The Common Framework Initiative for algebraic
specification and development of software*

Donald Sannella

Laboratory for Foundations of Computer Science
University of Edinburgh, UK

dts@dcs.ed.ac.uk www.dcs.ed.ac.uk/~dts/

Abstract. The Common Framework Initiative (COFI) is an open in-
ternational collaboration which aims to provide a common framework
for algebraic specification and development of software. The central ele-
ment of the Common Framework is a specification language called CASL
for formal specification of functional requirements and modular software
design which subsumes many previous algebraic specification languages.
This paper is a brief summary of past and present work on COFTI.

1 Introduction

Algebraic specification is one of the most extensively-developed approaches in the
formal methods area. The most fundamental assumption underlying algebraic
specification is that programs are modelled as many-sorted algebras consisting
of a collection of sets of data values together with functions over those sets.
This level of abstraction is commensurate with the view that the correctness
of the input/output behaviour of a program takes precedence over all its other
properties. Another common element is that specifications of programs consist
mainly of logical azioms, usually in a logical system in which equality has a
prominent role, describing the properties that the functions are required to sat-
isfy. This property-oriented approach is in contrast to so-called model-oriented
specifications in frameworks like VDM which consist of a simple realization of
the required behaviour. Confusingly — because the theoretical basis of algebraic
specification is largely in terms of constructions on algebraic models — it is at
the same time much more model-oriented than approaches such as those based
on type theory (see e.g. [NPS90]), where the emphasis is almost entirely on syn-
tax and formal systems of rules while semantic models are absent or regarded
as of secondary importance.

The past 25 years has seen a great deal of research on the theory and
practice of algebraic specification. Overviews of this material include [Wir90],
[BKLOS91], [LEW96], [ST97], [AKK99] and [ST?7]. Developments on the foun-
dational side have been balanced by work on applications, but despite a number
of success stories, industrial adoption has so far been limited. The proliferation of

* This research was supported by the ESPRIT-funded CoFI Working Group.

algebraic specification languages is seen as a significant obstacle to the dissemi-
nation and use of these techniques. Despite extensive past collaboration between
the main research groups involved and a high degree of agreement concerning the
basic concepts, the field has given the appearance of being extremely fragmented,
with no de facto standard specification language, let alone an international stan-
dard. Moreover, although many tools supporting the use of algebraic techniques
have been developed in the academic community, none of them has gained wide
acceptance, at least partly because of their isolated usability: each tool uses a
different specification language.

Since late 1995, work has been underway in an attempt to remedy this situ-
ation. The Common Framework Initiative (abbreviated COFI) is an open inter-
national collaboration which aims to provide a common framework for algebraic
specification and development of software. The Common Framework is intended
to be attractive to researchers in the field as a common basis for their work, and
to ultimately become attractive for use in industry. The central element of the
Common Framework is a specification language called CASL (the Common Al-
gebraic Specification Language), intended for formal specification of functional
requirements and modular software design and subsuming many previous spec-
ification languages. Development of prototyping and verification tools for CASL
will lead to them being interoperable, i.e. capable of being used in combination
rather than in isolation.

Most effort to date has concentrated on the design of CASL, which concluded
in late 1998. Even though the intention was to base the design on a critical se-
lection of concepts and constructs from existing specification languages, it was
not easy to reach a consensus on a coherent language design. A great deal of
careful consideration was given to the effect that the constructs available in the
language would have on such aspects as the methodology for formal development
of modular software from specifications and the ease of constructing appropriate
support tools. A complete formal semantics for CASL was produced in paral-
lel with the later stages of the language design, and the desire for a relatively
straightforward semantics was one factor in the choice between various alterna-
tives in the design. Work on COFI has been an activity of IFiP WG 1.3 and the
design of CASL has been approved by this group.

This paper is a brief summary of work in COFI with pointers to information
available elsewhere. CASL is given special prominence since it is the main concrete
product of COFI so far. A more extensive description of the rationale behind
COFT and CASL may be found in [Mos97] and [Mos99].

