TV) x TV
dopv xid

3(TV)

v

67]\/ xid

o0V x TV

commutes, where the mag : V — TV, coercing vari-

Clones. Substitution algebras axiomatise single-variable
substitution. Here we show that they are equivalent to the
following axiomatisation of simultaneous substitution by
abstract clones (familiar, in the concrete case, from univer-
sal algebra—€f. [8, page 132]).

An (abstrac) clone X (X, u,t) consists of
a family X {Xn},en Of sets, a family.

{LE”) € X, |1<i<n}, . of distinguished elements,
and a family

=) X % (X)) —= Xin by men

of operations such that, for every elemendf X,,, every

n-tuple@ = (uq,...,u,) of elements ofX,,, and every
m-tuple ¥ of elements ofX;, the following three axioms
hold:

,Ln) =t 5
s (U T))

pn(ts 01, - ..

(o (8 @); V) = pu(t; pu(ug; 0), . ..

P (L35 W) = u;

(14)

An example of a clone is given by taking: fof,, the set
TV (n) of terms (in a context of, variables) with respect to

a given signature; foaﬁ”) the variabler; in TV(n); and for

ables into terms, is the universal arrow associated to the free (,

algebrdl'V.

Substitution algebras. We show that the opera-
tions ¢ : 6TV x TV — TV (obtained as above) and
v = (énv) onew : 1 — §TV obey the laws of sub-
stitution. To this end we introduce an axiomatisation of
single-variable substitution, whose justification is provided
by Theorem 3.3 below.

Definition 3.1 A substitution algebra X = (X, ¢, v) con-
sists of a presheak € F equipped with two operations
¢:0X x X — X (asubstitution andv : 1 — 06X (a
generic new variablesuch that:

Lu:XFs(vu) =u.
2. t,u: X F g(up(t),u)=t.
3.t:62X F dg(t,v) = contract(t) .

4.t:0°X ,u:6X ,v: X F
s(0s(t,u),v) = s(ds(swap(t), up(v)), s(u, v)) .

The axioms have the following intuitive reading. Axiom 1

Mm) the simultaneous substitution of terms
o™ TV(n) x TV(m)" — TV(m)

We writeaﬁ,?)(t; @) in infix notation and with no indices as
t [4]. Then the three axioms in (14) amount to the following
familiar properties of substitution:

u; tlxr,...,xn] =t

tlug[v], ..., un[?]]

(The last identity is theyntactic substitution lemmacf. [3,
page 27].)

For every object of a cartesian categog the clone of
operations(C, C') on C' as defined after (6) yields another
example of an (abstract) clon&,, = C(C™, C) is then the
set of operations o@' of arity n, ¢; is thei-th projectionr;,
andy,,, is given by composition.

We remark that, just like clones of operations, abstract
clones X (X, u,t) are presheaves, witkk (n) e
X, and with action on renamings: n = m given by

def
X(p)(t) = pm(tstpr, - tpn)-

says that substituting for the generic new variable has the o )
expected result. Axiom 2 says that substituting for a vari- _BOth clones and _subst|tut|on algebrgs, together with the
able that is not in a term does not affect the term. Axiom 3 evident homomorphisms, form categories.

says that substituting the generic new variable in a term is
like performing a contraction. Axiom 4 is a version of the
substitution lemma.

Theorem 3.3 The categories of substitution algebras and
of clones are equivalent.

Theorem 3.2 For every binding signaturg, the structure
(TV, 0, nv ") is a substitution algebra.

Monoids in F. There are several equivalent categorical for-
mulations of clonese.g, asLawvere theorigsasfinitary



monads or asone-object cartesian multicategoriegSee

[13] for an elementary presentation of the connection be-
tween substitution and Lawvere theories.) Here we recall

(Note that every equivalence classX® V' contains a tuple
of the form(¢;1,...,n).)
Monoids in F, with mapsf : (X, u,t) — (X', 1/, )

that clones (and thus also substitution algebras) are equivgiven by morphismg : X — X’ such thatf o . =/ and

alent to monoids inF with respect to a suitable monoidal

structure. This compact and abstract presentation is impor-_,.. _
. o . ObjectV =
tant for reasoning about the structure of substitution and its

interplay with>-algebras. In particular, it allows us to de-
fine the simultaneous substitution of terms by structural re-
cursion.

