
Semantics of Name and Value Passing

Marcelo Fiore∗

Computer Laboratory
University of Cambridge

Daniele Turi†

LFCS, Division of Informatics
University of Edinburgh

Abstract

We provide a semantic framework for (first order)
message-passing process calculi by combining categorical
theories of abstract syntax with binding and operational
semantics. In particular, we obtain abstract rule formats
for name and value passing with both late and early inter-
pretations. These formats induce an initial-algebra/final-
coalgebra semantics that is compositional, respects substi-
tution, and is fully abstract for late and early congruence.
We exemplify the theory with theπ-calculus and value-
passing CCS.

∗Research supported by an EPSRC Advanced Research Fellowship.
†Research supported by EPSRC grant R34723.

Contents

1. Basic syntactic and semantic structures 2
1.1. Expressions 2

Syntax . 2
Semantics 3

1.2. Presheaves 3
Syntax . 3
Semantics 3
Syntax with binding 4

1.3. Substitution 4
Clones . 4
Monoids 4

1.4. Categorical operational semantics 5

2. Message passing bisimulations 5
2.1. Value passing 5

Late bisimulation 5
Early bisimulation 6

2.2. Name passing 6
Late bisimulation 6
Early bisimulation 7

3 Semantics of name passing 8
Late and early congruences 8
Categorical rules 9

4. Semantics of value passing 9
Actions . 9
Syntax . 10
Semantics . 10
Late and early congruences 10
Categorical rules 11

Proc. LICS 2001c©IEEE Computer Society Press.

Introduction

A complete description of the semantics of a program-
ming language requires both an operational semantics de-
scribing the behaviour of programs in terms of elementary
steps and a more abstract denotational semantics describing
the meaning of a program in terms of its components [32].
In the study of process calculi for concurrency (such as
CCS [25], CSP [19], and ACP [4]) less emphasis is placed
on denotational models and more on notions of behavioural
equivalence, and on bisimulation equivalence [25] in partic-
ular. Still, for the operational semantics to be well-behaved,
one requires that the chosen notion of behavioural equiva-
lence be a congruence with respect to the constructs of the
language.

To establish congruence results for behavioural equiva-
lences it is convenient to define the operational semantics in
terms of structural rules, i.e., Plotkin’s SOS rules [29]. Cor-
respondingly, much work has been done in order to iden-
tify SOS rule formats [10, 6, 17, 14] for which (strong)
bisimulation is a congruence – the most well-known be-
ing GSOS [6]. However, such formats are hard to find and
even harder to extend. Little or no success at all has been
gained, e.g., in obtaining formats for more sophisticated
process calculi than the above mentioned ones – process
calculi with variable binding (like value-passing CCS [26]
and theπ-calculus [27]) in particular. The present paper
addresses this very problem.

The solution we offer is based on understanding the
mathematical structure underlying syntax and semantics of
message passing processes. The formats we obtain are ab-
stract and require a fair amount of category theory. How-
ever, concrete, syntactic formats can be distilled from them
and this, indeed, will be the next step of our investigation.

The starting point for our work lies in [35], where a cat-
egorical rule format is defined in terms of functorial notions
Σ andB of syntax and behaviour familiar from initial alge-
bra [16] and final coalgebra [1, 36] semantics. This format
is given by transformations

Σ(X ×BX) // BTX (1)

natural in the parameterX (to be thought of as a generic
set of meta-variables used in the rules), whereT is the term
monad associated to the signatureΣ, i.e.,TX = µY.X +
ΣY .

The type in (1) arises from giving to each operator of
arity n of the signature a natural transformation

(X ×BX)n // BTX (2)

describing the overall behaviour of the operator in terms of
the behaviour of its arguments. This abstract format corre-
sponds to GSOS whenB is taken to be the functor onSet

whose coalgebras are finitely branching labelled transition
systems, i.e.,

BX = ℘
f(L×X) (3)

whereL is a finite set of labels and℘f is the finite powerset
functor. In this case, the domain(X × ℘f(L×X))n and
the codomain℘f(L × TX) of the map in (2) correspond,
respectively, to the premises and the conclusions of GSOS
rules for the operator. Interestingly, naturality accounts ex-
actly for the GSOS restrictions on the occurrences of vari-
ables in the rules.

Any natural transformation of type (1) has the property
that the coalgebraic behavioural equivalence associated to
B (which in the above case coincides with bisimulation [2])
is a congruence with respect to the operators of the syntax
Σ. This is a corollary of the more general fact that rules
in the format (1) induce a denotational semantics which is
adequate in the sense that it is fully abstract with respect to
behavioural equivalence.

The above result is independent from the choice of cat-
egory and functors, provided they have enough structure
and properties. Here we exploit this generality in order to
find formats for process calculi with variable binding. To
this end, we first had to give a functorial notion of syntax
with binding. This was one of the main motivations for
the work in [13], where we moved from sets to variable
sets. There, variable sets are taken to be functors (called
covariant presheaves) from a category of contexts toSet;
the category of contexts used is the categoryF of finite car-
dinals (i.e., sets of variables) and all functions (i.e., renam-
ings). Most importantly, there exist a distinguished presheaf
V of variables and a differentiation functorδ = ()V on
presheaves. The latter is used to model variable binding
with arity V : for a presheafX, the elements ofδX in con-
text n are simply the elements ofX in the contextn + 1
containing an extra variable – the variable to be bound.

We have now to find the right notions of behaviourB for
name and value passing. Let us start from name passing,
where the two most natural notions of behavioural equiv-
alence are late and early bisimulation [27]. These are not
congruences for theπ-calculus though; one then consid-
ers the late and early congruences instead [27], obtained by
closing bisimulation under renamings (i.e., the maps ofF).

Previous (implicitly) coalgebraic work on name pass-
ing [12, 33] was based on a functorB whose associated
behavioural equivalence turns out to be late bisimulation.
This functorB lives in the category of presheaves over the
categoryI of name contexts allowing only injective renam-
ings. Surprisingly, the natural extension of suchB to the
category of presheaves overF yields a new behaviour̃B
whose associated equivalence is exactly late congruence.

We are also able to solve the problem left open in [12, 33]
of giving a denotational semantics fully abstract with re-
spect to early bisimulation by introducing a new behaviour

1

whose associated equivalence is early bisimulation1. The
extension of such behaviour to the presheaves overF has
early congruence as associated equivalence. Therefore, the
desired formats for early and late congruences live in the
category of presheaves overF and, for instance, rules for
unary binding will be of type

(X × B̃X)V // B̃TX (4)

whereB̃ can be the extended behaviour for either late or
early congruence.