2 CASL

CAsL represents a consolidation of past work on the design of algebraic specifica-
tion languages. With a few minor exceptions, all its features are present in some
form in other languages but there is no language that comes close to subsuming
it. Designing a language with this particular novel collection of features required
solutions to a number of subtle problems in the interaction between features.

It soon became clear that no single language could suit all purposes. On
one hand, sophisticated features are required to deal with specific programming
paradigms and special applications. On the other, important methods for pro-
totyping and reasoning about specifications only work in the absence of certain
features: for instance, term rewriting requires specifications with equational or
conditional equational axioms.

CASL is therefore the heart of a family of languages. Some tools will make use
of well-delineated sub-languages of CASL obtained by syntactic or semantic re-
strictions, while extensions of CASL will be defined to support various paradigms
and applications. The design of CASL took account of some of the planned ex-
tensions, particularly one that involves higher-order functions [MHK98], and this
had an important impact on decisions concerning matters like concrete syntax.

CASL consists of the following major parts or “layers”: basic specifications;
structured specifications; architectural specifications; specification libraries. A
detailed description of the features of CASL may be found in [Mos99] and the
complete language definition is in [CoFI98]. Here we just give a quick overview
and a couple of simple examples in the hope that this will give a feeling for what
CasL is like. Further examples may be found in the appendices of [CoFI98].
Since features of various existing specification languages have found their way
into CASL in some form, there are of course many interesting relationships with
other languages. It is not the purpose of this paper to detail these so many
relevant references are omitted.

A CAsL basic specification denotes a class of many-sorted partial first-order
structures: algebras where the functions are partial or total, and where also
predicates are allowed. These are classified by signatures, which list sort names,
partial and total function names, and predicate names, together with profiles of
functions and predicates. The sorts are partially ordered by a subsort inclusion
relation, which is interpreted as embedding rather than set-theoretic inclusion,
and is required to commute with overloaded functions. A CASL basic specifica-
tion includes declarations to introduce components of signatures and azioms to
give properties of structures that are to be considered as models of a specifica-
tion. Axioms are written in first-order logic (so, with quantifiers and the usual
logical connectives) built over atomic formulae which include strong and exis-
tential equalities, definedness formulae and predicate applications, with gener-
ation constraints added as special, non-first-order sentences. The interpretation
of formulae is as in classical two-valued first-order logic, in contrast to some
frameworks that accommodate partial functions. Concise syntax is provided for
specifications of “datatypes” with constructor and selector functions.

Here is an example of a basic specification:

free types Nat ::= 0 | sort Pos;
Pos ::= suc(pre : Nat)
op pre: Nat —? Nat
axioms
~def pre(0);
Vn : Nat e pre(suc(n)) =n

pred even__: Nat

var n: Nat

. even 0

. even suc(n) < —even n

The remaining features of CASL do not depend on the details of the features
for basic specifications, so this part of the design is orthogonal to the rest. An
important consequence of this is that sub-languages and extensions of CASL
can be defined by restricting or extending the language of basic specifications
(under certain conditions) without the need to reconsider or change the rest of
the language.

CASL provides ways of building complex specifications out of simpler ones
(the simplest ones being basic specifications) by means of various specification-
building operations. These include translation, hiding, union, and both free and
loose forms of extension. A structured specification denotes a class of many-
sorted partial first-order structures, as with basic specifications. Thus the struc-
ture of a specification is not reflected in its models: it is used only to present the
specification in a modular style. Structured specifications may be named and a
named specification may be generic, meaning that it declares some parameters
that need to be instantiated when it is used. Instantiation is a matter of pro-
viding an appropriate arqument specification together with a fitting morphism
from the parameter to the argument specification. Fitting may also be accom-
plished by the use of named views between specifications. Generic specifications
correspond to what is known in other specification languages as (pushout-style)
parametrized specifications.

