Semantics of Name

and Value Passing

Marcelo Fioré Daniele Turi
Computer Laboratory LFCS, Division of Informatics
University of Cambridge University of Edinburgh
Abstract Contents

We provide a semantic framework for (first order)
message-passing process calculi by combining categorical
theories of abstract syntax with binding and operational
semantics. In particular, we obtain abstract rule formats
for name and value passing with both late and early inter-
pretations. These formats induce an initial-algebra/final-
coalgebra semantics that is compositional, respects substi-
tution, and is fully abstract for late and early congruence.
We exemplify the theory with the-calculus and value-
passing CCS.
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Introduction whose coalgebras are finitely branching labelled transition
systems, i.e.,
A complete description of the semantics of a program- BX = #¢(L x X) (3)

ming language requires both an operational semantics deWhereL is a finite set of labels ang; is the finite powerset

scribing the behaviour of programs in terms of elementary ¢ ,\«tor In this case. the domaiX x ©;(L x X))" and
steps and a more abstract denotational semantics describing, codomair@f(L % ’TX) of the map in (2) correspond

the meaning of a program in terms of its components [32]. \oqhectively, to the premises and the conclusions of GSOS

In the study of process calculi for concurrency (SUch as e for the operator. Interestingly, naturality accounts ex-
CCS [25], _CSP [19], and ACP [4]) less gmpha3|s IS pllaced actly for the GSOS restrictions on the occurrences of vari-
on denotational models and more on notions of behawouralab'es in the rules.

equival_ence, and on bis_imulation quivalence [25] in partic- Any natural transformation of type (1) has the property
ular. St|||,_for tr;]e opheratLonaI semz_intlcsftt()) ?]e V\_/ell-blehav_ed, that the coalgebraic behavioural equivalence associated to
one requires that the chosen notion of behavioural equiva- (i hich in the above case coincides with bisimulation [2])
lence be a congruence with respect to the constructs of the;S a congruence with respect to the operators of the syntax
Ianguage.bl. h its for behavi | . X. This is a corollary of the more general fact that rules
To establish congruence results for behavioural equiva-j, yhe format (1) induce a denotational semantics which is

lences it is convenient to Qeflne thg operational semantics 'nadequate in the sense that it is fully abstract with respect to
terms of structural rules, i.e., Plotkin’s SOS rules [29]. Cor- behavioural equivalence

respondingly, much work has been done in order to iden-

tify SOS rule formats [10, 6, 17, 14] for which (strong) egory and functors, provided they have enough structure

p'S'gggtgnglsﬁ congruenci f_ the most r}velgknc;\_/vg be(—j and properties. Here we exploit this generality in order to
'ng hard [6]. owe\(/jer,L§u|c ormats are har tIcI) hm Sn find formats for process calculi with variable binding. To
even harder to extend. Little or no success at all has beeny;q ong e first had to give a functorial notion of syntax

gained, e.g., in obtaining formats for more sophisticated binding. This was one of the main motivations for

process _calculi_ than t_he_abO\_/e mentioned ONEs — ProCeSga work in [13], where we moved from sets to variable
calculi with variable b|nd.|ng (I'k_e value-passing CCS [26] sets. There, variable sets are taken to be functors (called
and thew—cal_culus [27]) in particular. The present paper covariant presheaves) from a category of contexiSdt;
addresses this very problem. the category of contexts used is the cateddof finite car-

T:e so!uulon we offer :js tl)a_sed on undec;standmg_ thefdinals (i.e., sets of variables) and all functions (i.e., renam-
mathematical structure underlying syntax and semantics ofi, ooy ‘\Most importantly, there exist a distinguished presheaf

message passing processes. The formats we obtain are al?; of variables and a differentiation functér= (_)" on

stract and require a fair ?mount of Cabte%‘?fy_”thg?w- Hr?w' presheaves. The latter is used to model variable binding
ever, concrete, syntactic formats can be distilled from them "2 1 for a presheakt, the elements of X in con-

and ;hls, |nd_eed, vy|II ]E)e the nextkslt_ep _of our mvre]zsugauon. text n are simply the elements of in the contextn + 1
T € starting pomF or our work fies in [35], w erea c;at- containing an extra variable — the variable to be bound.
egorical rule format is defined in terms of functorial notions  \y/a have now to find the right notions of behavidgifor
bz anfé? of zyfl_wtai( andl bebhawi)u;éawhar frqm 'q'_tr']"?‘l ?Ige- name and value passing. Let us start from name passing,
ra [16] and final coalgebra [1, 36] semantics. This format \ e re the two most natural notions of behavioural equiv-

is given by transformations alence are late and early bisimulation [27]. These are not
congruences for the-calculus though; one then consid-
ers the late and early congruences instead [27], obtained by

natural in the parameteX (to be thought of as a generic closing bisimulation under renamings (i.e., the mapg)of