The monoidal structure we consider is given by a (highly
non-symmetric) tensore' of presheaves with unit/. For
every presheal’, the functor_e Y is left adjoint to the
endofunctorY,_) onF:

XeoeY —7

X072 ()

An explicit description of this tensor is given by the follow-
ing coendformula: for presheaveX andY’,

(X 0 Y)(m) = ([Luen X () x Y (m)")»

={(t;@) |neN, tc X(n),dcY(m)"}
where= is the equivalence relation generated by

(t;ug, ...

?u") ~ (t/;ulla"'au;ﬂ)

iff there exists amap : n = n’ such thatX (p)(t) = ¢’ and
u; = uj,;. For example, forX =Y = A,

($1332;U17u2) ~ ($2333;U,U1,U2)
~ ($1I3;U1,U;U2) ~ (l’le;uz,ul)

and(zix1;u) ~ (x122; u, w), forall uq, ug, andu in A(m).
A monoid X = (X, u,t) in F = (F,e,V) consists of
a presheafX, aunit . : V — X, and amultiplication
u: X ¢ X — X such that the following diagrams com-
mute.
[ ]

X

VeX Leid X

S

(XeX)eX

uoidl

XeX

idec

X<=—XeV
N/

Xe(XeX)

lido;t

XeoeX

X

I I

fou=yu o(fef) forma categorMon(F) with initial

(V,VeV =V, idy). Similarly, one defines
the categoryMon(C) of monoids in any monoidal category
= (C,®,I).

Proposition 3.4 The categories of clones and of monoids
in F = (F,e,V) are equivalent.

A program for simultaneous substitution. Let F' be an
endofunctor on a monoidal closed categ6ry= (C,®, I).

If F has a strengthstxy : F(X)®Y —F(X®Y),
then its free algebras are alg@rametrically free with
respect to®. In particular, if F has a free alge-
bra ¢; : FTI — T1 overl, then there is a unique map
o:TI®TI—TI making the following diagram com-
mutative

FITDH o TI S P(TT o TI) 2% pr1
¢I®idl l%
TI®TI TI

n1®idT
I1&TI

wheren; is the universal arrow corresponding to the free
algebrdl'l. Thatis,o is the unique (parametric) homomor-

phic extension of ® T'1 =71

Proposition 3.5 Under the above

TI = (TI,0,nr)isamonoid inC.

hypotheses,

The adjunction (15) shows th#t = (F, e, V) is closed.
Moreover, endofunctors correspondindfitst-order signa-
tures are strong with respect &in the obvious way; for
instance, for binary operations, the strength mapg; «)
to ((t1; @), (t2;@)). Moving on to binding signatures, one
has to prove) strong. This holds in the categoly/F
of pointed presheaves; indeefiyestricts to an endofunc-
tor on V/F (via up : Id — ¢) and it has a strength
stxy(m): (6X ¢Y)(m) — (X ¢Y)(m) which acts as
follows,

(t; @) > (t; [upy, (@) tint1(newp,)])

The three isomorphisms in the above diagrams act as fol-

lows:
(;0) —>u; (t;1,...