Here is an example of a generic specification (referencing a specification
named PARTIAL_ORDER, which is assumed to declare the sort Elem and the
predicate __ < _):

spec L1ST_WITH_ORDER [PARTIAL_ORDER]| =
free type List[Elem| ::= nil | cons(hd :?Elem; tl :? List[Elem))
then
local
op insert : Elem x List[Elem] — List[Elem];
vars z,y : Elem;! : List|Elem)
axioms insert(z, nil) = cons(z, nil);
xz <y = insert(x, cons(y, 1)) = cons(z, insert(y, 1));
—(z < y) = insert(z, cons(y, 1)) = cons(y, insert(z, 1))
within
pred order|[.- < _]: List[Elem| x List[Elem]
vars « : Elem;!: List|Elem)]
axioms order[__ < _](nil) = nil;
order[-- < _](cons(z, 1)) = insert(x, order[— < _](1))
end

Architectural specifications in CASL are for describing the modular struc-
ture of software, in constrast to structured specifications where the structure

is only for presentation purposes. Architectural specifications are probably the
most novel aspect of CASL; they are not entirely new, but they have no coun-
terpart in most algebraic specification languages. An architectural specification
consists of a list of unit declarations, indicating the component modules required
with specifications for each of them, together with a wunit term that describes
the way in which these modules are to be combined. (There is an unfortunate
potential for confusion here: in CASL, the term “architecture” refers to the “im-
plementation” modular structure of the system rather than to the “interaction”
relationships between modules in the sense of [AG97].) Units are normally func-
tions which map structures to structures, where the specification of the unit
specifies properties that the argument structure is required to satisfy as well
as properties that are guaranteed of the result. These functions are required to
be persistent, meaning that the argument structure is preserved intact in the
result structure. This corresponds to the fact that a software module must use
its imports as supplied without altering them.

Here is a simple example of an architectural specification (referencing ordi-
nary specifications named LisT, CHAR, and NAT, assumed to declare the sorts
Elem and List[Elem|, Char, and Nat, respectively):

arch spec CN_LIST =

units
C : CHAR ;
N : NAT ;

F : ELEM — LIST[ELEM]
result F[C fit Elem — Char] and F[N fit Elem — Nat]

More about architectural specifications, including further examples, may be
found in [BST99].

Libraries in CASL are collections of named specifications. A specification can
refer to an item in a library by giving its name and the location of the library that
contains it. CASL includes direct support for establishing distributed libraries on
the Internet with version control.

3 Semantics

The formal semantics of CASL, which is complete but whose presentation still
requires some work, is in [CoFI99]. The semantics is divided into the same parts
as the language definition (basic specifications, structured specifications, etc.)
but in each part there is also a split into static semantics and model semantics.

The static semantics checks well-formedness of phrases and produces a “syn-
tactic” object as result, failing to produce any result for ill-formed phrases. For
example, for a basic specification the static semantics yields a theory presenta-
tion containing the sorts, function symbols, predicate symbols and axioms that
belong to the specification. (Actually it yields an enrichment: when a basic spec-
ification is used to extend an existing specification it may refer to existing sorts,

functions and predicates.) A phrase may be ill-formed because it makes reference
to non-existent identifiers or because it contains a sub-phrase that fails to type
check. The model semantics provides the corresponding model-theoretic part of
the semantics, and is intended to be applied only to phrases that are well-formed
according to the static semantics. For a basic specification, the model semantics
yields a class of models. A statically well-formed phrase may still be ill-formed
according to the model semantics: for example, if a generic specification is in-
stantiated with an argument specification that has an appropriate signature but
which has models that fail to satisfy the axioms in the parameter specification,
then the result is undefined. The judgements of the static and model semantics
are defined inductively by means of rules in the style of Natural Semantics.

The orthogonality of basic specifications in CASL with respect to the rest of
the language is reflected in the semantics by the use of a variant of the notion
of institution [GB92] called an institution with symbols [Mos98]. (For readers
who are unfamiliar with the notion of institution, it corresponds roughly to
“logical system appropriate for writing specifications”.) The semantics of basic
specifications is regarded as defining a particular institution with symbols, and
the rest of the semantics is based on an arbitrary institution with symbols.

The semantics provides a basis for the development of a proof system for
CASL. As usual, at least three levels are needed: proving consequences of sets of
axioms; proving consequences of structured specifications; and finally, proving
the refinement relation between structured specifications. The semantics of CASL
gives a reference point for checking the soundness of each of the proposed proof
systems and for studying their completeness.