The above result is independent from the choice of cat-

(X x BX) — BTX 1)

set of meta-variables used in the rules), whgiis the term  Previous (implicitly) coalgebraic work on name pass-
monad associated to the signatirei.e., 7X = uY. X + ing [12, 33] was based on a functér whose associated
Ny, behavioural equivalence turns out to be late bisimulation.
The type in (1) arises from giving to each operator of This functorB lives in the categor.y of pres.h'eav.es over the
arity . of the signature a natural transformation _category]l of_ name contexts allowing o_nly injective renam-
ings. Surprisingly, the natural extension of sugho the
(X x BX)" — BTX (2) category of presheaves ovEryields a new behaviouB

whose associated equivalence is exactly late congruence.
describing the overall behaviour of the operator in terms of  We are also able to solve the problem left openin [12, 33]
the behaviour of its arguments. This abstract format corre-of giving a denotational semantics fully abstract with re-
sponds to GSOS wheA is taken to be the functor dBet spect to early bisimulation by introducing a new behaviour



whose associated equivalence is early bisimulatiohhe adjunction A =T _ B. These constructions yield lift-
extension of such behaviour to the presheaves Bvieas ings/extensions as follows:
early congruence as associated equivalence. Therefore, the

desired formats for early and late congruences live in the  T.Alg —— X-Alg E-Coalg—> B-Coalg
category of presheaves ovérand, for instance, rules for
unary binding will be of type l l l l

S A

(X x BX)V — BTX (4) A B

where B can be the extended behaviour for either late or  The abstract rule format ensuring that behavioural equiv-

early congruence. alence is a congruence consists then of natural transforma-
For value passing, we also give late and early behaviours tions of type

which are variations (cf. [20]) of the behaviour in (3). How- . ~ .

ever, in order to model input rules we have to take into Y(X x BX) — BTX (6)

account the substitution structure present in value-passin ) . . ]

calculi, i.e., the homogeneous substitution of messages ir?':Or name passing the actions of the monoid of variables

messages and the heterogeneous substitution of messag@&€ SIMply presheaves dn henceb. is equal toX. For

in processes. (For name passing this is not needed becaudB® original GSOS case of [35], with no variable binding,
substitution is just renaming, hence it is already, though im- &ll three categories collapse to the category of sets, hence

plicitly, part of the category of presheaves oWy andB are equal t& andB respectively and we recover (1).
The categorical framework for homogeneous substitu-  The next obvious step for our work is to characterise the
tion was developed in [13]. One considers a monoidal struc-categorical rule formats for name and value passing pro-
ture on presheaves’with unit V. A presheafX e Y can posed in this paper in elementary syntactic terms. The rule
be thought of has having elements given by pairs of an ele-formats so obtained will certainly not be as in [5], where
ment of X together with a substitution consisting of a tuple binding and substitution are defined within the rules rather
of elements ofY’. One then takes the notion of homoge- than treated at the syntactic level. For value passing, our
neous substitution on a preshédfto be a monoid structure  categorical rule format seems to be related to a syntactic

V—M-<—DMel. format proposed in [30]. The relationship with the format
Here, in order to model the heterogeneous substitutionof [15] for which a conservative extension property holds
of elements of a monoid/ in elements of a preshedf, should also be investigated.

we need to go one step further and consider monoid ac- Another aspect we would like to consider is recursion.
tions X ¢ M — X. Correspondingly, the modelling of At present we would deal with guarded recursion follow-
rules takes place in the category of actions of the monoid ofing [34], but it would be interesting to deal with unguarded
messages. Therefore, we need then to lift signatures withrecursion along the lines of [31], hence working with vari-
bindingY and extend behaviour to functorsy and B on able cpos instead of variable sets.

such category. Finally, there seems to be a tight correspondence be-

In general, we have primitive notionts and B living in tween the coalgebras of our new behaviour for early bisimu-
different categories, of syntag and behaviou3 respec- lation and the indexed labelled transition systems of [7]. We
tively, while the rules live in yet another categao#dyof sub- would like to investigate this for sheaves (in the Schanuel

stitutions (e.g., monoid actions). These categories are retopos) rather than presheaves oler
lated by adjunctions:

5 5 1. Basic syntactic and semantic structures
A L~ s 7 B (5) 1.1. Expressions

OO
5} bl Syntax. Consider the following abstract grammar of ex-

. pressions for integers
The lifting of theX onS to a¥ on A is done by means of a

distributive law over the monad induced b)N/the monadic ad- ex=x|z]|e pluses | e;minusey ©)
junction. A _T S, while the behavious3 on A is ob- _ . .
tained by (right) extendingd on B along the composite ~ Wherex ranges over a countable list of variables( € N)

1see also [28] for a different coalgebraic approach to early (and late) andz Ove'.’ the set of mtegelZ. .
bisimulation and [8] for a domain equation for early bisimulation in the Following [13], we consider terms in a context, so that

framework of presheaf models. we can stratify expressions into a family¥,, },,cn of sets




indexed by natural numbers (indicating the number of vari- i.e., (covariantpresheavesverF. Thus, we will be work-

ables in the context). The sB}, consists of the expressions
with at mostn (canonica) free variables (typically denoted

by xzq,...,z,). Thus,{ E, },.en is the least solution of the
equations
{Xn={z1,. 2} + 2+ X2+ X2 ben (8)

