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Abstract

We present a coalgebraic approach to trace equivalence semantics based on lift-
ing behaviour endofunctors for deterministic action to Kleisli categories of monads
for non-deterministic choice. In Set , this gives a category with ordinary transition
systems as objects and with morphisms characterised in terms of a linear notion
of bisimulation. The final object in this category is the canonical abstract model
for trace equivalence and can be obtained by extending the final coalgebra of the
deterministic action behaviour to the Kleisli category of the non-empty powerset
monad. The corresponding final coalgebra semantics is fully abstract with respect
to trace equivalence.

Introduction

The most used models for operational semantics are Plotkin’s (labelled) tran-
sition systems [23]. In recent years, their representation as coalgebras [1] – to-
gether with associated studies on final coalgebras (eg, [3,4,2,28]) – has proved
particularly successful in providing a categorical foundation for much work on
operational semantics, creating a widespread interest for coalgebras in com-
puter science (cf [16,17]).

So far, the representation of transition systems as coalgebras has mostly been
limited to a particular semantics of (non-deterministic) computation, namely
to branching time (BT ) semantics – and the corresponding bisimulation equiv-
alence. Curiously, the simpler linear time (LT ) semantics and the correspond-
ing (completed) trace equivalence, where non-deterministic computations are
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reduced to sets of deterministic computations, have so far escaped a satis-
factory coalgebraic treatment. In this paper we argue that the the key to a
coalgebraic foundation for LT is a distributive law between a behaviour end-
ofunctor for determinism and a monad for non-determinism.

Coalgebras for BT

As mentioned above, the computational interest in coalgebras began with
the observation that transition systems are in 1-1 correspondence with the
coalgebras of a suitable behaviour endofunctor. The corresponding coalgebra
homomorphisms are those functions whose graph is a bisimulation [24] and,
crucially, the final object in the resulting category is the intended model for
BT [1]. Such a final coalgebra can be used for coinductively defining, for ev-
ery transition system, a coalgebra homomorphism which abstracts from the
name of the states while respecting bisimilarity. When the transition system
is relative to a set of programs this is called final coalgebra semantics [28].

In [27], coalgebras are shown to play a prominent, conceptual rôle in the
most successful approach to operational semantics to date, namely structural
operational semantics (SOS ) [23], where the behaviour of programs is given
as a transition system derived from some rules by induction on the structure
of the programs. Over the years, various syntactic rule formats for SOS have
been isolated which guarantee a good behaviour, typically that bisimulation
is a congruence. (See, eg, [6,14,11].) The main contribution of [27] was to
bring to light the mathematics underlying such formats through a suitable
combination of initial algebra [13] and final coalgebra semantics, but, again,
it has so far been restricted to the BT setting. It is our aim to apply it also
to the LT setting, therefore we regard the present paper, with its coalgebraic
characterization of LT, as a first step in that direction.

Coalgebras for LT

Our coalgebraic treatment of LT starts with a decomposition of the behaviour
for BT into a behaviour B for deterministic action and a monad P for non-
deterministic choice. Lifting B to the Kleisli category of P gives us a new
behaviour B whose coalgebras are the same as those for BT, but whose ho-
momorphisms are very different, involving a distributive law between action
and choice. We characterise these homomorphisms in terms of a linear notion
of bisimulation. This is ordinary bisimulation between a linearization of the
transition systems into deterministic transition systems; such a linearization
corresponds to the view of the Kleisli category of the monad P as a category
of free semi-lattices.

The crucial observation is that the intended model for LT is a final coalgebra
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of our lifted behaviour B. Moreover, this final coalgebra is obtained by extend-
ing the intended model for deterministic action, a final B-coalgebra, along the
canonical functor into the Kleisli category. The associated final coalgebra se-
mantics makes use of the distributive law of B over P to unfold and abstract
non-deterministic computations in a linear way, identifying two programs if
and only if they are trace equivalent. Thus it is fully abstract with respect to
trace equivalence, rather than with respect to the finer notion of linear bisim-
ulation which is used to characterize the B-coalgebra homomorphisms. This
is because in the final B-coalgebra trace equivalence and linear bisimulation
coincide.