For value passing, we also give late and early behaviours,
which are variations (cf. [20]) of the behaviour in (3). How-
ever, in order to model input rules we have to take into
account the substitution structure present in value-passing
calculi, i.e., the homogeneous substitution of messages in
messages and the heterogeneous substitution of messages
in processes. (For name passing this is not needed because
substitution is just renaming, hence it is already, though im-
plicitly, part of the category of presheaves overF.)

The categorical framework for homogeneous substitu-
tion was developed in [13]. One considers a monoidal struc-
ture on presheaves ‘•’ with unit V . A presheafX • Y can
be thought of has having elements given by pairs of an ele-
ment ofX together with a substitution consisting of a tuple
of elements ofY . One then takes the notion of homoge-
neous substitution on a presheafM to be a monoid structure
V //M oo M •M .

Here, in order to model the heterogeneous substitution
of elements of a monoidM in elements of a presheafX,
we need to go one step further and consider monoid ac-
tionsX • M // X. Correspondingly, the modelling of
rules takes place in the category of actions of the monoid of
messages. Therefore, we need then to lift signatures with
bindingΣ and extend behavioursB to functorsΣ andB̃ on
such category.

In general, we have primitive notionsΣ andB living in
different categories, of syntaxS and behaviourB respec-
tively, while the rules live in yet another categoryA of sub-
stitutions (e.g., monoid actions). These categories are re-
lated by adjunctions:

A

Σ

YY

B̃

��
//>

>

oo

oo
S

Σ

YY //>
oo

B

B

��
(5)

The lifting of theΣ onS to aΣ onA is done by means of a
distributive law over the monad induced by the monadic ad-
junctionA

//
>oo S, while the behaviour̃B onA is ob-

tained by (right) extendingB on B along the composite
1See also [28] for a different coalgebraic approach to early (and late)

bisimulation and [8] for a domain equation for early bisimulation in the
framework of presheaf models.

adjunctionA //>
oo

B. These constructions yield lift-
ings/extensions as follows:

Σ-Alg

��

// Σ-Alg

��
A // S

B̃-Coalg

��

// B-Coalg

��
A // B

The abstract rule format ensuring that behavioural equiv-
alence is a congruence consists then of natural transforma-
tions of type

Σ(X × B̃X) // B̃TX (6)

For name passing the actions of the monoid of variables
are simply presheaves onF, henceΣ is equal toΣ. For
the original GSOS case of [35], with no variable binding,
all three categories collapse to the category of sets, henceΣ
andB̃ are equal toΣ andB respectively and we recover (1).

The next obvious step for our work is to characterise the
categorical rule formats for name and value passing pro-
posed in this paper in elementary syntactic terms. The rule
formats so obtained will certainly not be as in [5], where
binding and substitution are defined within the rules rather
than treated at the syntactic level. For value passing, our
categorical rule format seems to be related to a syntactic
format proposed in [30]. The relationship with the format
of [15] for which a conservative extension property holds
should also be investigated.

Another aspect we would like to consider is recursion.
At present we would deal with guarded recursion follow-
ing [34], but it would be interesting to deal with unguarded
recursion along the lines of [31], hence working with vari-
able cpos instead of variable sets.

Finally, there seems to be a tight correspondence be-
tween the coalgebras of our new behaviour for early bisimu-
lation and the indexed labelled transition systems of [7]. We
would like to investigate this for sheaves (in the Schanuel
topos) rather than presheaves overI.

1. Basic syntactic and semantic structures

1.1. Expressions

Syntax. Consider the following abstract grammar of ex-
pressions for integers

e ::= x | z | e1 plus e2 | e1 minus e2 (7)

wherex ranges over a countable list of variablesxi (i ∈ N)
andz over the set of integersZ.

Following [13], we consider terms in a context, so that
we can stratify expressions into a family{En }n∈N of sets

2

indexed by natural numbers (indicating the number of vari-
ables in the context). The setEn consists of the expressions
with at mostn (canonical) free variables (typically denoted
by x1, . . . , xn). Thus,{En }n∈N is the least solution of the
equations

{Xn = {x1, . . . , xn }+ Z+Xn
2 +Xn

2 }n∈N (8)

Semantics. We writeE [[e]]n for the interpretation of an ex-
pressione in the contextx1, . . . , xn; that is, for the function
Z
n // Z defined compositionally as follows:

1. E [[xi]]n = πi (ith projection, 1 ≤ i ≤ n)
2. E [[z]]n = λ~x.z (constant functionz)
3. E [[e1 plus e2]]n = λ~x.(E [[e1]]n(~x) + E [[e2]]n(~x))

4. E [[e1 minus e2]]n = λ~x.(E [[e1]]n(~x)− E [[e2]]n(~x))

(9)

This interpretation is an initial algebra semantics. In-
deed, the semantic domain given by

{Set(Zn,Z) }n∈N (10)

whereSet(S, S′) denotes the set of functions from a setS
to a setS′, has a (pointwise) algebra structure given by the
evident maps

{x1, . . . , xn } // Set(Zn,Z)

Z // Set(Zn,Z)

Set(Zn,Z)2 ∼= Set(Zn,Z2) // Set(Zn,Z)

Set(Zn,Z)2 ∼= Set(Zn,Z2) // Set(Zn,Z)

(11)

and
E = { E [[]]n : En // Set(Zn,Z) }n∈N (12)

is the unique algebra homomorphism from{En }n∈N to
{Set(Zn,Z) }n∈N.

1.2. Presheaves

Categorically, families{Xn }n∈N of sets are functors

X : N // Set

whereN is the discrete category of natural numbers or,
equivalently, finite cardinals. Since we regard a finite cardi-
naln as a context ofn variables, a functionρ : n // m can
be seen as a renaming of variables. In order to model weak-
ening, contraction, and exchange rules for contexts we need
to use, instead of the discrete categoryN, the categoryF
of finite cardinals and all functions (cf. [13]). Correspond-
ingly, we consider functors

X : F // Set

i.e., (covariant)presheavesoverF. Thus, we will be work-
ing with families{Xn }n∈N of sets equipped with anaction
that associates everyx ∈ Xn (i.e., an element ofX at stage
n) and every renamingρ : n // m with

x[ρ] = X(ρ)(x) ∈ Xm

Presheaves overF form a categorySetF, with natural trans-
formations as morphisms.