Semantics. We write&[e],, for the interpretation of an ex-
pressiore in the contextry, .. ., x,; thatis, for the function
7" — 7 defined compositionally as follows:

1.&[xi], = m (i*™ projection1 < i < n)
2.&[z]n = M2z (constant function)

3.&[e1 pluses], = AZ.(E]e1]n(Z) + Ee2]n(Z))
4. Ee; minus es], = AZ.(E]e1]n (&) — E]e]n (X))

©)

This interpretation is an initial algebra semantics. In-

deed, the semantic domain given by
{Set(Z",Z) }nen (10)

whereSet(S, S’) denotes the set of functions from a skt

to a setS’, has a (pointwise) algebra structure given by the

evident maps

{z1,...,2, } — Set(Z",Z)
7 — Set(Z", 7.)
(11)
Set(Z",7)? = Set(Z",7Z?) — Set(Z",7)
Set(Z",7)? = Set(Z",7Z?) — Set(Z",7Z)
and
E={€[]n: En —Set(Z",Z) }nen (12)

is the unigue algebra homomorphism fronE,, },cn to
{Set(Z",Z) }nen.

1.2. Presheaves

Categorically, familie§ X, },cn of sets are functors

X : N— Set

where N is the discrete category of natural numbers or,
equivalently, finite cardinals. Since we regard a finite cardi-

naln as a context of, variables, a functiop : n — m can

be seen as a renaming of variables. In order to model weak-
ening, contraction, and exchange rules for contexts we need

to use, instead of the discrete categdtythe categoryf

of finite cardinals and all functions (cf. [13]). Correspond-

ingly, we consider functors

X :F— Set

ing with families{ X,, },en of sets equipped with aaction
that associates evetye X, (i.e., an element ok at stage
n) and every renaming : n — m with

zlp] = X(p)(z) € Xim
Presheaves ov&form a categorBet”, with natural trans-
formations as morphisms.

Syntax. The family{ E,, },cn with action

elol = e[*" [ays " /o]

given by variable renaming defines a preshéaflf > Set.
This presheaf is the least solution of the equation

(p:n—>m)

X=V+K;+X?+X?
in Set™ (cf. (8)), where the presheaf vériables

V :F—Set, Ve=n=2{x,...,2n}

is the inclusion ofF into Set and KC, is the constantlyZ
presheaf. Hencé is the freeX-algebrau.Y. V + XY over
the presheaf of variablds, where

Y :Set’ —Set’, TX=Z+ X%+ X?

is the endofunctor on presheaves associated to the operators

on expressions.

Semantics. Also the semantic domain for expres-

sions (10) has a presheaf structure. Indeed, for any object

C of a cartesian category, we have a functor

(C,_):C—Set", (C,D),=cC(C",D) (13)

The presheafC, D) can be thought of as the presheaf of
mappings from environments of tyge to results of type
D. Formally, at stage, it consists of the set of morphisms
in C from C™ to D with action

f[p] = fO <7Tp13"'37rpn>

In particular, takingC = Set andC = D = Z we obtain
the presheafZ, Z) with underlying family of sets as in (10).

The copairing of the maps in (11) givesXaalgebra
structure

YZ,Z) = Kz + (Z,2)* + (Z,7)*> — (Z,7)

(p:n—=m)

(14)

on (Z,Z) that induces the initial algebra semantics

E.FE—(Z,7)

of (12). Note that the naturality @f amounts to the identity
Elel® /ayy-o "o [o ] Im(21, - -

= Eleln(zp1s- -1 2pn)

forall p: n —m.

-5 Zm)

(15)



Syntax with binding. In the algebraic treatment of bind-
ing of [13], binding operators are modelled using tlifger-
entiationoperator

§:Set’ —Set",  (6X),

n+1

(For details, including initial algebra semantics, con-
sult [13].)
Pi-calculus.The following grammar for (a fragment of) the
m-calculus

ta=0 | t1]te | x(y).t | Tyt | ()t | [x =yt
corresponds to the signature endofunctor

YX

14X XX+ VXxiX+VxVxX

+0X+VxVxX (16)

onSet”. Indeed, its initial algebra

~

70 1+4T0xT0+V x6T0+V xV xTO0

+0T0+V xV xTO0

is the presheaf af-calculus terms: at stageit is the set of
(a-equivalence classes of) terms with at megtanonical)
free variables, with action given by variable renaming.

Value-passing CCSMe will consider the following frag-
ment of CCS passing expressianas in (7) along a finite
set of channels € C:

t=0 | t1]ta | c?(x).t | cle).t | [ex=ea]t
This grammar has associated signature endofunctor

YpX

1+ X X X+ Ko xdX
+KexExX+ExExX

on Set”, whereK is the constantly”’ presheaf.
More generally, we have a signature bifunctor :
Set” x Set’ — Set”

S(M,X) = 1+ X x X + K¢ x 6X

+KexMxX+MxMxX (17)

parametric in the presheaf of messages being passed.