The above can all be done using coalgebras over sets, but our final coalgebra
theorem depends on the particular behaviour chosen and fails for finite and
countable forms of non-determinism. In order to deal also with these important
cases, we then move to an algebraically compact, order enriched setting, where
we are able to state a much more general result for final coalgebras of liftings
of endofunctors to Kleisli category.

Previous and Related Work

Previous coalgebraic work on LT [26,24,29] was based on interpreting the be-
haviourB for deterministic action in categories of semi-lattices, ie in Eilenberg-
Moore rather than in Kleisli categories of monads for non-determinism. (Cf
[15].) This yielded the same semantics as here, but the associated category of
coalgebras contained extra objects not corresponding to transition systems;
moreover, a characterisation of the coalgebra homomorphisms was missing.

Linearized transition systems were already used in [7] for applying the open
maps approach of [19] to trace equivalence. One of the contributions of the
present paper is to show that such a linearization stems from the distributive
law between B and P .

(For more details on the BT and LT models of non-determinism see early work
on concurrency, such as, eg, [8].)

Contents In Section 1 we recall some basic facts about transition systems
and coalgebras. In Section 2 we define the category of coalgebras of the end-
ofunctor B obtained by lifting the deterministic behaviour endofunctor B to
the Kleisli category of the non-empty powerset monad P and we discuss the
notion of linear bisimulation. In Section 3 we prove that the final B-coalgebra
lifts to the final coalgebra of the lifted endofunctor B. In Section 4 we deal
with finitary non-determinism by moving to an order enriched setting.
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1 Background and Notation

A coalgebra 〈X, h〉 of an endofunctor H on a category C is given by an object
X and a map h : X // H(X) of C; we shall often refer to a coalgebra 〈X, h〉
simply by its carrier X or by its structure h : X // H(X). The H-coalgebras
form a category H-Coalg with morphisms f : 〈X, h〉 // 〈X ′, h′〉 given by maps
f : X // X ′ in C such that h′ ◦ f = H(f) ◦ h. (Cf [18].)

We write I d for the identity endofunctor and we denote by

P = 〈P , {−},⋃〉
the non-empty powerset monad, mapping a set X to the set PX of its non-
empty subsets, having as unit the singleton map {−} : I d // P and as
multiplication the big union operation

⋃
: P2 // P .

We write A · X for the copower of A copies of an object X, ina for the a-th
injection X // A ·X, and a ·x for its application to an element x of X. In the
sequel we shall often omit writing the left and right injections inl and inr in
a coproduct when clear from the context. The notation a ·w will also be used
for the concatenation of a with a word w over a set A.

Recall that a transition system X = 〈X,A, //〉 consists of a set X of states, a
set A of actions or labels, and a transition relation // ⊆ X × A × X whose
elements are usually written as x

a
// x′ [23]. In these transition systems a state

x terminates when it cannot make any transitions. In the sequel, for technical
reasons explained in Remark 3.2, we shall consider the more general case of
transition systems X = 〈X,A, //, ↓〉 with an explicit termination predicate ‘↓’,
where transitions and termination can coexist in the sense that both x

a
// x′

and x ↓ can hold. Without loss of generality, we shall consider a fixed set of
actions A.

A transition system X is deterministic if for all states x in X and actions a
in A there exists at most one state x′ such that x

a
// x′. Every transition sys-

tem X = 〈X,A, //, ↓〉 can be linearized into a deterministic transition system
PX = 〈PX,A,(, ↓〉 with states given by non-empty sets α of states of X;
the transition relation and the termination predicate of PX are defined using
those of X as follows:

α
a
( α′ ks +3 α′ =

⋃
x∈α {x′ | x

a
// x′}

α ↓ ks +3 ∃x ∈ α. x ↓

(Cf [7].)

From a coalgebraic point of view, it is convenient to consider also a stronger
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form of deterministic transition systems X where the transition relation and
the termination predicate form a function X // 1 + A × X. We shall call
them strongly deterministic transition systems. Since in Set the isomorphism
A×X ∼= A ·X holds, the strongly deterministic transition systems are in 1-1
correspondence with coalgebras of the following deterministic-action behaviour
endofunctor on Set :

B = 1 + A · I d . (1)

Indeed, given a B-coalgebra structure h : X // 1 + A ·X, one can set

x
a

// x′ ks +3 h(x) = a · x′

x ↓ ks +3 h(x) = ∗

and vice versa, where ∗ denotes the only element of the singleton set 1. The
following (folklore) proposition characterizes the final object in the category
of B-coalgebras.

