Algebraic & Coalgebraic Methods in Semantics

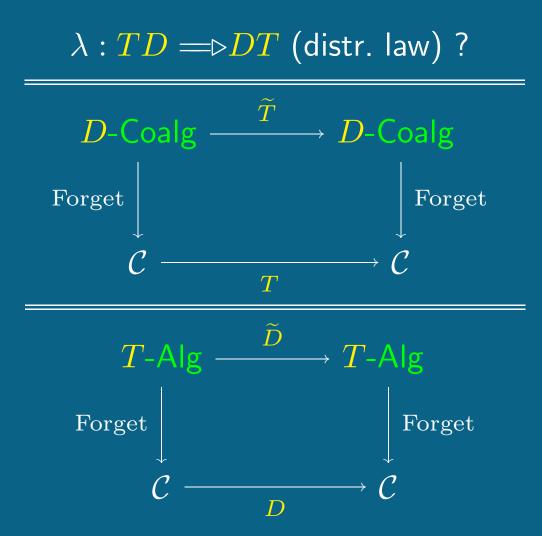
Lecture V

Natural Operational Semantics

Daniele Turi

5th June 2000

• How do we define:



$$ullet$$
 $\Sigma \leadsto T = \langle T, \eta, \mu
angle$ Σ -Alg \cong T -Alg

- * structural induction
- $B \leadsto D = \langle D, \varepsilon, \delta \rangle$ B-Coalg $\cong D$ -Coalg
 - * behavioural coinduction

Structural Operational Semantics

Operational semantics by *structural induction*?

- Plotkin's SOS (1981)
 - * Predominant approach to operational semantics

Example: merge operator $x_1 | x_2$

Structure:

operator

Behaviour of $x_1 | x_2$: defined in terms of the behaviour of the components x_1 and x_2

A simple Process Algebra

- $t := x \mid \text{nil} \mid a.t \mid t \mid t$
 - $\star \quad \Sigma X = 1 + A \cdot X + X^2$
- Rules \mathcal{R} : $a.x \stackrel{a}{\rightarrow} x$ $x_1 \stackrel{a}{\rightarrow} x_1'$ $x_2 \stackrel{a}{\rightarrow} x_2'$ $x_2 \stackrel{a}{\rightarrow} x_2'$ $x_1 || x_2 \stackrel{a}{\rightarrow} x_1' || x_2$ $x_1 || x_2 \stackrel{a}{\rightarrow} x_1 || x_2'$
- Behaviour: $BX = (\mathcal{P}_{\mathbf{fi}}X)^A$ (for each $a \in A$ only a finite choice)
 - ★ B-coalgebras: image finite transition systems

$$* \quad X \xrightarrow{k} (\mathcal{P}_{\mathbf{f}}X)^{A} \qquad x' \in k(x)(a) \iff x \xrightarrow{a} x'$$

$$\llbracket \mathcal{R} \rrbracket_X : \Sigma(X \times BX) \longrightarrow BTX$$

Modelling the Rules thru' Σ and B

$$t ::= \mathbf{x} \mid \text{nil} \mid a.t \mid t \mid t$$

$$\Sigma X = 1 + A \cdot X + X^2 \qquad BX = (\mathcal{P}_{\text{fi}}X)^A$$

$$\mathbb{R} X : \Sigma (X \times BX) \longrightarrow BTX$$

$$[\![\mathcal{R}]\!]_X : 1 + A \cdot (X \times (\mathcal{P}_{\mathrm{fi}}X)^A) + (X \times (\mathcal{P}_{\mathrm{fi}}X)^A X)^2 \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$$

- lacksquare lac
- $\bullet \quad \llbracket a. \rrbracket_X : A \cdot (X \times (\mathcal{P}_{\mathrm{fi}}X)^A) \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$
- $\llbracket \parallel \rrbracket_X : (X \times (\mathcal{P}_{\mathrm{fi}}X)^A)^2 \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$

$$\llbracket \mathsf{nil} \rrbracket_X : 1 \longrightarrow (\mathcal{P}_{\mathrm{fi}} TX)^A$$

