
Spreadsheet Programming with User Defined
Types and Functions

John Williams

4th Year Project Report
Computer Science

School of Informatics
University of Edinburgh

2013

Abstract
A system for defining functions and data types using spreadsheets is

presented. Jeksy is spreadsheet application which provides a way to cre-
ate function and type definitions using spreadsheets themselves. These are
referred to as FunctionSheets and TypeSheets. This gives users only fa-
miliar with spreadsheets access to some of the power available in classic
programming languages.

By solving real world problems using Jeksy it was shown how these
new features can be used to build spreadsheets with a better structure and
as a result reduce the likelihood of errors in the program.
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Chapter 1

Introduction

“A Dallas Oil and Gas company’s spreadsheet error resulted in millions of dollars being
lost. Several executives were fired.” [1]

Classic programmnig languages have addressed and solved many of the issues that
cause errors in spreadsheets today. This project investigates how these features can be
made available to users only familiar with spreadsheets. Two concepts are introduced;
FunctionSheets and TypeSheets. Through these a spreadsheet user can build structured
function defintions and data types with the intention that these tools will help them to
produce more robust programs.

In chapter two the motivation for the project is presented and the existing work into
the classification of spreadsheet errors discussed. From here different approaches to
extending spreadsheets are analysed culminating in the proposal of FunctionSheets and
TypeSheets. Finally, goals for these features and the project as a whole are constructed.

Chapter three focuses on the design of FunctionSheets and TypeSheets. Various de-
sign considerations are presented and their relative merits compared until a final de-
sign is selected. This serves as a specification for how the new features appear and
ultimately how the user interacts with them.

The spreadsheet application Jeksy is introduced in chapter four. Building upon an
existing application, Jeksy is the implementation of the specification constructed in
chapter three. In this section details of the algorithms and data structures used to
implement FunctionSheets and TypeSheets are given. Problems faced during imple-
mentation are discussed and ultimately why the prevailing solutions was chosen from
amongst the candidates. The chapter ends with a summary of remaining work provid-
ing justifications for why these features should be added to Jeksy.

Evaluation of Jeksy is carried out in chapter five of the report, there are two compo-
nents of the evaluation phase. First, Jeksy is used to create a definition of a binary tree.
This demonstrates how TypeSheets and encapsulation can be used to guarantee invari-
ants that define properties of the data structure. Furthermore Jeksy is evaluated on how
well it adheres to the expected user experience when working with spreadsheets.

7



8 Chapter 1. Introduction

The second half is focused on how Jeksy can be used to build more robust spreadsheets.
By implementing aspects of an industry level spreadsheet using Jeksy it is shown that
FunctionSheets and TypeSheets can create solutions that are easier to understand and
less likely to contain certain types of error.

In the final chapter the project’s achievements are summarised and future directions
discussed. Potential areas for expanding Jeksy include collections and higher order
function as well as enhancing the user interface when working with FunctionSheets.



Chapter 2

Background

2.1 Motivation for the Project

Spreadsheets are now ubiquitous with business and finance however despite their im-
portance there are still a startling number of errors found in these documents. It has
been reported that error rates in industry can be as high as 90%[2], with the conse-
quences of errors possibly leading to million dollar omissions[3].

While there is awareness surrounding these errors their likelihood is not set to reduce.
Corporate spreadsheets are only increasing in complexity as studies have found that
documents and formulas are doubling in size every three years[4]. In addition to the in-
crease of “innocent errors”[2] a more sinister phenomenon is intentional fraud through
malicious spreadsheet manipulation. The established methods for detecting accidental
errors are not especially effective at identify those caused deliberately[2] and so new
techniques need to be developed. With a survey conducted in 2004 by the Association
of Certified Fraud Examiners revealing that the median fraud loss for financial fraud
being one million dollars the incentive for corporations to improve their spreadsheet
practices is clear.

2.2 Existing Work

2.2.1 Research into Spreadsheet Errors

At a high level spreadsheet errors have been placed into two categories: qualitative
and quantitative errors[5]. Quantitative errors are described as numerical errors that
produce the wrong result from a calculation. The second group of errors - qualitative -
are flaws that do not necessarily manifest themselves immediately. They “degrade the
quality of the spreadsheet model” [5] and as result potentially cause quantitative errors
later on in the life-cycle of a spreadsheet.