Proposition 1.1 The set A∞ ∼= 1 +A ·A∞ of finite and infinite words on A
is a final B-coalgebra. 2

Therefore, for every B-coalgebra X = 〈X, h〉 the unique coalgebra homomor-
phism h[ : X // A∞ is coinductively defined as follows: for every x in X,

h[(x) =

 a · h
[(x′) if h(x) = a · x′

∗ if h(x) = ∗
(2)

The above final coalgebra is the intended model for the deterministic-action
behaviour. When the coalgebra X = 〈X, h〉 corresponds to a strongly deter-
ministic transition system P = 〈P,A, //, ↓〉 for a set P of programs one usually
writes [[−]] : P // A∞ instead of h[; hence

[[p]] =

 a · [[p
′]] if p

a
// p′

∗ if p ↓
(3)

for all programs p in P . This (final coalgebra) semantics unfolds computations
and abstracts from the name of the states involved.

Next, consider the behaviour endofunctor for BT

B† = PB = P(1 + A× I d) . (4)
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Its coalgebras h : X // P(1+A×X) are in 1-1 correspondence with transition
systems:

x
a

// x′ ks +3 a · x′ ∈ h(x)

x ↓ ks +3 ∗ ∈ h(x)

(5)

If we replace P by its finitary version, the non-empty finite powerset, this cor-
respondence cuts down to a correspondence with finitely branching transition
systems, where each state can perform at most a finite set of transitions. Also,
transition systems with a set E of predicates correspond to coalgebras of the
endofunctor obtained replacing 1 by E in (4).

Next, we are going to lift the behaviour B to an endofunctor B on the Kleisli
category of the monad P ; a B-coalgebra will be the same as a B†-coalgebra,
but the coalgebra homomorphisms will be different.

2 Transition systems as coalgebras in a Kleisli category

We write Kl(T ) for the Kleisli category of a monad T = 〈T, η, µ〉 on C and

J : C // Kl(T ) (6)

for the canonical functor associated to it. The latter is the identity on objects
and precomposes maps with the unit: (f : X // Y ) � // (ηY ◦ f : X // TY ).

An endofunctor H on C lifts to an endofunctor H on Kl(T ) if J◦H = H◦J . As
shown in the following proposition, such liftings are equivalent to distributive
laws [5] of H over T = 〈T, η, µ〉, ie natural transformations λ : HT +3 TH
such that

λ ◦Hη = ηH and λ ◦Hµ = µH ◦ Tλ ◦ λT .

Proposition 2.1 (Cf [21].) For any category C, any monad T on C and any
endofunctor H on C, to give a lifting H of H to Kl(T ) is equivalent to giving
a distributive law of H over T .

Proof. Given the distributive law, the action of H on objects of Kl(T ) is
determined. For homs, H is given by applying H and then composing with
the distributive law. For the converse construction, consider the behaviour of
the lifting H on the counit ε : T +3 I d of the Kleisli adjunction. It is routine
to verify that these operations are mutually inverse. 2

6



Proposition 2.2 Let T = 〈T, η, µ〉 be a monad on a category C.

(1) If C has binary products, then for every object E in C the natural trans-
formation

[T (inl) ◦ ηE, T (inr)] : E + T +3 T (E + I d)

is a distributive law of the endofunctor E + I d over the monad T .
(2) If C has A-copowers, for a set A, then the A-copairing of the maps

T (ina) : T I d +3 T (A · I d)

for a in A, is a distributive law of the endofunctor A · I d over the monad
T .

Proof. Decompose the relevant diagrams using the injections and then use the
naturality of the operations of the monad. 2

We can then apply the above proposition to T = P and E = 1 to obtain a
distributive law

λ : 1 + A · P +3 P(1 + A · I d) (7)

mapping ∗ to {∗} and a · α to {a · x | x ∈ α}.

Corollary 2.3 The endofunctor B = 1 +A · I d on Set lifts to an endofunctor
B on Kl(P). 2

The lifted endofunctor B acts on objects as B, while its action on morphisms
f : X // PY is given by

B(f) = λY ◦B(f) : BX // PBY .