Syntax. The family{En }n∈N with action

e[ρ] = e[xρ1/x1 , . . . ,
xρn /xn] (ρ : n // m)

given by variable renaming defines a presheafE : F // Set.
This presheaf is the least solution of the equation

X = V +KZ +X2 +X2

in SetF (cf. (8)), where the presheaf ofvariables

V : F // Set , Vn = n ∼= {x1, . . . , xn }

is the inclusion ofF into Set andKZ is the constantlyZ
presheaf. HenceE is the freeΣ-algebraµY. V + ΣY over
the presheaf of variablesV , where

Σ : SetF // SetF , ΣX = Z+X2 +X2

is the endofunctor on presheaves associated to the operators
on expressions.

Semantics. Also the semantic domain for expres-
sions (10) has a presheaf structure. Indeed, for any object
C of a cartesian categoryC, we have a functor

〈C, 〉 : C // SetF , 〈C,D〉n = C(Cn, D) (13)

The presheaf〈C,D〉 can be thought of as the presheaf of
mappings from environments of typeC to results of type
D. Formally, at stagen, it consists of the set of morphisms
in C fromCn toD with action

f [ρ] = f ◦ 〈πρ1, . . . , πρn〉 (ρ : n // m)

In particular, takingC = Set andC = D = Z we obtain
the presheaf〈Z,Z〉with underlying family of sets as in (10).

The copairing of the maps in (11) gives aΣ-algebra
structure

Σ〈Z,Z〉 = KZ + 〈Z,Z〉2 + 〈Z,Z〉2 // 〈Z,Z〉 (14)

on 〈Z,Z〉 that induces the initial algebra semantics

E : E // 〈Z,Z〉

of (12). Note that the naturality ofE amounts to the identity

E [[e[xρ1/x1 , . . . ,
xρn /xn]]]m(z1, . . . , zm)

= E [[e]]n(zρ1, . . . , zρn)
(15)

for all ρ : n // m.

3

Syntax with binding. In the algebraic treatment of bind-
ing of [13], binding operators are modelled using thediffer-
entiationoperator

δ : SetF // SetF , (δX)n = Xn+1

(For details, including initial algebra semantics, con-
sult [13].)

Pi-calculus.The following grammar for (a fragment of) the
π-calculus

t ::= 0 | t1| t2 | x(y).t | x̄y.t | (x)t | [x = y] t

corresponds to the signature endofunctor

ΣX = 1 +X ×X + V × δX + V × V ×X
+ δX + V × V ×X (16)

onSetF. Indeed, its initial algebra

T0 ∼= 1 + T0× T0 + V × δT0 + V × V × T0
+ δT0 + V × V × T0

is the presheaf ofπ-calculus terms: at stagen it is the set of
(α-equivalence classes of) terms with at mostn (canonical)
free variables, with action given by variable renaming.

Value-passing CCS.We will consider the following frag-
ment of CCS passing expressionse as in (7) along a finite
set of channelsc ∈ C:

t ::= 0 | t1| t2 | c?(x).t | c!〈e〉.t | [e1 =e2] t

This grammar has associated signature endofunctor

ΣEX = 1 +X ×X +KC × δX
+ KC × E ×X + E × E ×X

onSetF, whereKC is the constantlyC presheaf.
More generally, we have a signature bifunctorΣ :

SetF × SetF // SetF

Σ(M,X) = 1 +X ×X +KC × δX
+ KC ×M ×X +M ×M ×X (17)

parametric in the presheaf of messages being passed.

1.3. Substitution

Clones. We have seen that besides the operators, the se-
manticsE also respects variable renaming (see (9) and (15)).
However,E respectssubstitutionin the stronger form of sat-
isfying thesemantic substitution lemma:

E [[e [e1/x1 , . . . ,
en /xn]]]m

= E [[e]]n ◦ 〈E [[e1]]m, . . . , E [[en]]m〉
(18)

In other words,E is not only an algebra homomorphism but
also, as we explain below, a clone homomorphism.

Recall that an (abstract) clone[9, page 132]X, consists
of a family{Xn }n∈N of sets, a family

{ ν(n)
i ∈ Xn | 1 ≤ i ≤ n }n∈N

of distinguished elements, and a family

{µ(n)
m : Xn × (Xm)n // Xm }n,m∈N

of operations such that, for every elementt of Xn, every
n-tuple ~u = (u1, . . . , un) of elements ofXm, and every
m-tuple ~v of elements ofX`, the following three axioms
hold:

µm(νi; ~u) = ui µn(t; ν1, . . . , νn) = t

µ`(µm(t; ~u);~v) = µ`(t;µ`(u1;~v), . . . , µ`(un;~v))
(19)

An homomorphismh : X // X ′ between clones is a fam-
ily {hn : Xn

// X ′n }n∈N of functions that respects the
clone structure.

The clone structure on the family{En }n∈N of expres-
sions is given by the variablesxi (1 ≤ i ≤ n) in En and by
the simultaneous substitution of expressions for expressions

En × (Em)n // Em
(e; e1, . . . , en) � // e [e1/x1 , . . . ,

en /xn]

(The three axioms in (19) amount to the familiar proper-
ties of substitution.) For the semantic domain〈Z,Z〉, the
clone structure is given by projections and function compo-
sition (together with pairing). In fact, for every objectC
of a cartesian categoryC, one can form theclone of oper-
ations〈C,C〉 on C, with ν(n)

i given by theith projection

πi : Cn // C andµ(n)
m by the map

C(Cn, C)× C(Cm, C)n // C(Cm, C)
(f ; f1, . . . , fn) � // f ◦ 〈f1, . . . , fn〉

Thus, with respect to the above clone structures, the re-
quirement that the semanticsE be a clone homomorphisms
amounts to the identity (9.1) and the semantic substitution
lemma (18).

Monoids. The clone structure has equivalent representa-
tions as either of the following: finitary monads onSet,
Lawvere theories, substitution algebras [13, Theorem 3.3],
or, most importantly for this work, monoids in the monoidal
closed category(SetF, •, V) [13, Proposition 3.4], where
the monoidal product is defined by the following coend:

(X • Y)m =
∫ n∈F

Xn × (Ym)n (m ∈ F) (20)

4

This tensor product and variations thereof play a crucial role
in this paper; they arise from the following general situa-
tion (see, e.g., [23, I.5]):

1
(1) //

C --

∼=

F
op � � y //

C#

 AAAAAAAA
Lan∼=

SetF
•C
⊥

}}{{{{{{{{

C
〈C, 〉

=={{{{{{{{

(21)

whereC is cartesian and cocomplete and whereC# denotes
the cartesian extension ofC.