4 Methodology

The original motivation for work on algebraic specification was to enable the
stepwise development of correct software systems from specifications with veri-
fied refinement steps. CASL provides good support for the production of specifi-
cations both of the problem to be solved and of components of the solution, but it
does not incorporate a specific notion of refinement. Architectural specifications
go some way towards relating different stages of development but they do not
provide the full answer. Other methodological issues concern the “endpoints” of
the software development process: how the original specification is obtained in
the first place (requirements engineering), and how the transition is made from
CASL to a given programming language. Finally, the usual issues in programming
methodology are relevant here, for instance: verification versus testing; software
reuse and specification reuse; software reverse engineering; software evolution.

CAsL has been designed to accommodate multiple methodologies. Various
existing methodologies and styles of use of algebraic specifications have been
considered during the design of CASL to avoid unnecessary difficulties for users
who are accustomed to a certain way of doing things. For the sake of concreteness,
the present author prefers the methodology espoused in [ST97], and work on
adapting this methodology to CASL has begun.

5 Support tools

Tool activity initially focussed on the concrete syntax of CASL to provide feed-
back to the language design since the exact details of the concrete syntax can
have major repercussions for parsing. CASL offers a flexible syntax with mizfix
notation for application of functions and predicates to arguments, which re-
quires relatively advanced parsing methods. ASF+SDF was used to prototype
the CASL syntax in the course of its design, and several other parsers have been
developed concurrently. Also available is a XTEX package for uniform formatting
of CASL specifications with easy conversion to HTML format. ATerms [BKO9S]
have been chosen as the common interchange format for COF1I tools. This pro-
vides a tree representation for various objects (programs, specifications, abstract
syntax trees, proofs) and annotations to store computed results so that one tool
can conveniently pass information to another. Work is underway on a format for
annotations and on a list of specific kinds of annotations.

At present, the principal focus of tools work in COFT is on adapting tools
that already exist for use with CASL. Existing rewrite engines such as in OBJ,
ASF+SDF and ELAN should provide a good basis for prototyping (parts of)
CASL specifications. For verification tools, we plan to reuse existing proof tools
for specific subsets of CASL: equational, conditional, full first-order logic with
total functions, total functions with subsorts, partial functions, etc. The integra-
tion of proof tools such as SPIKE, EXPANDER and others will provide the po-
tential to perform proofs by induction, observational proofs, termination proofs,
etc. One system on which development is already well-advanced is HOL-CASL
[MKKO8] which provides static analysis of CASL specifications and theorem prov-
ing via an encoding into the Isabelle/HOL theorem prover [Pau94]. Another is
INKA 5.0 [AHMS99] which provides theorem proving for a sub-language of CASL
that excludes partial functions.

6 Specification of reactive systems

An area of particular interest for applications is that of reactive, concurrent,
distributed and real-time systems. There is considerable past work in algebraic
specification that tackles systems of this kind, but nonetheless the application of
CASL to such systems in speculative and preliminary in comparison with the rest
of COFI. The aim here is to propose and develop one or more extensions of CASL
to deal with systems of this kind, and to study methods for developing software
from such specifications. Extensions in three main categories are currently being
considered:

— Combination of formalisms for concurrency (e.g. CCS, Petri nets, CSP) with
CasL for handling classical (static) data structures;

— Formalisms built over CASL, where processes are treated as special dynamic
data; and

— Approaches where CASL is used for coding at the meta-level some formalism
for concurrency, as an aid to reasoning.

Work in this area begun only after the design of CASL was complete and so it
is still in its early stages.

7 Invitation

CoFTis an open collaboration, and new participants are welcome to join at any
time. Anybody who wishes to contribute is warmly invited to visit the COFT web
site at http://wuw.brics.dk/Projects/CoFI/ where all COFI documentation,
design notes, minutes of past meetings etc. are freely available. Announcements
of general interest to COFI participants are broadcast on the low-volume mailing
list cofi-1list@brics.dk and each task group has its own mailing list; see the
COF1I web site for subscription instructions. All of these mailing lists are mod-
erated. Funding from the European Commission is available until September
2000 to cover travel to COFI meetings although there are strict rules concerning
eligibility, see http://www.dcs.ed.ac.uk/home/dts/CoFI-WG/.