Most of the work into researching spreadsheet errors has gone into the analysis of
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10 Chapter 2. Background

quantitative errors as techniques such as testing and code inspection have generally
found better success dealing with those[6]. Quantitative errors have been grouped into
three different classes[5]:

• Mechanical: Generally classed as incorrectly entering a value, they can exist in
the form of typing or pointing errors. While their rate of occurrence is high they
are likely to be detected by the user making the error.

• Logical: These are errors in which the wrong algorithm was chosen to complete
the task or it was incorrectly implemented. Logic errors may require domain
knowledge to find and solve.

• Omission: This type of error is created when a user misses something from the
spreadsheet model which may be due to a miss-interpretation of the problem.
Omission errors are recognised as being very problematic because they are dif-
ficult to detect.

When approaching the problem of preventing and correcting errors the generally ac-
cepted view is that any solution should be subtle and un-intrusive[6]. They should also
mirror the behaviour of spreadsheets themselves, providing immediate feedback to the
user as changes are made within the program.

2.2.2 Extension of the Spreadsheet Concept

Attempts to improve the current spreadsheet paradigm have taken various different
approaches. One such approach focuses on extending existing spreadsheet applications
to support new features that reduce error rates and increase probability of detection.
The paper “A User-Centred Approach to Functions in Excel” [7] introduces the idea of
using spreadsheets themselves to create user-defined functions. It establishes the rule
that spreadsheets must be used to define functions because it is the only paradigm of
computation that the user understands.

The term “Function Instance Sheet” is used to refer to a spreadsheet that is the invo-
cation of a particular function. The sheet contains cells designated as input and output
to the function along with formulas used as intermediate computation. In figure 2.1 a
function instance sheet is presented in addition to its invocation.

Notable features include the source of the function’s arguments being displayed in the
sheet, this provides the user with an easy way to identify where the function is being
called from. As is to be expected with spreadsheets, any changes are immediately
propagated both inside the function instance sheet and to its result. A large emphasis
is placed on offering the user these features with as little resistance as possible. This
requirement is fulfilled by allowing the user to create a function instance sheet from a
formula in a cell. The arguments are inferred from the formula and the expression is
replaced by a call to the function.

As each sheet refers to a single instance of the function there is an issue when it comes
to altering the definition. This is solved by giving the user two choices; either make the
changes to all invocations of the function or limit it to that sheet. If the first option is
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chosen then all function instance sheets are simply update to reflect the new definition.
In the case of local changes the function is renamed and the formula calling it updated
also, leaving all other instances of the function unaltered.

Figure 2.1: Function Instance Sheet

A limitation on the idea proposed in the paper is the ability to handle programming
techniques such as recursion. As each sheet represents a single call to the function
a recursive operation could potentially generate hundreds of sheets. They chose to
prevent recursion altogether in order to prevent this problem, a justification being that
the only inductive type is integers.

Much of the focus is on converting existing formulas in a spreadsheet to function in-
stance sheets however what is not explicitly clear is how existing definitions can be
used when building a spreadsheet from scratch. As each sheet represents a single
call it is unclear how a function could be distributed as a library or plugin to a new
spreadsheet. Although the emphasis was on improving legacy systems if this approach
became widely adopted then transitioning existing definitions to “greenfield” spread-
sheets would become increasing common.

At the other end of the spectrum there exist spreadsheets that make use of other pro-
gramming languages to enhance their functionality. Two examples of this are Hax-
cel [8] and Pyspread [9].

Solutions such as this add a great amount of power to a spreadsheet by exposing fea-
tures such as abstract data types and object based cell values. While impressive exam-
ples can be created using these tools they are not suitable for a corporate environment
because of the knowledge required to operate them. Most users of spreadsheets in in-
dustry have no formal programming experience, their only window to programming
being through spreadsheets themselves. The knowledge barrier required to use an ap-
plication such as this would deter most regular users from utilising the features and
so it does not address the issue of reducing errors in real word spreadsheets. There
is no disputing that if used properly these types of spreadsheets could produce well
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structured programs however for mainstream adoption the interface must be closer to
the expectation of a regular spreadsheet user.

