
Functional Programming and Specification Lecture Note 1, 4 February 2011

Lazy and Eager Evaluation

Recall that evaluation is “call by value” in ML: before performing function application, we
have to evaluate the argument. This happens even if the argument isn’t needed for the result,
as in

fun f(y) = 1

Because of this, ML is called an eager language. Another terminology for essentially the same
thing is that ML is strict ; this means that applying f or any other function to an expression
exp having no value (because exp fails to terminate) gives an expression that has no value.

Some functional languages use lazy evaluation, also known as “call by need”, meaning that
an expression will not be evaluated unless its value is actually required in order to produce
the result. In a lazy language, f(exp) = 1, even if exp fails to terminate — the argument
to f doesn’t need to be evaluated to determine the result. This isn’t done by analyzing the
definition of f, but rather by delaying evaluation of the argument until its value is required.
One can’t analyze functions in general to see if they use their arguments — one reason (not the
only one!) is that in ML, any function might be the outcome of a complicated computation
rather than just text.

Not evaluating an unused argument saves time. If its evaluation doesn’t terminate, not
evaluating it saves a lot of time!

Here is another example:

fun g(x,y,z) = if x<2 then y+3 else z+6

Depending on the value of x, either the value of y or the value of z will be required, but not
both.

Interesting examples arise with long or even infinite lists used as intermediate results in
computations, in cases where only part of the list needs to be computed in order to determine
the required result. Computation is demand-driven: we only compute as much of the list as
we need to get the result.

This seems very sensible. But there are some disadvantages:

• lazy evaluation is difficult to implement efficiently

• the order of evaluation can be counterintuitive. This makes debugging difficult, and
doesn’t mix so well with state-change, exceptions, or input/output

• if lazy evaluation is combined with pattern matching, it seems impossible to be really
lazy — in some circumstances, unnecessary evaluation may be required.

If you want lazy evaluation in ML, you can program it rather than relying on having it
be built into the language. The rest of this note explains how.

Non-strict constructs. ML contains a few constructs that are not strict.

if true then exp1 else exp2: will not evaluate exp2
true orelse exp, false andalso exp: will not evaluate exp

Suppose

fun loop(x) = loop(x+1)

and consider

1



fn x => loop(17)

When applied to an argument, this function produces no result, but it is itself a value. This
shows that the fn construct is not strict.

However, if you define

fun cond(x,y,z) = if x then y else z

then cond will be strict, like any ML function.
Note that the first of these are abbreviations:

true orelse exp = if true then true else exp
= case true of true => true | false => exp
= (fn true => true | false => exp)(true)

so the the real non-strict construct here is fn.
The body of a function is not evaluated until an argument is supplied. Said another way,

evaluation of the body is delayed until an argument is supplied. Supplying an argument forces
evaluation.

Force and delay. We can use this idea to explicitly say when expressions are to be evalu-
ated. Suppose we have an expression exp : t. If we type it in we get its value. Now consider
the function value

delayed_exp = fn () => exp

We get delayed_exp : unit -> t. This is a “package” containing exp which is “waiting”
to be evaluated. If we need the value of exp, we write the function application:

delayed_exp()

which gives exactly the value that exp would have given originally.
Any type of argument could have been used in delayed_exp. We use ():unit because the

value of the argument is completely irrelevant, and values of type unit carry no information
at all.

We can be a bit more systematic. Define

type ’a delayed = unit -> ’a

Then delayed_exp : t delayed. Further, define

fun force d = d()

Then force : ’a delayed -> ’a.
Next, we would like to define a function that does the delaying. Let’s try:

fun delay exp = fn () => exp

We get delay : ’a -> ’a delayed which is right, and force(delay(exp)) evaluates to
the same value as exp, but the behaviour is wrong: delay is a function so it evaluates its
argument, of course!

So delay(loop(17)) will loop rather than evaluating to a function that will loop as soon
as it is applied. This is exactly what we don’t want.

It is in fact impossible to write delay in ML. It could have been provided as an abbrevi-
ation, but it isn’t. So we have to write

fn () => exp

and think of it as delay(exp).