1.3. Substitution

In other words¢ is not only an algebra homomorphism but
also, as we explain below, a clone homomorphism.

Recall that andbstrac) clone[9, page 132]X, consists
of a family { X, },.cn Of sets, a family

(V™ e X, | 1<i<n}nen
of distinguished elements, and a family
{1l X X (Xin)™ —>= Xom b men
of operations such that, for every elemendf X,,, every
n-tuple @ = (uq,...,u,) of elements ofX,,, and every

m-tuple ¥ of elements ofX,, the following three axioms
hold:

Lo, (Vi3 W) = tn (G v1, oo ) =1

. (29)

foe (o (t50); 0) = pue(t; pre(ur; 0), ..oy pre(up; 0))

An homomorphisnh : X — X’ between clones is a fam-
ily {h, : X,, — X }.en Of functions that respects the
clone structure.

The clone structure on the familyE,, }..cn of expres-
sions is given by the variables (1 < i < n)in E, and by
the simultaneous substitution of expressions for expressions

E, x (Ex)"
(e;e1,...,en)

—~ E,
= e[ /gy,

€n / ]
P Ty

(The three axioms in (19) amount to the familiar proper-

ties of substitution.) For the semantic domgih Z), the

clone structure is given by projections and function compo-

sition (together with pairing). In fact, for every object

of a cartesian categoiy, one can form thelone of oper-

ations (C, C') on C, with z/i(") given by theit" projection

m C"—C andﬂfﬁ) by the map

cieme)yxecem,oy — c(ecm,0)
(f;flv'”vfn) = fo<f1a~~'afn>

Thus, with respect to the above clone structures, the re-
guirement that the semanti€sbe a clone homomorphisms
amounts to the identity (9.1) and the semantic substitution
lemma (18).

Monoids. The clone structure has equivalent representa-
tions as either of the following: finitary monads &et,

Clones. We have seen that besides the operators, the set awvere theories, substitution algebras [13, Theorem 3.3],
manticsE also respects variable renaming (see (9) and (15)).or, most importantly for this work, monoids in the monoidal

However £ respectsubstitutionn the stronger form of sat-
isfying thesemantic substitution lemma

Elel/zyy - [an]lm

Ele]n o Eler]m, - - - (18)

,5[[en]]m>

closed categorySet™, e, V) [13, Proposition 3.4], where
the monoidal product is defined by the following coend:

nel
(X oY) :/ X, x (V)" (meF) (20)



This tensor product and variations thereof play a crucial role
in this paper; they arise from the following general situa-
tion (see, e.g., [23, I.5]):

1
W [ropC 5 Y Set”
20 _eC
- CN / @y
C (C,—)
C

whereC is cartesian and cocomplete and whéré denotes
the cartesian extension 6f.

1

Proposition 1.1 1. ForC and D cartesian and cocom-
plete categories, anel : C — D a cartesian functor
with a right adjoint, we have a canonical natural iso-
morphism

_eFCxF(_e()

forallC € C.
. For a cartesian and cocomplete categbisuch that,

for all C' € C, the functor_ x C is cocontinuous, we
have the following equivalence of categories

C CarCoc(Set™, C)
C = _oC
FV <4 F

~

whereCarCoc is the category of cartesian and cocon-
tinuous functors, and natural transformations. O

Corollary 1.2 For everyX € Set™ andC e SetC, there
are canonical natural isomorphisms as follows

(LeX)eC _e(Xe()
(X,(C,2)) (XoC,)

~)

O

In this paper we will exclusively consider the above ten-
sor construction whe@ = Set®, for some small category
C (see [23, VII.2 and VIII.4] for a general discussion in the
context of topos theory). In this case, the ten&os C (for
X e Setf andC e Set®) has the following elementary
description

fne]F Xn « (Cm)n

(HneN X" X (an)n)/z
where= is the equivalence relation generated by

(XeCO)p,

(meC)

1

(@5 ¢p1,5 s Con) ~ (z[plscrye i) (pin—=n)

Note that in particular taking = F andC = Y ¢ Set”
we obtain the tensor (20) @et”. We will also use the case
whereC = 1 (the terminal category), hence= Set and
Cis a setS:

neF
XeS= X, x 8"

As mentioned above, the categories of clones and
monoids in(Set]F,o,V) are equivalent, hence the seman-
tics& : E — (Z,Z) is both aX-algebra homomor-
phism and a monoid homomorphism. In fact, by Theo-
rem 4.1 of [13], the presheaf of expressidnss the initial
object in the category df-monoids(consisting of compat-
ible ¥-algebra and monoid structures with corresponding
homomorphisms). And, as the-algebra structure in (14)
for the clone of operation$Z,Z) is compatible with the
clone/monoid structure ofZ,Z), the semantics is the
uniqueX-monoid homomorphism frork' to (Z, Z).