Acknowledgements Many thanks to all the participants of COFI, and in particular
to the coordinators of the various COFI Task Groups: Bernd Krieg-Briickner (Language
Design); Andrzej Tarlecki (Semantics); Michel Bidoit (Methodology); Hélene Kirchner
(Tools); Egidio Astesiano (Reactive Systems); and especially Peter Mosses (External
Relations) who started COFI and acted as overall coordinator until mid-1998.

References

[AGIT] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, July 1997.

[AKK99] E. Astesiano, H.-J. Kreowski and B. Krieg-Briickner (eds.). Algebraic
Foundations of Systems Specification. Springer (1999).

[AHMS99] S. Autexier, D. Hutter, H. Mantel and A. Schairer. Inka 5.0: a logic
voyager. Proc. 16th Intl. Conference on Automated Deduction, Trento.
Springer LNAT 1632, 207-211 (1999).

[BKLOS91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas and D. Sannella (eds.).
Algebraic System Specification and Development: A Survey and Annotated
Bibliography. Springer LNCS 501 (1991).

[BST99] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications in
CAsSL. Proc. 7Tth Intl. Conference on Algebraic Methodology and Software
Technology, Manaus, Brazil. Springer LNCS 1548, 341-357 (1999).

[BKO9S] M. van den Brand, P. Klint and P. Olivier. ATerms: exchanging data be-
tween heterogeneous tools for CASL. COFI Note T-3, http://www.brics.
dk/Projects/CoFI/Notes/T-3/ (1998).

[CoFI98] COFI Task Group on Language Design. CAsL — The CoOFI algebraic
specification language — Summary (version 1.0). http://www.brics.dk/
Projects/CoFI/Documents/CASL/Summary/ (1998).

[CoFI99] COFI Task Group on Semantics. CASL — The COFT algebraic specification
language — Semantics (version 1.0). COFI Note S-9, http://www.brics.
dk/Projects/CoFI/Notes/S-9/ (1999).

[GBY2]

[Mos98]

[MHKO8]

[MKKO8]

[LEWY6]

[Mos97]

[Mos99]

INPS90]
[Pau94]

[ST97]

[ST?7]

[Wir90]

J. Goguen and R. Burstall. Institutions: abstract model theory for specifi-
cation and programming. Journal of the Assoc. for Computing Machinery
39:95-146 (1992).

T. Mossakowski. Institution-independent semantics for CASL-in-the-
large. COFI Note S-8, http://www.brics.dk/Projects/CoFI/Notes/
S-8/ (1998).

T. Mossakowski, A. Haxthausen and B. Krieg-Briickner. Subsorted partial
higher-order logic as an extension of CAsL. COFI Note L-10, http://www.
brics.dk/Projects/CoFI/Notes/L-10/ (1998).

T. Mossakowski, Kolyang and B. Krieg-Briickner. Static semantic anal-
ysis and theorem proving for CASL. Recent Trends in Algebraic Devel-
opment Techniques: Selected Papers from WADT’97, Tarquinia. Springer
LNCS 1376, 333-348 (1998).

J. Loeckx, H.-D. Ehrich and M. Wolf. Specification of Abstract Data Types.
Wiley (1996).

P. Mosses. COFI: the common framework initiative for algebraic specifica-
tion and development. Proc. 7th Intl. Joint Conf. on Theory and Practice
of Software Development, Lille. Springer LNCS 1214, 115-137 (1997).

P. Mosses. CASL: a guided tour of its design. Recent Trends in Alge-
braic Development Techniques: Selected Papers from WADT’98, Lisbon.
Springer LNCS 1589, 216-240 (1999).

B. Nordstrom, K. Petersson and J. Smith. Programming in Martin-Lof’s
Type Theory: An Introduction. Oxford Univ. Press (1990).

L. Paulson. Isabelle: A Generic Theorem Prover. Springer LNCS 828
(1994).

D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing 9:229-269
(1997).

D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications and
Formal Program Development. Cambridge Univ. Press, to appear.

M. Wirsing. Algebraic specification. Handbook of Theoretical Computer
Science (J. van Leeuwen, ed.). North-Holland (1990).