• no rule $\llbracket \mathsf{nil} \rrbracket_X = a \mapsto \emptyset$

$$\llbracket a. \rrbracket_X : A \cdot (X \times (\mathcal{P}_{\mathrm{fi}}X)^A) \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$$

• $a.x \stackrel{a}{\rightarrow} x$ [c.]_X $(x,\beta) = a \mapsto \begin{cases} \{x\} & \text{if } a = c \\ \emptyset & \text{otherwise} \end{cases}$

$$\| \|_X : (X \times (\mathcal{P}_{\mathrm{fi}}X)^A)^2 \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$$

$$(x_1, \beta_1) \llbracket \| \ \rrbracket_X(x_2, \beta_2) = a \mapsto \begin{cases} x_1' | x_2 | x_1' \in \beta_1(a) \} \\ \cup \\ \{x_1 | x_2' | x_2' \in \beta_2(a) \} \end{cases}$$

Naturality

$$[\![\mathcal{R}]\!]_X: 1 + A \cdot (X \times (\mathcal{P}_{\mathrm{fl}}X)^A) + (X \times (\mathcal{P}_{\mathrm{fl}}X)^A)^2 \longrightarrow (\mathcal{P}_{\mathrm{fl}}TX)^A$$

- ullet natural in X
 - \star $f: \overline{X} \longrightarrow Y \equiv renaming$ (possibly identifying variables)
 - st first *renaming* and then *applying* $\mathcal R$

first applying R and then renaming

GSOS

Which rules can we model as a transformation

$$\sum (X \times (\mathcal{P}_{fi}X)^{A}) \longrightarrow (\mathcal{P}_{fi}TX)^{A} ?$$

$$\{x_{i} \stackrel{a}{\to} y_{ij}^{a}\}_{1 \leq j \leq m_{i}^{a}}^{1 \leq i \leq n, a \in A_{i}} \{x_{i} \not\to \}_{b \in B_{i}}^{1 \leq i \leq n}$$

$$\sigma(x_{1}, \dots, x_{n}) \stackrel{c}{\to} t$$

What about *naturality* in X?

- \star x_i and y_{ij}^a all distinct
- \star x_i and y_{ij}^a the only variables occurring in t

GSOS rules [Bloom, Istrail, Meyer 88]!

Theorem

(A finite)

There is a correspondence between transformations of type

$$\Sigma(X \times (\mathcal{P}_{\mathrm{fi}}X)^A) \longrightarrow (\mathcal{P}_{\mathrm{fi}}TX)^A$$

natural in X

and

image finite sets of GSOS rules for Σ

(over a fixed denumerably infinite set of variables V).

This correspondence is 1-1 up to equivalence of sets of rules.

From Rules to Distributive Laws

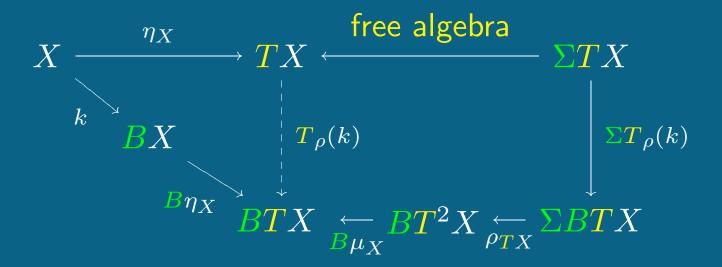
$$ho_X: \Sigma(X imes BX) \longrightarrow BTX$$
 $B ext{-Coalg} \longrightarrow B ext{-Coalg}$
Forget
 $\mathcal{C} \longrightarrow \mathcal{C}$

$$X \xrightarrow{k} BX \qquad \mapsto \qquad TX \xrightarrow{T_{\rho}(k)} BTX$$

If $\rho_X : \Sigma BX \longrightarrow BTX$

• Derive a Σ -algebra structure for BTX!