2.1 Linear Time Coalgebras

Clearly, the B-coalgebras are the same as coalgebras of the branching time
behaviour B†. The interest lies in the coalgebra homomorphisms, which are
very different from the B†-coalgebras homomorphisms. Indeed, a B-coalgebra
homomorphism f : 〈X, h〉 // 〈Y, k〉 is a function f : X // PY such that the
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diagram

X
f

//

h

��

PY
Pk
��

Y

k
��

P2BY⋃
��

PBY

PBX PBf
//PBPY Pλ

//P2BY ⋃ //PBY

commutes. This commutativity can be characterised in terms of transition
systems as follows.

Let X and Y be two transition systems and PY be the linearization of Y
as defined in Section 1. Then a function f : X // PY is a B-coalgebra
homomorphism if and only if for all x in X and a in A the following two
clauses hold:

• f(x)
a
( β ks +3 β =

⋃ {f(x′) | ∃x′. x a
// x′} ,

• f(x) ↓ ks +3 x ↓ .

An equivalent characterisation, wholly in terms of the linearized transition
systems, can be obtained by using the following linear transposition of f :

f ] : PX // PY f ](α)
def
=

⋃
x∈α

f(x) . (8)

Then a function f : X // PY is a B-coalgebra homomorphism if and only if
for all α in PX

• f ](α)
a
( β ks +3 α

a
( α′ ∧ β = f ](α′) ,

• f ](α) ↓ ks +3 α ↓ .

Let Casl be the category of complete affine semi-lattices (ie semi-lattices with
joins of arbitrary non-empty sets of elements) and join-preserving maps. The
monad P arises from the familiar adjunction

F a U : Set // Casl .

This allows us to regard Kl(P) as the full subcategory of free objects in Casl
and underlies both the linear transposition of (8) and the alternative presen-
tation of B-coalgebra homomorphisms given above.

Since left adjoint preserve colimits and since the above left adjoint F preserves
the final object F1 ∼= 1, we can extend the structure of the deterministic-action
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behaviour B along F and obtain the endofunctor

B̃
def
= 1 + A · I d : Casl // Casl

with the property that FB ∼= B̃F . The restriction of this endofunctor B̃ to
the subcategory of finite affine semi-lattices is used in previous coalgebraic
approaches to LT [26,24,29].

The following proposition relates B̃ to our lifted behaviour B.

Proposition 2.4 Let K : Kl(P) // Casl be the canonical comparison func-
tor. Then B̃ extends B along K in the sense that:

KB ∼= B̃K .

2

Corollary 2.5 Given two B-coalgebras 〈X, h〉 and 〈Y, k〉, a function f : X //

PY is a B-coalgebra homomorphism if and only if the diagram

FX
f]

//

h]

��

FY

k]

��

B̃FX
B̃f]

// B̃FY

commutes. 2

Therefore, B-Coalg is a full subcategory of B̃-Coalg .

2.2 Linear Bisimulation

A function between two transition systems is a B†-coalgebra homomorphism
if and only if its graph is a (strong) bisimulation. (See, eg, [24].) Here we show
that a similar characterisation holds for the B-coalgebra homomorphisms. The
difference between the two is that the latter is with respect to the linearization
of the transition systems.

Definition 2.6 A relation R ⊆ PX ×PY is linear if it is a subsemilattice of
PX × PY , ie for every set I, if αiRβi for all i in I then (

⋃
αi)R(

⋃
βi).

A relation R is a linear bisimulation between two transition systems X and Y
if it is an ordinary bisimulation between the corresponding linearizations PX
and PY and, moreover, it is linear. That is, R ⊆ PX×PY is a linear relation
such that for all non-empty subsets α of X and β of Y , αRβ implies that:
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(1) α
a
( α′ +3 β

a
( β′ ∧ α′Rβ ′ ,

(2) β
a
( β′ +3 α

a
( α′ ∧ α′Rβ ′ ,

(3) α ↓ ks +3 β ↓ . 2

Note that a linear bisimulation gives a span of homomorphisms between the
B-coalgebras corresponding to the transition systems, hence it is a coalgebraic
B-bisimulation in the sense of [27].

Definition 2.7 Given two sets X and Y , the multigraph of a function f :
X // PY is the graph Rf of its linear transpose f ] : PX // PY :

Rf
def
= {(α, β) ∈ PX × PY | β = f ](α)} .