Proposition 1.1 1. For C andD cartesian and cocom-
plete categories, andF : C // D a cartesian functor
with a right adjoint, we have a canonical natural iso-
morphism

• FC ∼= F (• C)

for all C ∈ C.

2. For a cartesian and cocomplete categoryC such that,
for all C ∈ C, the functor × C is cocontinuous, we
have the following equivalence of categories

C ' CarCoc(SetF, C)
C

� // • C
FV �oo F

whereCarCoc is the category of cartesian and cocon-
tinuous functors, and natural transformations. 2

Corollary 1.2 For everyX ∈ SetF andC ∈ SetC, there
are canonical natural isomorphisms as follows

(•X) • C ∼= • (X • C)
〈X, 〈C, 〉〉 ∼= 〈X • C, 〉 2

In this paper we will exclusively consider the above ten-
sor construction whenC = SetC, for some small category
C (see [23, VII.2 and VIII.4] for a general discussion in the
context of topos theory). In this case, the tensorX • C (for
X ∈ SetF andC ∈ SetC) has the following elementary
description

(X • C)m =
∫ n∈F

Xn × (Cm)n

∼= (
∐
n∈NXn × (Cm)n)/≈

(m ∈ C)

where≈ is the equivalence relation generated by

(x; cρ1, . . . , cρn) ∼ (x[ρ]; c1, . . . , cn′) (ρ : n // n′)

Note that in particular takingC = F andC = Y ∈ SetF

we obtain the tensor (20) onSetF. We will also use the case
whereC = 1 (the terminal category), henceC ∼= Set and
C is a setS:

X • S =
∫ n∈F

Xn × Sn

As mentioned above, the categories of clones and
monoids in(SetF, •, V) are equivalent, hence the seman-
tics E : E // 〈Z,Z〉 is both aΣ-algebra homomor-
phism and a monoid homomorphism. In fact, by Theo-
rem 4.1 of [13], the presheaf of expressionsE is the initial
object in the category ofΣ-monoids(consisting of compat-
ible Σ-algebra and monoid structures with corresponding
homomorphisms). And, as theΣ-algebra structure in (14)
for the clone of operations〈Z,Z〉 is compatible with the
clone/monoid structure of〈Z,Z〉, the semanticsE is the
uniqueΣ-monoid homomorphism fromE to 〈Z,Z〉.

1.4. Categorical operational semantics

It is shown in [35] that operational rules of the form (1)
for signature and behaviour endofunctorsΣ andB on a bi-
cartesian categoryC induce a compositional semantics hav-
ing the (full abstraction) property that two terms have the
same meaning if and only if they are bisimilar, provided
that (i) the forgetful functorB-Coalg // C has a right ad-
joint (hence a final coalgebra exists), and (ii) the behaviour
B preserves weak pullbacks. The main tool we use to es-
tablish (i) for the behaviours in the present paper is the fol-
lowing.

Proposition 1.3 (See [24, 3]) For a finitary (resp. ac-
cessible) endofunctorB on a locally finitely presentable
(resp. accessible) categoryB, the forgetful functor
B-Coalg // B has a right adjoint. 2

The above mentioned (coalgebraic) notion ofbisimula-
tion is due to [2]. In this paper, we will consider it in the
following form: aB-bisimulationbetween two coalgebras
h : X // BX andk : Y // BY is a relation (i.e., equiv-
alence class of monos)R ↪ // X × Y between the carriers
X andY which lifts to the coalgebras in the sense that the
diagram

X Roo // Y

BX
��

BRoo //
��

BY
��

commutes for some coalgebra structure onR. For the be-
haviour in (3)B-bisimulation is (strong) bisimulation.

2. Message passing bisimulations

2.1. Value passing

Late bisimulation. To model value-passing CCS, with re-
spect to a set of valuesV and afinite set of channelsC, we
consider the behaviour endofunctor

BS = ℘
f(C × SV + C × V× S + S) (22)

5

on Set, where the components of the sum respectively
model input, output, and silent actions. (Cf. [20].)

With respect to this behaviour functor, coalgebraic
bisimulation corresponds to late bisimilarity. Indeed, a
coalgebrah : S // BS induces the late transition relation

s
c?() // f iff (c, f) ∈ h(s) (c ∈ C, s ∈ S, f ∈ SV)

s
c!〈v〉 // s′ iff (c, v, s′) ∈ h(s) (c ∈ C, v ∈ V, s, s′ ∈ S)

s
τ // s′ iff s′ ∈ h(s) (s, s′ ∈ A)

that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [21]) as follows.

Proposition 2.1 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra onS.

2. A symmetric relationR ⊆ S × S such thats0 R s′0
implies

• if s0
c?() // f then there existsf ′ such that

s′0
c?() // f ′ andf(v) R f ′(v) for all v ∈ V;

• if s0
c!〈v〉 // s then there existss′ such that

s′0
c!〈v〉 // s′ ands′ R s′0;

• if s0
τ // s then there existss′ such thats′0

τ // s′

ands R s′. 2

To appreciate the way in which (22) models the late in-
terpretation of input, it is instructive to use the isomorphism
℘

f(S + S′) ∼= ℘
f(S) × ℘f(S′) and consider the behaviour

in the following form

BS ∼= ℘
f(SV)C × ℘f(V× S)C × ℘f(S)

from which, as observed by Gordon Plotkin, one can read
the late interpretation off the first component of the product
corresponding to “first choosing a derivative and then re-
ceiving a value”. To model the early interpretation of input,
corresponding to “first receiving a value and then choosing
a derivative”, one thus needs to reverse the role of the type
constructors for non-determinism and inaction, and input.

Early bisimulation. Noticing the following decomposi-
tion of the finite powerset functor

℘
f
∼= 1 + ℘+

f

where℘+
f is thenon-emptyfinite powerset functor, a natural

behaviour for the early interpretation is then the endofunc-
tor

BS = (1 + ℘+
f (S)V)C × ℘f(V× S)C × ℘f(S)

which we will consider below in the following uniform form

BS ∼= (C⇀⇀℘+
f (S)V)

× (C⇀⇀℘+
f (V× S))

× (1⇀⇀℘+
f (S))

(23)

where ⇀⇀ : pSetop × pSet // Set is the partial-
exponentialfunctor (see e.g. [11]).

In this setting, a coalgebrah : S // BS induces the
early transition relation

s
c?〈v〉 // s′ iff s′ ∈ π1(hx)(c)(v) (c ∈ C, v ∈ V, s, s′ ∈ S)

s
c!〈v〉 // s′ iff (v, s′) ∈ π2(hx)(c) (c ∈ C, v ∈ V, s, s′ ∈ S)

s
τ // s′ iff s′ ∈ π3(hx)() (s, s′ ∈ S)

that provides a characterisation of coalgebraic bisimulation
in familiar terms as follows.