1.4. Categorical operational semantics

It is shown in [35] that operational rules of the form (1)
for signature and behaviour endofunctérsnd B on a bi-
cartesian category induce a compositional semantics hav-
ing the (full abstraction) property that two terms have the
same meaning if and only if they are bisimilar, provided
that () the forgetful functorB-Coalg—- C has a right ad-
joint (hence a final coalgebra exists), afidl the behaviour
B preserves weak pullbacks. The main tool we use to es-
tablish {) for the behaviours in the present paper is the fol-
lowing.

Proposition 1.3 (See [24, 3]) For a finitary (resp. ac-
cessible) endofunctoB on a locally finitely presentable
(resp. accessible) categors, the forgetful functor
B-Coalg— B has a right adjoint. o

The above mentioned (coalgebraic) notiorbadimula-
tion is due to [2]. In this paper, we will consider it in the
following form: a B-bisimulationbetween two coalgebras
h:X — BX andk : Y — BY is arelation (i.e., equiv-
alence class of monog) — X x Y between the carriers
X andY which lifts to the coalgebras in the sense that the
diagram

X Y

Lo

BX <=—BR——BY

R

commutes for some coalgebra structureRainFor the be-
haviour in (3) B-bisimulation is (strong) bisimulation.

2. Message passing bisimulations

2.1. Value passing

Late bisimulation. To model value-passing CCS, with re-
spect to a set of valuéé and afinite set of channel§’, we
consider the behaviour endofunctor

BS =8¢(CxS'+CxVxS8+85) (22)



on Set, where the components of the sum respectively which we will consider below in the following uniform form
model input, output, and silent actions. (Cf. [20].)

With respect to this behaviour functor, coalgebraic BS = (Cﬁpg({w)
bisimulation corresponds to late bisimilarity. Indeed, a x (C=8((V x S)) (23)
coalgebra: : S — BS induces the late transition relation x (1=05(9))
0,
s —= fiff (c,f) € h(s) (ceC,seS, feS) where_=_ : pSet°® x pSet — Set is the partial-
c{vy . , , exponentiafunctor (see e.g. [11]).
5 . S it (c,v,5) € hls) (c€CveV,s,s €8) In this setting, a coalgebra : S — B.S induces the
s—=s'iff & € h(s) (s,8 € A) early transition relation

that provides a characterisation of coalgebraic bisimulation e?vy .
in far?ﬂliar terms (see [21]) as follows. ° 5 st 5" € mh)(e)(v) (c€CveV,s s €5)

cl(v
s VN s'iff (v,s") € ma(hx)(c) (ceC,veV,s, s €8)
s —>s"iff s’ € m3(hx)() (s,8 € 9)
that provides a characterisation of coalgebraic bisimulation
2. A symmetric relation®? C S x S such thatsy R s, in familiar terms as follows.

implies Proposition 2.2 The following data are equivalent.

Proposition 2.1 The following data are equivalent.

1. A coalgebraic bisimulation for a coalgebra.&n

" o .
o if s 0 £ then there existsf’ such that 1. A coalgebraic bisimulation for a coalgebra.gn

s c?() # andf(v) R f'(v) forallv € V; 2. A symmetric relationR C S x S such thatsy R s,
implies
cl(v
e if 39 L> s then there exists’ such that ?(0)
, vy, P e if sy ——= s then there exists’ such that
sy —> ' ands’ R sg; (o)

. sy — s’ ands R ¢';

e if 59 —> s then there exists’ such that), —> s’

ands R s’ O ; ct{v) —
- e if sy ——= s then there exists’ such that
. . . . el
To appreciate the way in which (22) models the late in- 8h SUN s’ ands R s;

terpretation of input, it is instructive to use the isomorphism
Pe(S + 8" = 9:(5) x #¢(S") and consider the behaviour
in the following form

e if sp —> s then there exists’ such that), —> s’
ands R s'. |

BS = 9:(S7)C x 9:(V x §)C x 9¢(S) 2.2. Name passing

from which, as observed by Gordon Plotkin, one can read  Following [12], we will consider notions of behaviour
the late interpretation off the first component of the product for the 7-calculus in the category of (variable set’,
corresponding to “first choosing a derivative and then re- wherel is the category of finite cardinals and injections.
ceiving a value”. To model the early interpretation of input, However, all the constructions involved are also meaning-
corresponding to “first receiving a value and then choosing ful for pullback-preserving presheavesSet' and so, fol-

a derivative”, one thus needs to reverse the role of the typelowing [33], we also obtain notions of behaviour in the
constructors for non-determinism and inaction, and input. Schanuel topos (see e.g. [23, pages 155 and 158]).