2

Note that the linearity of f ] implies that Rf is linear.

The following proposition can be regarded as the coalgebraic equivalent of [7,
Lemma 11].

Proposition 2.8 A function f : X // PY is a B-coalgebra homomorphism
if and only if its multigraph Rf is a linear bisimulation.

Proof. Assume f is a coalgebra homomorphism. Then f ](α)
a
( β if and only

if α
a
( α′ and β = f ](α′) which ensures that Rf verifies the first two clauses

of the definition of linear bisimulation. The third clause is trivial.

Conversely, assume that Rf is a linear bisimulation. Then α
a
( α′ implies that

f ](α)
a
( β and α′Rfβ. This implies that β = f ](α′). Similarly, if f ](α)

a
( β

then necessarily α
a
( α′ and β = f ](α′). Finally, the clause about termination

is trivial. 2

3 Final coalgebra semantics for linear time

The intended model for LT is the set P(A∞) of non-empty sets of finite and in-
finite words over A. Given a transition system for a set P of non-deterministic
programs, one would like to define a semantic mapping

[[−]] : P // P(A∞) (9)
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such that

[[p]] =


{a · w | p a

// p′, w ∈ [[p′]]} ∪ {∗} if p ↓

{a · w | p a
// p′, w ∈ [[p′]]} otherwise

(10)

for every program p in P . The following theorem provides a coalgebraic foun-
dation for such a coinductive definition.

Theorem 3.1 The final B-coalgebra extends along the canonical functor J :
Set // Kl(P) to the final B-coalgebra.

Proof. The claim is that

A∞ ∼= 1 + A · A∞ {−}// P(A∞)

is a final B-coalgebra, ie for every B-coalgebra h : X // PBX there is a
unique B-coalgebra homomorphism from X to P(A∞). This amounts to the
existence of a unique h[ : X // P(A∞) such that the following diagram
commutes, where we have used the monad law

⋃ ◦P{−} = idP to simplify
the right hand side of the rectangle.

X
h[ //

h
��

PA∞
∼=
��

A∞

∼=
��

PBX PBh[
//PBPA∞ Pλ

//P2BA∞ ⋃ //PBA∞ BA∞

Equationally, for every x in X,

h[(x) =


{a · w | a · x′ ∈ h(x), w ∈ h[(x′)} ∪ {∗} if ∗ ∈ h(x)

{a · w | a · x′ ∈ h(x), w ∈ h[(x′)} otherwise

(11)

Since h[(x) cannot be empty by assumption, this uniquely determines the set
of traces (ie words) that h[(x) must be. 2

Note that this result generalizes to the case where we use an arbitrary set E
instead of 1 in B.

Remark 3.2 We can now explain why we have used transition systems with
an explicit termination predicate instead of the more traditional ones with no
such predicate. The latter are in 1-1 correspondence with the coalgebras of
the behaviour endofunctor

B‡ = P0(A · I d)
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where P0(X) is the set of all subsets of X, thus including the empty set. If we
decompose the behaviour B‡ into A · I d and P0 we still have a distributive law
between the two components, but the above theorem would not hold because
of the empty set. Moreover, the final coalgebra for A · I d does not contain the
finite words on A. 2

When 〈X, h〉 corresponds to a transition system for a set P of programs we
have that h[ is the semantic mapping [[−]] in (9). Such semantics identifies
to programs if and only if they are trace equivalent; in general, given two
coalgebras h : X // PBX and k : Y // PBY , we call two sets α ∈ PX and
β ∈ PY trace equivalent if

⋃
x∈α

h[(x) =
⋃
y∈β

k[(y) .

By taking α and β to be the singletons {x} and {y} we recover the notion of
trace equivalence between two states x and y. However, since the image of a
state x under a B-coalgebra homomorphism f is a set f(x) of states rather
than a single state, it is natural to consider trace equivalence between sets of
states.

Corollary 3.3 If f : X // PY is a B-coalgebra homomorphism then, for all
x in X, {x} is trace equivalent to f(x).

Proof. If f is a coalgebra homomorphism then the unique coalgebra homomor-
phism from X to PA∞ factorizes through f , hence:

h[(x) =
⋃

y∈f(x)

k[(y) .