Proposition 2.2 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra onS.

2. A symmetric relationR ⊆ S × S such thats0 R s′0
implies

• if s0
c?〈v〉 // s then there existss′ such that

s′0
c?〈v〉 // s′ ands R s′;

• if s0
c!〈v〉 // s then there existss′ such that

s′0
c!〈v〉 // s′ ands R s′;

• if s0
τ // s then there existss′ such thats′0

τ // s′

ands R s′. 2

2.2. Name passing

Following [12], we will consider notions of behaviour
for the π-calculus in the category of (variable sets)SetI,
whereI is the category of finite cardinals and injections.
However, all the constructions involved are also meaning-
ful for pullback-preserving presheaves inSetI and so, fol-
lowing [33], we also obtain notions of behaviour in the
Schanuel topos (see e.g. [23, pages 155 and 158]).

Late bisimulation. The constructions needed to model
late bisimulation [27] as in [12] are:

• The type ofnamesN ∈ SetI with identity action
Nn = n.

• The power type℘f : SetI // SetI with pointwise
action(℘fP)n = ℘

f(Pn).

• Products(×) andcoproducts(+) given pointwise by
(P ×Q)n = Pn ×Qn and(P +Q)n = Pn +Qn.

6

• The exponentialPN with action given by(PN)n =
(Pn)n × Pn+1 andP (ι)(f, p) = (f ′, p′) where

f ′(x) =
{

(fa)[ι] if x = ιa
p[ι, x] otherwise

and p′ = p[ι+ 1]

• The dynamic allocationtype δ : SetI // SetI

with action given by(δP)n = Pn+1 and(δP)(ι) =
P (ι+ 1).

The behaviour functor for late bisimulation of [12, 33] is

BP = ℘
f(N × PN +N ×N × P +N × δP + P) (24)

onSetI. Hence we have that

BPn = ℘
f(n× (Pn)n × Pn+1

+ n× n× Pn + n× Pn+1

+ Pn)

in Set.
A coalgebrah : P // BP induces the late transition

relation

p
a?() // f, p′ iff (a, f, p′) ∈ hn(p)

(a ∈ n, p ∈ Pn, f ∈ (Pn)n, p′ ∈ Pn+1)

p
a!〈b〉 // p′ iff (a, b, p′) ∈ hn(p)

(a, b ∈ n, p, p′ ∈ Pn)

p
a!() // p′ iff (a, p′) ∈ hn(p)

(a ∈ n, p ∈ Pn, p′ ∈ Pn+1)

p
τ // p′ iff p′ ∈ hn(p)

(p, p′ ∈ Pn)

that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [27]) as follows.

Proposition 2.3 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra onP .

2. A family of symmetric relations

{Rn ⊆ Pn × Pn }n∈N

such that, for everyn ∈ N,

(a) p Rn q impliesp[ι] Rm q[ι], for all ι : n // // m
in I;

(b) p Rn q implies

• if p
a?() // f, p′ then there existg, q′ such

thatq
a?() // g, q′, andf(a) Rn g(a) (for all

a ∈ n) andp′ Rn+1 q
′;

• if p
a!〈b〉 // p′ then there existsq′ such that

q
a!〈b〉 // q′ andp′ Rn+1 q

′;

• if p
a!() // p′ then there existsq′ such that

q
a!() // q′ andp′ Rn+1 q

′;

• if p τ // p′ then there existsq′ such that

p′
τ // q′ andp′ Rn q′. 2

Early bisimulation. The definition of a behaviour functor
for early bisimulation (left open in [12, 33]) requires the
introduction of a new type constructor.

• For a mono-preservingpresheafP : I // Set we
defineP⇀⇀ : SetI // SetI as the functor mapping
a presheafQ to the presheafP ⇀⇀Q with action given
by (P ⇀⇀Q)n = Pn⇀⇀Qn and

(P⇀⇀Q)(ι) = P (ι)⇀⇀Q(ι) : u � // Q(ι) ◦ u ◦ P (ι)R

whereP (ι)R(q) = p iff P (ι)(p) = q (see [11]).

This construction extends that of products in that we
have an injectionP ×Q // // P⇀⇀Q given by:

Pn ×Qn // // Pn⇀⇀Qn
p, q � // pR⇀⇀q

(25)

where(pR⇀⇀q)(x) = (if x = p then q).

In the vein of the treatment of early bisimulation for
value-passing CCS given in (23), we consider the follow-
ing behaviour functor

BP = (N⇀⇀℘+
f (P)N)

× (N⇀⇀℘+
f (N × P))× (N⇀⇀℘+

f (δP))
× (1⇀⇀℘+

f (P))
(26)

in SetI, where the components of the product respectively
model input, free and bound output, and silent actions. (The
role of the constructorN⇀⇀ in this behaviour functor is
analogous to the one of the topped tensor productN ⊗>
in the model of [18].)

Note that because of the following isomorphisms

℘
f(P +Q) ∼= ℘

f(P)× ℘f(Q)
℘

f(N × P) ∼= N⇀⇀℘+
f (P)

℘
f(P) ∼= 1⇀⇀℘+

f (P)

the latebehaviour functor (24) can be written in the follow-
ing form

(N⇀⇀℘+
f (PN))

× (N⇀⇀℘+
f (N × P)) × (N⇀⇀℘+

f (δP))
× (1⇀⇀℘+

f (P))

which makes clear that the late and early interpretations of
free and bound output, and of silent actions are the same.

7

Considering the pointwise early behaviour

BPn = (n⇀⇀(℘+
f Pn)n × ℘+

f Pn+1)
× (n⇀⇀℘+

f (n× Pn))
× (n⇀⇀℘+

f Pn+1)
× (1⇀⇀℘+

f Pn)

a coalgebrah : P // BP induces the early transition
relation

p
a?〈b〉 // p′ iff p′ ∈ π1(π1(hnp)(a))(b)

(a, b ∈ n, p, p′ ∈ Pn)

p
a?() // p′ iff p′ ∈ π2(π1(hnp)(a))

(a ∈ n, p ∈ Pn, p′ ∈ Pn+1)

p
a!〈b〉 // p′ iff (b, p′) ∈ π2(hnp)(a)

(a, b ∈ n, p, p′ ∈ Pn)

p
a!() // p′ iff p′ ∈ π3(hnp)(a)

(a ∈ n, p ∈ Pn, p′ ∈ Pn+1)

p
τ // p′ iff p′ ∈ π4(hnp)()

(p, p′ ∈ Pn)

that provides a characterisation of coalgebraic bisimulation
in familiar terms (see [27]) as follows.