2



From call-by-value to call-by-need. Suppose we have a function

fun f x = ... x ... x ...

where f : s -> t. Replace this by

fun f x = ... (force x) ... (force x) ...

which gives f : (s delayed) -> t. Then replace each call f(exp) anywhere in the program
by f(fn () => exp).

This is in fact call-by-name rather than call-by-need. In call-by-need, an expression is
evaluated at most once while here it may be evaluated more than once. For example, suppose

fun f x => x+x

If we transform as above, and then do the application f(fn () => exp), exp will be evaluated
twice if the value of x is required both times it appears in the body of f. But this is a fine
point.

Lazy datatypes. More interesting than transforming call-by-value functions to call-by-
need is the ability to create datatypes like infinite lists and infinite trees. The same basic idea
applies. We need ML’s ability to store functions as components of data structures!

We can’t store an entire infinite list explicitly, for obvious reasons. What we can do is to
delay the computation of the end part of the list until it is needed.

Recall that ordinary lists are defined like this:

datatype ’a list = nil | :: of ’a * ’a list

Lazy lists can be defined like this:

datatype ’a llist = lnil | lcons of ’a * (’a llist) delayed

Here’s a function that produces an infinite list of ones:

fun lones() = lcons(1,lones)

Here’s a function that produces the infinite list of integers starting from a given number:

fun lfrom n = lcons(n,fn () => lfrom(n+1))

To access the components of such lists, one can use pattern matching with explicit appli-
cations of force where appropriate. Or we can define:

fun lhd(lcons(n,_)) = n

fun ltl(lcons(_,l)) = force l

fun lnth(0,l) = lhd l
| lnth(n,l) = lnth(n-1,ltl l)

Prime numbers. We can use the functions above to compute the infinite list of prime
numbers.

fun lfromto(n,m) =
if n>m then lnil else lcons(n,fn () => lfromto(n+1,m))

fun lupto n = lfromto(2,n)

3



fun divides(n,m) = ((m mod n) = 0)

fun lforall(p,lnil) = true
| lforall(p,lcons(a,dll)) = p(a) andalso lforall(p,force dll)

fun lisprime n = lforall((fn m => not(divides(m,n))),lupto(n-1))

fun lprune(p,lnil) = lnil
| lprune(p,lcons(a,dll)) =

if p(a) then lcons(a,fn () => lprune(p,force dll))
else lprune(p,force dll)

val primes = lprune(lisprime,lfrom 2)

To print primes, use the following function (you need to type cntl-C to stop):

fun lprint(lnil) = ()
| lprint(lcons(a:int,dll)) =

(print(Int.toString a); print "\n"; lprint(force dll))

A digression: equality types. Consider the membership test on lists:

fun member(x,nil) = false
| member(x,h::t) = (x=h) orelse member(x,t)

We do not get member : ’a * ’a list -> bool! It can’t be fully polymorphic because we
need to be able to test equality of the elements in the list. (This wouldn’t be possible if ’a is
instantiated to int->int, for example.) What we get is member : ’’a * ’’a list -> bool.
The type variable ’’a can be instantiated by any type that admits equality.

Which types admit equality? Types like int, bool and string do. The type ty list
does provided ty does. Most user-defined datatypes do. It’s easier to say which types do not
admit equality.

Function types don’t admit equality: we can’t check (computationally) whether or not
two functions are extensionally equal. That is, given two functions f, g we can’t check if
∀x.f(x) = g(x), since the domain of quantification may be infinite. So we refuse to try.

Therefore, types that involve function types don’t admit equality. Examples are

int->bool * string
(int->bool) list
int llist

(the latter doesn’t admit equality since the value constructor lcons takes an argument of
type int * (int llist) delayed, i.e. int * unit -> (int llist)).

There is another way to write functions like member: we can pass the equality function as
a parameter, rather than relying on ML to find a way of testing equality for us.

fun member’(x,p,nil) = false
| member’(x,p,h::t) = p(x,h) orelse member’(x,p,t)

This has type ’a * (’a * ’b -> bool) * ’b list -> bool. Then instead of member(a,l)
we write member’(a,op =,l). We can of course supply functions other than =, e.g. <.

4