Early bisimulation. Noticing the following decomposi- Late bisimulation. The constructions needed to model

tion of the finite powerset functor late bisimulation [27] as in [12] are:

o1 4t e The type ofnamesN € Set' with identity action

= f N, =n.
Wherefpg’ is thenon-emptyfinite powerset functor, a natural e The powertype ¢; : Set! — Set! with pointwise
behaviour for the early interpretation is then the endofunc- action(9¢P),, = 9¢(P,).
tor
e Products(x) andcoproducts(+) given pointwise by
BS = (14 97(9)")C x 96(V x 9) x £¢(8) (P X Q)n = Pn x Qnand(P + Q)n = Pn+ Qn.



e The exponentialP™V with action given by(P"), =
(P,)" X Ppy1andP()(f,p) = (f',p") where

(fa)ld]
ple, 2]

if £ =1a

/
otherwise and p’ = p[t +1]

P ={

e The dynamic allocationtype § : Set’ — Set'
with action given by(6P),, = P41 and(6P)(¢) =
P(t+1).

The behaviour functor for late bisimulation of [12, 33] is
BP =N x PY + N x N x P4+ N x 6P + P) (24)

onSet'. Hence we have that

BP, = pf( ’I’LX(Pn)nXPn+1
+nxnxP, +nx P,
+Pn )

in Set.

A coalgebrah : P — BP induces the late transition
relation

a?() .
p—=f,p'iff (a, f,p") € hn(p)
(aen,pe P, fe(P)"p € Pnt1)

al(b .
p 2L it (a,b, ') € hn(p)
(a,ben,pp €P,)
al() .
p——=>p iff (a,p’) € hy(p)
(a eEn,pe Pn,p' € Pn+1)

p——>piff p’ € hn(p)
(p,p" € P)

that provides a characterisation of coalgebraic bisimulation

in familiar terms (see [27]) as follows.

Proposition 2.3 The following data are equivalent.
1. A coalgebraic bisimulation for a coalgebra Bn
2. A family of symmetric relations

{ Ry C Py X Py }nen
such that, for every, € N,

(@) p R, gimpliesp[i] R,, q[¢], forallc: n>—= m
inT;
(b) p R, qimplies
o if p 0 f,p' then there exisy, ¢’ such

thatg 0 g,¢', andf(a) R, g(a) (for all
a€mn)andp’ R,i1¢;

. al(b .
o if p b p’ then there existg’ such that

b
q e q andp’ Ry 41 ¢,

! .
o if p 0 p’ then there existg’ such that
a!
¢ ¢’ andy’ Rny1 ¢
e if p > p’ then there existg’ such that
p ¢ andp’ R, ¢'. O

Early bisimulation.  The definition of a behaviour functor
for early bisimulation (left open in [12, 33]) requires the
introduction of a new type constructor.

e For amono-preservingpresheafP : I — Set we
defineP=_ : Set! — Set!' as the functor mapping
a presheaf) to the presheaP = @ with action given
by (P=Q), =P, =@, and

(P=Q)(1) = P()=Q(1) : uk— Q(1) ouo P()"

whereP(1)%(q) = piff P(:)(p) = q (see [11]).

This construction extends that of products in that we
have an injection” x Q > P=\Q given by:

PnXQn . PniQn

25
pg = pfi=g (25)

where(pfi=2q)(z) = (if z = p then q).

In the vein of the treatment of early bisimulation for
value-passing CCS given in (23), we consider the follow-
ing behaviour functor

BP =( N=¢{(P)V)
X (N=9[(N x P)) x ( N=¢7(5P))
x (1=95(P))

(26)

in Set!, where the components of the product respectively
model input, free and bound output, and silent actions. (The
role of the constructofN=-_ in this behaviour functor is
analogous to the one of the topped tensor product ' _
in the model of [18].)

Note that because of the following isomorphisms

Pr(P+Q) = 9:(P) x Pr(Q)
Pe(N x P) =~ N=p{(P)
Pe(P) = 1=0((P)

thelate behaviour functor (24) can be written in the follow-
ing form

(N=p{(PY))

x (N=97(N x P)) x (N=F{(6P))

x (1=05(P) )

which makes clear that the late and early interpretations of
free and bound output, and of silent actions are the same.



Considering the pointwise early behaviour
BP, = (n=(%{P,)" x &{ P11

X (n=9f(n x P,))

X (nﬂ@;Pn_H )

x (1= P, )

a coalgebrah :
relation

a?(b) .
p —> p/ iff pl € (Wl(hnp)(a))(b)
(a,b€n,p,p €P)
a?() .
p—=>p iff p’ € ma(m(hnp)(a))
(aen,pe P, p € Ppi1)
al(b) .
p —p'iff (b,p") € ma(hnp)(a)
(a,b€n,p,p €P)

a! .
p— i € m3(hnp)(a)
(a€n,pe Py, p € Pri1)

p—p iff p' € ma(hnp)()
(p.p € P)

P — BP induces the early transition

3 Semantics of name passing

To model the structural operational rules for the
m-calculus using natural transformations of type (1), we are
faced with the fact that the signatukeis an endofunctor
on Set” (see (16)) while the behaviouB (for both the
late (24) and the and the early (26) interpretations) is an
endofunctor orSet’. Far from being a problem, this dis-
parity allows for the desired compositionality result to hold.
Indeed, both late and early bisimulations a@ congru-
ences. What we need are thus behaviour functors for late
and earlycongruencestead. These behaviours can be ob-
tained by (right) extending thB’s on Set' along an adjunc-
tion Set” =T _ Set' obtaining new endofunctor8’s on

Set”. Moreover, a natural transformation of type
(X x BX) — BTX (27)

in Set™ will be suitable to model the desired structural op-
erational rules for the-calculus.