Proposition 2.4 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra onP .

2. A family of symmetric relations

{Rn ⊆ Pn × Pn }n∈N

such that, for everyn ∈ N,

(a) p Rn q impliesp[ι] Rm q[ι], for all ι : n // // m
in I;

(b) p Rn q implies

• if p
a?〈b〉 // p′ then there existsq′ such that

q
a?〈b〉 // q′ andp′ Rn q′;

• if p
a?() // p′ then there existsq′ such that

q
a?() // q′ andp′ Rn+1 q

′;

• if p
a!〈b〉 // p′ then there existsq′ such that

q
a!〈b〉 // q′ andp′ Rn q′;

• if p
a!() // p′ then there existsq′ such that

q
a!() // q′ andp′ Rn+1 q

′;

• if p τ // p′ then there existsq′ such that

q
τ // q′ andp′ Rn q′. 2

3 Semantics of name passing

To model the structural operational rules for the
π-calculus using natural transformations of type (1), we are
faced with the fact that the signatureΣ is an endofunctor
on SetF (see (16)) while the behaviourB (for both the
late (24) and the and the early (26) interpretations) is an
endofunctor onSetI. Far from being a problem, this dis-
parity allows for the desired compositionality result to hold.
Indeed, both late and early bisimulations arenot congru-
ences. What we need are thus behaviour functors for late
and earlycongruencesinstead. These behaviours can be ob-
tained by (right) extending theB’s onSetI along an adjunc-
tion SetF //>

oo
SetI obtaining new endofunctors̃B’s on

SetF. Moreover, a natural transformation of type

Σ(X × B̃X) // B̃TX (27)

in SetF will be suitable to model the desired structural op-
erational rules for theπ-calculus.

Late and early congruences. The adjunction we need be-
tweenSetF andSetI is an instance of the adjunction in (21)
takingC = SetI andC = N :

SetF
•N
//>

〈N, 〉oo
SetI (28)

Alternatively, one can describe this adjunction as the essen-
tial geometric morphism (see, e.g., [23, page 360]) associ-
ated to the inclusionI // F. Thus, we have a canonical
natural isomorphism

X •N ∼= |X| (29)

(essentially given by the actionXn × mn // Xm of X)
where| | : SetF // SetI is theforgetful functor given by
precomposing with the inclusionI // F.

We can now define, for every endofunctorB onSetI, an
endofunctor

B̃X = 〈N,B|X|〉

i.e., the right Kan extensionof 〈N,B 〉 along 〈N, 〉.
Using the isomorphism (29) and the adjunction (28),
the B̃-coalgebras are in bijective correspondence with
B-coalgebras|X| // B|X|. In other words,B̃-coalgebras
areB-coalgebras on presheaves with an action alongall re-
namings (rather than only on injective ones). This makes a
crucial difference in terms of coalgebraic bisimulation.

Proposition 3.1 ForB as in (24) [resp. (26)], the following
data are equivalent.

1. A coalgebraic B̃-bisimulation for a coalgebra
X // B̃X.

8

2. A family of symmetric relations{Rn ⊆ Xn×Xn}n∈N
as in Proposition 2.3 (2) [resp. Proposition 2.4 (2)]
(with respect to the transposedB-coalgebra
|X| // B|X|) where the closure condition (a)
is generalised to

p Rn q impliesp[ρ] Rm q[ρ], for all ρ : n // m
in F. 2

Proposition 3.2 1. The functors()N : SetI // SetI

andNn⇀⇀ : SetI // SetI (n ∈ N) are finitary.

2. ForB as in (24) and (26), the lifted functors̃B are
finitary (hence the forgetful functor̃B-Coalg // SetF

has a right adjoint) and preserve weak pullbacks.
2

Therefore, every natural transformation of type (27), withB
the late (early) behaviour functor, induces a compositional
semantics fully abstract with respect to late (early) congru-
ence.

Categorical rules. We sketch how theπ-calculus opera-
tional rules [27] are modelled by a natural transformation
of type (27). For brevity, we only consider the operational
rules of the binding operators (input and restriction); the
operational rules for the other operators are modelled along
the lines of [34] using the isomorphisms

〈C,D1〉 × 〈C,D2〉 ∼= 〈C,D1 ×D2〉
δ〈C,D〉 ∼= 〈C,DC〉

satisfied by the functors in (13) withC cartesian closed, and
the map

V ×X // 〈N,N⇀⇀|X|〉 (30)

obtained by transposing|V ×X| ∼= N×|X| // // N⇀⇀ |X|,
where the injection is given by (25).

Input. For input, the rule is modelled by a map of type

V × δ(X × B̃X) // 〈N,B|TX|〉

Using (30) and projecting out the components that do not
contribute to the rule we can focus on defining a map of
type

δX // 〈N, |X|N 〉 ∼= δ〈N, |X|〉

The required map isδ applied to the unitX // // 〈N, |X|〉
of the adjunction (28); that is,

Xn+1
// SetI(Nn+1, |X|)

x � // {λρ ∈ mn+1. x[ρ] }m∈I

Note that this map can be used both for the late and
early cases by precomposing it with suitable maps respec-
tively arising from the injections|X|N // // ℘+

f (|X|N) and
|X|N // // (℘+

f |X|)N .

Restriction.For restriction, the rule is modelled by a map of
typeδ(X × B̃X) // 〈N,B|TX|〉 in SetF which, in fact,
comes from a map of type

δB|X| // B|TX| in SetI

For instance, the core of this latter map corresponding to the
following two rules

(RES)
P

āb // Q

(x)P
āb // (x)Q

x 6≡ a, b (OPEN)
P
āx // Q

(x)P
ā(x) // Q

x 6≡ a

is the map

δN × δN × δ|X| RO // ℘
f(N ×N × |TX|+N × δ|TX|)

defined, using the internal language (see [12]), as follows:

RO(a, b, q)
= case a of

old(a′) +3 let q′ = δ η q
in case b of

old(b′) +3 { (a′, b′,ν q′) }
new +3 { (a′, q′) }

new +3 ∅

whereη : |X| // |TX| andν : δ|TX| // |TX| (in
SetI) are respectively the (underlying maps of the) unit and
the restriction operator (inSetF) of the freeΣ-algebraTX
onX.