2

Note that the converse is not true:

Counterexample 3.4 Consider the transition systems

X = {x a
// x′ ↓} and Y = {y a

// y′ ↓, y a
// y′′ ↓}

and the function f : X // PY with values f(x) = {y}, f(x′) = {y′}. Then
{x} and {x′} are trace equivalent to f(x) and f(x′) respectively, but f is not

a coalgebra homomorphism since f(x)
a
( {y′, y′′} 6= f(x′). 2

However:

Corollary 3.5 In the final B-coalgebra equality, trace equivalence, and linear
bisimulation coincide. 2
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4 Finite Non-Determinism

Theorem 3.1 can be routinely generalized a little: it holds not only for P as
we have defined it but, given any uncountable cardinal κ (and assuming the
continuum hypothesis) also for the monad taking a set to the set of non-empty
subsets of cardinality no greater than κ. However, we have:

Counterexample 4.1 If one replaces P by the finite, non-empty powerset
monad Pf in the above, the final B-coalgebra does not extend to a final B-
coalgebra. The reason is that one routinely follows the proof of the theorem,
then discovers that one may have more than a finite set of traces. More specif-
ically, taking A to be a two element set, say A = {0, 1}, it follows that h[(x)
could be any stream of 0’s and 1’s, and there are uncountably many such. 2

As a consequence there are probably no reasonable conditions on a finitary
monad T on Set such that a final B-coalgebra lifts to Kl(T ): the example
of the finitary monad given by freely adding a binary operator subject to
associativity, commutativity, and idempotence laws is a leading example.

This situation is unattractive for several reasons. In particular, finitely branch-
ing transition systems arise most naturally in practice, so a theory that ex-
cludes them is very narrow. We address that by passing from the category Set
to algebraically compact enriched categories, for which the leading example
is the ω-cpo enriched category of ω-cpos with least element, and structure
preserving maps.

Bipolar Endofunctors

Let V be a symmetric monoidal closed category. A V-endofunctor is called
bipolar or algebraically compact if it has both an initial algebra and a final
coalgebra such that the canonical map from the former to the latter is an
isomorphism. (See [12].) A V-category is called bipolar if every V-endofunctor
on it is bipolar. Let H-Alg be the category of algebras HX // X of a V-
endofunctor H.

The definition of lifting and distributive law and the relationship between them
extends from categories as in Proposition 2.1 to V-categories as we shall study
in this section. We use the same notation as that of Section 2; in particular,
H denotes the lifting of a V-endofunctor H.

Proposition 4.2 For every lifting H of a V-endofunctor H, the Kleisli ad-
junction lifts to an adjunction between H-Alg and H-Alg.
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Proof. This can be proved directly by the universal property of the construction
K-Alg applied to each of H and H. It holds in any 2-category that admits the
construction of algebras, in particular in any 2-category of the form V-Cat for
symmetric monoidal closed complete V . 2

Corollary 4.3 Let C be a V-category, let T be a V-monad on C and let H
be a bipolar V-endofunctor on C which lifts to a V-endofunctor H on Kl(T ).
If H is bipolar then a final H-coalgebra extends along the canonical functor
J : C // Kl(T ) to a final H-coalgebra.

Proof. A final H-coalgebra is, by bipolarity, an initial H-algebra. By Proposi-
tion 4.2, it is sent to an initial H-algebra, which, in turn, is a final H-coalgebra.
2

Note that the above proof is fundamentally different to our proof of the previ-
ous section: the category Set is not bipolar, and in particular, the endofunctor
1+A · I d does not satisfy the bipolarity condition either, as the initial algebra
is given by the finite words A∗ on A, while the final coalgebra A∞ also contains
infinite words.

Let Cppo⊥ be the category of (ω-)cpos with a least element and strict con-
tinuous maps, and with pointwise partial order on the homs. Cppo⊥ is a full
reflective subcategory of Cpo, the symmetric monoidal closed category of cpos
and continuous functions. In the sequel, the lifting functor (−)⊥ will denote
both the left adjoint, the induced monad (on Cpo) and the induced comonad
(on Cppo⊥) of the reflection.

Since Cppo⊥ is a bipolar Cpo-category [10] we can try to apply Theorem 4.3
to its endofunctors, and to a Cpo-enriched version of B in particular. There
are several endofunctors which one can associate to (strong) deterministic
behaviour depending on the use that one makes of the lifting endofunctor.
The following proposition takes care of this extra data.