((t;10); 0) = (t; (u1;9), .

where. : V — Y is the point ofY". In particular, the free

>-algebral'V overV has a pointy, ©f var . V—=TV
given by the insertion of the variables (mappintp z;).
The above proposition then yields the following:



Corollary 3.6 Let X be a binding signature and &tV be
its free algebra oveY. Then(TV, o, nv) is a monoid inF,
whereo : TV ¢ TV — TV is the unique homomorphic

extension ofV e TV —= TV,

The aboves is defined bystructural recursion For in-
stance, for the\-calculuso : A ¢ A — A is defined as
follows: for all (¢; @) in (A e A)(m),

om(t; W) = case t of

var(7) >
lam (') = lam( opm41(t'; [up,, (@), var(new,,)] )
app(t1,t2) = app( om(t1; @), om(t2; 1))

Takingold, (i) = i + 1 (1 < i < n) andnew,, = 1 we
get De Bruijn’s definition of substitution for indices, while
old,(i) = i (1 < i < n)andnew,, = n + 1 give the
definition for levels. Cf. [9, 34].)

4. Initial algebra semantics

The key to initial algebra semantics for syntax with vari-
able binding is the definition of a category bihding al-

gebras(consisting of compatible algebra and substitution

of diagram (16) specialise, respectively, to the models and
the uniformity conditiongiven in [2].

We call the unique morphisfi’V.— 93t from the ini-
tial X-monoidTV to aX-monoidMt theinitial algebra se-
manticscorresponding tdt. By definition of morphism in
¥-Mon(F), the initial algebra semantics é®@mpositional
it preserves the variableand it always satisfies treeman-
tic substitution lemm¢{B5, Lemma 4.6].

Consider, for example, the)-calculus. For
M= (M, p, ¢, [abs, ]) to be aXy-monoid the follow-
ing should hold: for all in 9t(n) ande’in M (m)",

fim (abs(d); €) = abs(pm+1(d; [up,y, (€), Ltmt1(newy,)])
P (dy - d2; €) = fi (d1; €) - firm (da; €)
The initial algebra semantics of thecalculus with respect

to such a modeMt is the unique morphisrfL] : A — 9
such that:

[Mz.t] = abs[t]
[z:] = [n(D)]
It [ut, - unl] = e ([E]; [ua], - - - [un])

[tu] = [t - [l

structures) in which the syntactic algebra equipped with the In Particular, one can easily verify that the modél, D)
usual substitution operation is characterised as an initial ob-f0r the A-calculus defined at the end of Section 2 is a
ject. In this section we consider two equivalent formulations >x-monoid and that the corresponding initial algebra se-

of the concept of binding algebraiz. as>-monoids and as

mantics is the desired one.

Y-substitution algebras) and establish the required property  Using substitution algebras rather than monoids we de-

(i.e, that the freex-algebralV with the monoid structure
given by Corollary 3.6 is an initial object in the category of
3-monoids).

For any strong endofunctoF’ on ¢ = (C,®,I),
let F-Mon(C) be the category with objects given by
F-monoids i.e, quadruplesX = (X,u,t,h), where
(X, u, ) is amonoid inC and(X, k) is an F-algebra such
that

FX)oX 2% p(xex) s px

h®idl lh

X®X X

(16)

m

commutes; morphisms are maps ©f which are both
F-algebra and monoid homomorphisms.

Theorem 4.1 Let I, TI, o, n;, and¢; be as in Proposi-
tion 3.5. Therll'I = (T'I, 0,7y, ¢r) is an initial F-monoid.

This result, together with Corollary 3.6, ensures that we can

fine an equivalent category &f-substitution algebrasas
follows: objects are quadruplé$ = (X, ¢, v, h) consisting
of a substitution algebréX, ¢, ) and aX-algebra(X, h)

that are compatible in the sense that the diagram

S(3(X)) x X XX R(6(X) x X) s nx
vx xidl%

SN(X) x X h
§h><idl

§(X)x X X

S

commutes (wherey is the distributive law of (13));
morphisms are maps itF that are bothX-algebra and
substitution-algebra homomorphisms.

Theorem 4.2 The categories of:-substitution algebras
and ofX-monoids inF are equivalent.

take X-monoids as our category of models for a binding Acknowledgements. We are grateful to John Power es-

signatureX; the type of termsI'V is then the initial such
model. We remark that-monoids and the commutativity

pecially for his suggestion of working with algebras over
presheaves.
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