4. Semantics of value passing

Actions. We have seen in§1.1 that the homogeneous sub-
stitution of expressions for variables in expressions can be
modelled as monoids. For the heterogeneous substitution
of expressions for variables in terms we can usemonoid ac-
tions as follows. Every monoidM = (M,µ, ν) in SetF

defines a monad • M on SetF. The category of al-
gebras of this monadM -Act, consists of (right) actions
A•M // A [22, VII.4]. In elementary terms, this amounts
to a family{α(n)

m : An × (Mm)n // Am }n,m∈N of oper-
ations such that

αm(a; ν1, . . . , νn) = a

α`(αm(a; ~u);~v) = α`(a;µ`(u1;~v), . . . , µ`(un;~v))

for all a in An, ~u in (Mm)n, and~v in (M`)m. (Note the
occurrence ofµ in the second law.)

For examples of actions consider the following.
A V -actionA • V // A is forced, by the unit law, to be

the canonical isomorphismA • V ∼= A. Thus, the category

9

V -Act is isomorphic toSetF; which explains why, for name
passing, we can do without extra substitution structure.

For objectsC and D in a cartesian categoryC, the
monoid 〈C,C〉 has a canonical action on the presheaf
〈C,D〉 given by (pairing and) composition inC.

As in any bicomplete monoidal closed category
(cf. [23, VII.3]), a monoid homomorphismM ′ // M in-
duces areindexingfunctorM -Act // M ′-Act with both
left and right adjoints. Thus, the semantics of expressions
E // 〈Z,Z〉 and the unique homomorphismV // M
induce the following adjoint situations

〈Z,Z〉-Act //>
>

oo

oo
E-Act , M -Act //>

>

〈M, 〉oo

•M
oo

SetF

where, on the right hand side,X •M has action given by
multiplication and〈M,X〉 has action given by multiplica-
tion and evaluation.

Syntax. The substitution of expressions in terms involves,
in turn, a substitution of expressions in expressions. Thus,
the signature bifunctor for value-passing CCS needs to be
parametric in amonoidof messages. Accordingly, we let
Σ be the bifunctorMon(SetF) × SetF // SetF given
by (17).

For a monoidM , we write ΣM for the functor
Σ(M,) : SetF // SetF. One can liftΣM to the category
M -Act of M -actions by means of a distributive law

λ : ΣM () •M +3 ΣM (•M)

of the endofunctorΣM over the monad induced by the
monadic adjunctionM -Act

//
>oo SetF. This distributive

law is essentially the strength described in [13, page 200],
with the extra use of the multiplication of the monoidM in
the fourth and fifth summand ofΣM . The resulting endo-
functor

ΣM (A •M α // A)

= (ΣM (A) •M λA // ΣM (A •M) Σα // ΣA)

on M -Act has as algebras presheavesA with both a
Σ-algebra structure and anM -action compatible with each
other in the sense that the evident diagram

ΣM (A) •M

��

// ΣM (A •M) // ΣM (A)

��
A •M // A

commutes. We denote the corresponding category of
ΣM -algebras byΣM -Alg. The associated forgetful func-
tor ΣM -Alg // M -Act has a left adjoint; and the induced

monad is denoted byTM , as it is a lifting of the monadTM
induced byΣM .

Moreover, every monoid homomorphismM ′ //M in-
duces a reindexing functorΣM -Alg // ΣM ′ -Alg, which is
a lifting of the reindexing functorM -Act // M ′-Act. In
particular, the reindexing functorΣ〈Z,Z〉-Alg // ΣE-Alg
induced by the semantics of expressionsE // 〈Z,Z〉 al-
lows us to turn every interpretation forT 〈Z,Z〉(0) into one
for TE(0).

Semantics. Let M be a monoid of messages inSetF; a
typical example being the clone of operations〈V,V〉 on a
set of valuesV.

We have the following situation (cf. (5))

M -Act

ΣM

YY
//>

>

〈M, 〉oo

•M
oo SetF

ΣM

WW •0
//>

〈0, 〉oo
Set

B

��

where the adjunction on the right can be alternatively de-
scribed as the essential geometric morphism associated to
the functor(0) : 1 // F; hence

X • 0 ∼= X0

for all X ∈ SetF.
To have both syntax and behaviour on the same category,

we will proceed as in the previous section and (right) extend
behaviour functorsB on Set along the composite adjunc-
tionM -Act //>

oo
Set to B̃ onM -Act. To do this easily,

we need a lemma.

Lemma 4.1 For C cartesian and cocomplete, the compos-

ite adjunctionM -Act
| |
//>

〈M, 〉oo
SetF

•C
//>

〈C, 〉oo
C is given by

| | • C : M -Act //>
oo

C : 〈M • C, 〉. 2

It follows that the extension of a behaviour functorB on
Set is along the adjunction

| |0 : M -Act //>
oo

Set : 〈M0, 〉 (31)

whereM0 is the set of ground messages, yieldingB̃ on
M -Act to be given by

B̃A = 〈M0, B(A0)〉

Late and early congruences. As operational models for
value passing we takẽB-coalgebras

A // 〈M0, B(A0)〉

10

inM -Act whereB is either of the two endofunctors onSet
of (22) and (23). The adjunction (31) allows us to express
these operational models in terms of coalgebras onSet. In-
deed, they are in bijective correspondence with functions

A0
// B(A0)

whereA carries anM -action. Moreover,B̃-coalgebra ho-
momorphisms are action homomorphisms which at stage0
are alsoB-coalgebra homomorphisms:

A •M

��

// A

��
A′ •M // A′

A0

��

// B(A0)

��
A′0

// B(A′0)

Proposition 4.2 ForB as in (22) [resp. (23)], the following
data are equivalent.

1. A coalgebraic B̃-bisimulation for a coalgebra
A // B̃A.

2. A family of symmetric relations{Rn ⊆ An×An}n∈N
such that

(a) R0 is as in Proposition 2.1 (2) [resp. Propo-
sition 2.2 (2)] (with respect to the transposed
B-coalgebraA0

// B(A0)).
(b) For everyn ∈ N, s Rn s′ implies

αm(s;~v) Rm αm(s′;~v), for all ~v in (Mm)n. 2

Proposition 4.3 1. The category of actionsM -Act is lo-
cally finitely presentable.

2. For B as in (22) and (23), the extended func-
tors B̃ are accessible (hence the forgetful functor
B̃-Coalg //M -Act has a right adjoint) and preserve
weak pullbacks. 2

Categorical rules. Natural transformations inM -Act of
type

Σ(A× B̃A) // B̃TA (32)

with B the late (early) behaviour functor with set of val-
uesV = M0, are suitable to model structural operational
rules for languages with value passing and give a categori-
cal format inducing fully-abstract compositional semantics
with respect to late (early) congruence.