Late and early congruences. The adjunction we need be-
tweenSet” andSet' is an instance of the adjunction in (21)

that provides a characterisation of coalgebraic bisimulation

H I .
in familiar terms (see [27]) as follows. takingC = Set’ andC' = N:

Proposition 2.4 The following data are equivalent. S
P g q Set’ =7 _ Set! (28)
1. A coalgebraic bisimulation for a coalgebra Bn —oN

2. A family of symmetric relations
{Rngpn XPn}neN
such that, for every, € N,

(@) p R, gimpliesp[i] R,, q[¢], forallc: n>—= m
inT,
(b) p R, qimplies
) a?(b) i ,
e if p ——= p’ then there existg’ such that
a?(b
¢ L ¢ andp' R, ¢';
a?
o if p 0 p’ then there existg’ such that
a?
¢ "% ¢ andyp Rny1 ¢

. b .
o if p b p’ then there existg’ such that
b
¢ 2 ¢ andp' R, ¢';
! .
o ifp L(L p’ then there existg’ such that
!
q 0 q andp’ R,11 q';
e if p > p’ then there existg’ such that
q—q andp’' R, ¢'. O

Alternatively, one can describe this adjunction as the essen-
tial geometric morphism (see, e.g., [23, page 360]) associ-
ated to the inclusiofi — F. Thus, we have a canonical
natural isomorphism

XeN|X| (29)

(essentially given by the actiok,, x m" — X,, of X)
where|_| : Set” — Set' is theforgetful functor given by
precomposing with the inclusidn—- F.
We can now define, for every endofunci®on Set', an
endofunctor B
BX = (N, B|X])

i.e., theright Kan extensionof (N, B_) along (N, _).
Using the isomorphism (29) and the adjunction (28),
the B-coalgebras are in bijective correspondence with
B-coalgebrasX | — B|X]|. In other words B-coalgebras
are B-coalgebras on presheaves with an action akdhge-
namings (rather than only on injective ones). This makes a
crucial difference in terms of coalgebraic bisimulation.

Proposition 3.1 For B as in (24) [resp. (26)], the following
data are equivalent.

1. A coalgebraic B-bisimulation for a coalgebra
X — BX.



2. Afamily of symmetric relation$ R,, C X, X X, }nen Restriction.For restriction, the rule is modelled by a map of
as in Proposition 2.3 (2) [resp. Proposition 2.4 (2)] typed(X x BX) — (N, B|TX|) in Set” which, in fact,
(with respect to the transposedB-coalgebra  comes from a map of type
|X| — B|X|) where the closure condition (a)

is generalised to 0B|X| — B|TX| inSet'
R, ¢ implies Ry, Jforallp:n—m ) . )
ﬁ, F. aimpliesply) ) g 0 Forinstance, the core of this latter map corresponding to the

following two rules

Proposition 3.2 1. The functorg_)" : Set' — Set'

andN"=_ : Set! — Set! (n € N) are finitary. NETE
—

~ R
2. For B as in (24) and (26), the lifted functo8 are (RES) (@)P % ()0 v#ab (OPEN a(z) TFa
finitary (hence the forgetful functds-Coalg— Set” (@)p — @
has a right adjoint) and preserve weak pullbacks. is the map

O

RO
Therefore, every natural transformation of type (27), with ON x ON x §|X| = #r(N x N x |TX]| + N x §|TX])

the late (early) behaviour functor, induces a compositional

. . defined, using the internal language (see [12]), as follows:
semantics fully abstract with respect to late (early) congru- 9 guage ( [12)

ence. RO(a, b, q)

= case a of
Categorical rules. We sketch how ther-calculus opera- old(a/) = let¢ =dnq
tional rules [27] are modelled by a natural transformation in case b of
of type (27). For brevity, we only consider the operational old(') = {(d,V,v¢)}
rules of the binding operators (input and restriction); the new = {(d,¢)}
operational rules for the other operators are modelled along new = 0

the lines of [34] using the isomorphisms

wheren : |X| — |TX| andv : §|TX| — |TX]| (in

Set') are respectively the (underlying maps of the) unit and

(C, DY) the restriction operator (iBet”) of the freeX-algebral’ X
onX.