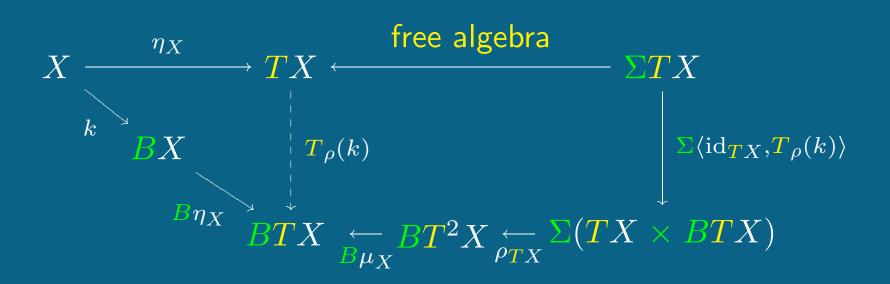
$$\star \quad \Sigma BTX \stackrel{\rho_{TX}}{\longrightarrow} BT^2X \stackrel{B\mu_X}{\longrightarrow} BTX$$



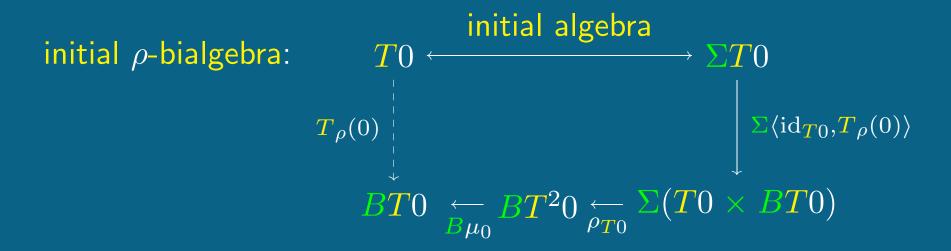
LHS: conservative extension (preservation of the behaviour of variables)

$$x' \in k(x)(a) \iff x' \in T_{\rho}(k)(x)(a)$$
 $x \stackrel{a}{\rightarrow} x' \text{ in } k \iff x \stackrel{a}{\rightarrow} x' \text{ in } T_{\rho}(k)$

Structural Recursion with accumulators:



• ρ -bialgebras \equiv Alex Simpson's GSOS models [LICS 95]

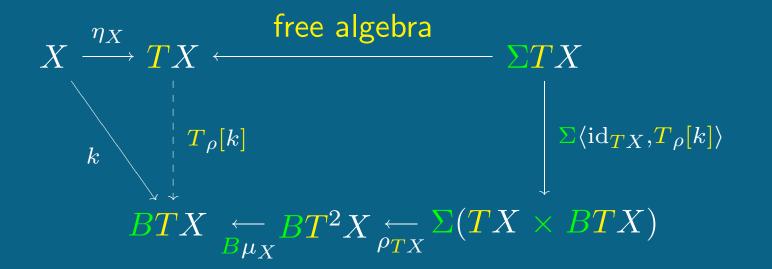


 \star In the transition system corresponding to $T_{\rho}(0)$:

Superunique semantics!

Guarded Recursive Programs

$$x = a.(x||y)$$
 $X \stackrel{\text{def}}{=} \{x, y\}$ $k: X \longrightarrow (\mathcal{P}_{fi}TX)^A$
 $y = b.y$ $k(x)(a) = \{x||y\}$
 $k(y)(b) = \{y\}$



More details in §5 of my thesis and in my CTCS 97 paper

Dual Case: "Denotational" Rules

What is the dual of the operational rules

$$\Sigma(X \times BX) \longrightarrow BTX?$$

$$\Sigma DX \longrightarrow B (X + \Sigma X)$$

- These are the tree rules (Fokkink & van Glabbeek 96)
- See also §10 of my thesis

Conclusions

- Rule Formats (De Simone, GSOS, tyft/tyxt, tree)
 - ★ bisimulation is a conguence
 - ★ specific, entangled in syntax
- Natural Rules
 - ★ Operational & Denotational!
 - * superunique semantics
 - * coalgebraic bisimulation is a congruence
 - \star abstract, modular, conceptual
 - * mathematical account of well-behaved operational semantics

For more examples (involving modularity and categories other than Set) see:

my CTCS 97 paper

Back to:

Lecture III

Lecture IV

Beginning of this Lecture