Input. The most interesting rule to model is the axiom for
input. As for theπ-calculus, the core of this rule (both for
the late and early behaviour) lies in the map

δA // 〈V, A0
V〉 ∼= δ〈V, A0〉

obtained by applyingδ to the unit of the adjunction (31),
namely:

An+1
// Set(Vn+1, A0)

a � // λ~v ∈ Vn+1. α0(a;~v)

Acknowledgements. We gratefully acknowledge discus-
sions with Gian-Luca Cattani, Gordon Plotkin and Davide
Sangiorgi.

References

[1] P. Aczel. Non-well-founded sets. Number 14 in Lecture
Notes. CSLI, 1988.

[2] P. Aczel and P. F. Mendler. A final coalgebra theorem. In
D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M. Pitts, and
A. Poigńe, editors,Proc. Category Theory and Computer
Science, volume 389 ofLNCS, pages 357–365. Springer-
Verlag, 1989.

[3] J. Adámek and J. Rosický. Locally Presentable and Acces-
sible Categories, volume 189 ofLondon Mathematical Soci-
ety Lecture Note Series. Cambridge University Press, 1994.

[4] J. A. Bergstra and J. W. Klop. Process algebra for
synchronous communication. Information and Control,
60:109–137, 1984.

[5] K. Bernstein. A congruence theorem for structured opera-
tional semantics of higher-order languages. InProc. 13th

LICS Conf., pages 153–164. IEEE, Computer Society Press,
1998.

[6] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be
traced.Journal of the ACM, 42(1):232–268, 1995.

[7] G.-L. Cattani and P. Sewell. Models for name-passing pro-
cesses: Interleaving and causal. InProc. 15th LICS Conf.,
pages 322–333. IEEE, Computer Society Press, 2000.

[8] G.-L. Cattani, I. Stark, and G. Winskel. Presheaf models for
theπ-calculus. In E. Moggi and G. Rosolini, editors,Proc.
Category Theory and Computer Science, volume 1290 of
LNCS, pages 106–126. Springer-Verlag, 1997.

[9] P. Cohn.Universal Algebra. Harper & Row, 1965.
[10] R. de Simone. Higher level synchronising devices in MEIJE-

SCCS.Theoretical Computer Science, 37:245–267, 1985.
[11] M. Fiore. Axiomatic Domain Theory in Categories of Par-

tial Maps. Distinguished Dissertations Series. Cambridge
University Press, 1996.

[12] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract
model for theπ-calculus. InProc. 11th LICS Conf., pages
43–54. IEEE, Computer Society Press, 1996. (Full version
to appear inInformation and Computation).

[13] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and vari-
able binding. InProc. 14th LICS Conf., pages 193–202.
IEEE, Computer Society Press, 1999.

[14] W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce
to ntree rules.Information and Computation, 126(1):1–10,
1996.

[15] W. Fokkink and C. Verhoef. A conservative look at oper-
ational semantics with variable binding.Information and
Computation, 146(1):24–54, 1998.

[16] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra
approach to the specification, correctness and implementa-
tion of abstract data types. In R. Yeh, editor,Current Trends
in Programming Methodology, volume IV, pages 80–149.
Prentice Hall, 1978.

[17] J. Groote and F. Vaandrager. Structured operational seman-
tics and bisimulation as a congruence.Information and
Computation, 100(2):202–260, 1992.

11

[18] M. Hennessy. A fully abstract denotational semantics for
the π-calculus. Technical Report 4, COGS, University of
Sussex, 1996. To appear inTheoretical Computer Science.

[19] C. A. R. Hoare. Communicating sequential processes.Com-
munications of the ACM, 21(8):666–677, 1978.

[20] A. Ingólfsdóttir. A semantic theory for value-passing pro-
cesses, Late approach, Part I: A denotational model and its
complete axiomatization. Report Series RS-95-3, BRICS,
Department of Computer Science, University of Aarhus,
1995.

[21] A. Ingólfsdóttir. A semantic theory for value-passing pro-
cesses, Late approach, Part II: A behavioural semantics and
full abstractness. Report Series RS-95-22, BRICS, Depart-
ment of Computer Science, University of Aarhus, 1995.

[22] S. Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

[23] S. Mac Lane and I. Moerdijk.Sheaves in geometry and
logic: A First Introduction to Topos Theory. Springer-
Verlag, 1992.

[24] M. Makkai and R. Paŕe. Accessible Categories: The Foun-
dations of Categorical Model Theory, volume 104 ofCon-
temporary Math.Amer. Math. Soc., 1989.

[25] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 ofLNCS. Springer-Verlag, 1980.

[26] R. Milner. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[27] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, I and II.Information and Computation, 100(1):1–
77, Sept. 1992.

[28] U. Montanari and M. Pistore.π-calculus, structured coal-
gebras and minimal HD-automata. InMathematical Foun-
dations of Computer Science 2000, volume 1893 ofLecture
Notes in Computer Science. Springer-Verlag, 2000.

[29] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Department of Computer
Science, Aarhus University, 1981.

[30] G. Plotkin. Binding algebras: A step from universal algebra
to type theory. Slides of a lecture at RTA’98, 1998.

[31] G. Plotkin. Bialgebraic semantics and recursion. Invited
talk at4th Workshop on Coalgebraic Methods in Computer
Science, Genova, Italy, 2001.

[32] D. Scott. Outline of a mathematical theory of computation.
In Proc. 4th Annual Princeton Conference on Inf. Sciences
and Systems, pages 169–176, 1970.

[33] I. Stark. A fully abstract domain model for theπ-calculus.
In Proc. 11th LICS Conf., pages 36–42. IEEE, Computer So-
ciety Press, 1996.

[34] D. Turi. Categorical modelling of structural operational
rules: case studies. In E. Moggi and G. Rosolini, editors,
Proc. Category Theory and Computer Science, volume 1290
of LNCS, pages 127–146. Springer-Verlag, 1997.

[35] D. Turi and G. Plotkin. Towards a mathematical operational
semantics. InProc. 12th LICS Conf., pages 280–291. IEEE,
Computer Society Press, 1997.

[36] D. Turi and J. Rutten. On the foundations of final coalge-
bra semantics: non-well-founded sets, partial orders, met-
ric spaces.Mathematical Structures in Computer Science,
8(5):481–540, 1998.

12