Proposition 4.4 Let up be the unit of the lifting monad (−)⊥. For every
monad T on Cppo⊥ the map

(T I d)⊥ // T (I d⊥)

obtained by transposing

T (up) : T I d // T (I d⊥)

across the reflection is a distributive law of (−)⊥ over T . 2

Our main theorem does not hold only in Cppo⊥, or even only for bipolar
Cpo-categories. More generally, we consider a bipolar Cpo-endofunctor on a
Cpo-category with some limiting and colimiting properties. The crucial result
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we use here is the following, where CE denotes the subcategory of a Cpo-
category C, with the same objects and with maps given by the embeddings in
C, ie maps f with a right adjoint retract fR.

Theorem 4.5 (Limit/Colimit Coincidence [25]) In a Cpo-category C,
given an ω-chain Γ : ω // C and a cone γ : Γ +3 C for it, the following are
equivalent:

(1) γ is a colimiting cone.
(2) γ is a cone in CE with

∨
γn ◦ (γn)R = idC .

(3) γ is Cpo-colimiting in C.
(4) γR is a limiting cone.
(5) γR is Cpo-limiting in C.

Proof. See [10, Thm. 5.4.5]. 2

Using this result we deduce:

Theorem 4.6 Let H be a Cpo-endofunctor on a Cpo-category C with a zero
object and colimits of ω-chains. Assume that for every object X in C the
composite morphism X // 1 = 0 // X is the least element of C(X,X). Let
T be a Cpo-monad on C such that the canonical functor J : C // Kl(T )
preserves the zero object. If H is bipolar and lifts to a Cpo-endofunctor H on
Kl(T ), then H is bipolar.

Proof. As H is Cpo-enriched, an initial H-algebra may be given as a colimit of
an ω-chain. By our assumptions that ω-chain lives in CE, hence, by the limit-
colimit coincidence, it may also be given equationally by use of the adjoints in
the maps of the colimiting diagram. The data and equations are preserved by
any Cpo-endofunctor, so in particular by T . It follows that the presentation of
the initial H-algebra as a colimit is sent by J to a presentation of the initial
H-algebra as a colimit. Moreover, the assumption that J preserves the zero
object implies that also the presentation of the final H-coalgebra as a limit
is sent by J to a presentation of the final H-coalgebra as a limit. Thus the
limit-colimit coincidence yields the initial H-algebra, the final H-coalgebra,
and the isomorphism between them. 2

The equivalent in Cppo⊥ of the non-empty finite powerset is the convex pow-
erdomain. This satisfies the conditions of the above theorem, and so do its
two variations, the lower and the upper powerdomains. (Cf [22].)
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5 Conclusions and Future Work

We have established a coalgebraic foundation for a linear form of bisimulation
as needed in linear time semantics. From here we would like to move in three
directions. Firstly, we would like to consolidate our results by exploring in
more detail the relationship between linear bisimulation, trace equivalence,
the coalgebraic equivalence corresponding to our behaviour endofunctor, and
the work on open maps in [7].

Secondly, we would like to give an explicit description of the various final
coalgebra semantics arising in the Cpo-enriched setting, understanding the
effect that the choice of powerdomain has on the semantics.

Thirdly, we want to fit the categorical theory of structural operational seman-
tics of [27] in the Kleisli setting. Preliminary results suggest that a syntactic
format of structural operational rules for our behaviour B would satisfy the
expected linearity constraint that each premise in a rule can only be used once.
This is a consequence of the use of a (lifted) deterministic-action behaviour
rather than the usual non-deterministic behaviour.

We have not discussed here the possibility of working in categories of complete
metric spaces. There, we expect that working with the closed and compact
(non-empty) metric powerdomains should yield the metric version [9] of the
semantics in (10) and its finitary restriction respectively.

On a more speculative level, the idea of having a basic notion of observation
given by the endofunctor B and then adding non-determinism by lifting B
to the Kleisli category of a monad for non-determinism seems to bring the
coalgebraic approach to operational semantics a little closer to Moggi’s work
on computational monads [20].

Acknowledgements. Discussions with Julian Rathke and with Gordon Plot-
kin, Alex Simpson and Martin Wehr are gratefully acknowledged.
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