<C7D1> X <C7 D2> = <C, D1 X D2>
5(C, D) =

satisfied by the functors in (13) withcartesian closed, and

the ma _ )
P V x X — (N, N=|X|) (30) 4. Semantics of value passing

obtained by transposinly x X| = N x |X|>— N=|X|,

where the injection is given by (25). Actions. We have seen ifil.1 that the homogeneous sub-

] ) stitution of expressions for variables in expressions can be
Input. For input, the rule is modelled by a map of type modelled as monoids. For the heterogeneous substitution
b B ) SeSmsionbis nmse sz
Using (30) and projecting out the components that do notdefines a monad. e A/ on Set”. The category of al-
contribute to the rule we can focus on defining a map of 9ebras of this monad/-Act, consists of iight) actions
type AeM — A [22 VII.4]. In elementary terms, this amounts
06X — <N, |X‘N> = 5<N, |X‘> toa famlly{ a DA, X ( m)n — An }n,meN of oper-

The required map i8 applied to the unifX >~ (N, | X|) ations such that

of the adjunction (28); that is, am(a;vi,...,vn) =a

Xop1 — SetH(N”“, | X) ag(am(a; @); 0) = agla; pe(ur; 0), . .., pe(un; )
x> {Apem™alp] hner
forall a in A, @in (M,,)", and? in (M,)™. (Note the
Note that this map can be used both for the late andoccurrence of: in the second law.)
early cases by precomposing it with suitable mja\lps respec- For examples of actions consider the following.
tively arising from the injectionsX |V > ¢ (| X|") and A V-actionA e V —= A is forced, by the unit law, to be
| X |N>— (9| X ). the canonical isomorphism e I = A. Thus, the category



V-Act is isomorphic tdSet”; which explains why, forname  monad is denoted b¥,;, as it is a lifting of the monad’y,

passing, we can do without extra substitution structure. induced byX ;.

For objectsC and D in a cartesian categorg, the Moreover, every monoid homomorphishi’ — M in-
monoid (C,C) has a canonical action on the presheaf duces a reindexing functat,;-Alg — % ,,/-Alg, which is
(C, D) given by (pairing and) composition a lifting of the reindexing functod/-Act — M’-Act. In

As in any bicomplete monoidal closed category particular, the reindexing functdt ; ) -Alg — Y -Alg
(cf. [23, VII.3]), @ monoid homomorphism{’ — M in- induced by the semantics of expressidns— (Z,Z) al-
duces aeindexingfunctor M-Act — M’-Act with both lows us to turn every interpretation f@?(z,@ (0) into one

left and right adjoints. Thus, the semantics of expressionsfor TE(Q)_
E — (Z,Z) and the unique homomorphisin — M

induce the following adjoint situations Semantics. Let M be a monoid of messages $et"; a

(M) typical example being the clone of operatiofig V) on a
~ ~ . set of valuesy.
(Z,Z)-Act —= E-Act, M-Act — Set We have the following situation (cf. (5))
_oM

B
where, on the right hand sid&] e M has action given by (M,_) ©,._) Q
multiplication and(), X) has action given by multiplica- M-Act ——> Setf =T Set
tion and evaluation. () ~— C) —e0
Su XM

Syntax. The substitution of expressions in terms involves,
in turn, a substitution of expressions in expressions. Thus,where the adjunction on the right can be alternatively de-
the signature bifunctor for value-passing CCS needs to bescribed as the essential geometric morphism associated to
parametric in anonoidof messages. Accordingly, we let the functor(0) : 1 — FF; hence
% be the bifunctoMon(Set”) x Set” — Set” given
by (17). X e0= X,
For a monoid M, we write X,, for the functor
S(M,_) : Set® —> Set”. One can lift=,, to the category ~ for all X € Set".

M-Act of M-actions by means of a distributive law To have both syntax and behaviour on the same category,
we will proceed as in the previous section and (right) extend
AXy(L)eM=Xy(_eM) behaviour functorsB on Set along the composite adjunc-

tion M-Act =T _ Set to B on M-Act. To do this easily,

of the endofunctorX,; over the monad induced by the we need a lemma.

monadic adjunctiod/-Act _ T Set”. This distributive
law is essentially the strength described in [13, page 200],Lemma 4.1 For C cartesian and cocomplete, the compos-

with the extra use of the multiplication of the mondidi in (M,_) (c,_)
the fourth and fifth summand &f,;. The resulting endo-  ite adjunctionM-Act =T _ Set” =T _ C is given by
functor | —C
— _|eC:M-Act “ T _C:(Me(C,_). O
Z]u (A o M i> A) | | < >

_ X4 Sa It follows that the extension of a behaviour functBron

= (Zn(A) e M = Y (Ae M) z4) Set is along the adjunction

on M-Act has as algebras presheavaswith both a

Y-algebra structure and aw -action compatible with each |—lo - M-Act =T _ Set : (Mo,_) (31)

other in the sense that the evident diagram ~
where M, is the set of ground messages, yieldiBgon

Ypu(A)e M ——= S (Ae M) ——= 3 (A) M-Act to be given by
l l BA = (M, B(4y))
Ae M A

Late and early congruences. As operational models for
commutes. We denote the corresponding category ofvalue passing we takB-coalgebras

Y-algebras byy-Alg. The associated forgetful func-
tor X,-Alg — M-Act has a left adjoint; and the induced A — (My, B(Ap))
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