2.3 Goals of the Project

Taking into account the ways of approaching spreadsheet extension discussed in 2.2.2
the aims of the project were to produce a solution that bridged the gap between spread-
sheets as an interface and classic programming language features. The goals can be
summarised by two main points:

• Offer features available in classic programming languages to users of spread-
sheets to aid in the design of more robust programs.

• Provide these features in such a way that the spreadsheet appearance and be-
haviour is not compromised.

In order to satisfy the goals two new features were proposed; FunctionSheets and
TypeSheets.

FunctionSheets were heavily inspired by function instance sheets proposed in [7] with
one distinct difference. FunctionSheets are a definition and do not represent a partic-
ular invocation of a function. As a result their distribution as a library which can be
re-used in multiple spreadsheets is more intuitive.

TypeSheets take this concept and extends it to data types; exposing object oriented
principles through a spreadsheet based interface.



Chapter 3

Design

The objective for the design of FunctionSheets and TypeSheets is to expose the power
of standard programming features through an interface that is consistent with spread-
sheets. This section details what these features look like and how they are used within
the application.

3.1 Spreadsheet Structure

When encouraging users to adopt new techniques and features, reducing the amount
of additional knowledge required to operate them is important; this was the motivation
to make the structure of FunctionSheets and TypeSheets as similar as possible. It is
reasonable to expect that the spreadsheet is the interface the user is most familiar with
and therefore it makes sense to design these features to reflect that.

Should a user with to define a new type or function they do so using the spreadsheet
itself. The details of the definition are stored within the cells of the spreadsheet and
it is up to the application to extract the information and create the type/function. For
the program to be able to complete the definition the cells must be labelled with their
purpose, for example cells that contain function arguments. When designing how the
cells were identified there were two main choices.

The first approach is to assign cells roles through graphical interface elements. For
instance a user could select cell A1 with the contents “square” and upgrade this to
a function name cell. This notifies the application that the current definition is for a
function called “square”. An advantage of this is that it makes clear to the system how
the definition has changed without requiring the entire sheet to be parsed again.

Alternatively, cells could be identified by headers that indicate where a particular part
of a definition begins. A parser can then extract the values from the following cells and
assign them to their correct roles. Under a naive implementation this would require
the entire sheet to be processed each time a change is made however optimisations can
be made later to only check particular sections of a sheet. The main advantage of this
approach is that its appearance is very similar to how spreadsheets are currently used;

13



14 Chapter 3. Design

namely a tabular layout with data labelled using headers and titles. This was the chosen
method because it was aligned more closely with the goal of producing an experience
for regular spreadsheets users. Headers are identified using a special character, the
choice here being the symbol ’# ’ however this is customisable by the user. The result
is that a very basic function definition could start as follows:

A B C
1 #FUN NAME
2 addSquares

. . .

. . .

Figure 3.1: Beginning of a Definition

3.2 FunctionSheets

In this report the term FunctionSheet refers to the definition of a function using a
spreadsheet, it does not necessarily limit a sheet to a single definition. It may be prefer-
able to include multiple related functions within a single spreadsheet as this makes their
distribution easier.

3.2.1 Sheet Headers

The headers available to the user when defining a FunctionSheet are:

#FUN NAME Marks the name of the function being defined.

#ARGS Start of function argument declarations.

#NAME The names of individual function arguments.

#TEST VALUE When testing the function the arguments are replaced with these values.

#DEFUN Start of any intermediate calculations used by the function.

#OUTPUT The output of the function.

Only the #DEFUN header is optional, it may be omitted when the entire function
definition is located inside the output cell. Initially the function name header was also
optional if the sheet only contained one definition (the name was based on the file
name). This was later revoked in favour of consistency.
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3.2.2 Function Arguments

The function argument section of a definition has two purposes; to indicate the name
of the arguments and also their values when testing the function. Although not strictly
necessary to produce a valid function, the #TEST VALUE header was made manda-
tory as it encourages the user to test the function as they write it. This in turn reduces
the chance of implementing the function incorrectly.

A B C
6 #ARGS
7 #NAME #TEST VALUE
8 x 9
9 y 10

Figure 3.2: Argument Definition

Figure 3.2 shows an example of how function arguments can be specified. This would
follow a name declaration such as 3.1. The user would be able to include the symbols
x and y in expressions and when evaluated they take the value 9 and 10 respectively.

3.2.3 Function Output

The output of the function is taken from the cell below the #OUTPUT header. This
must take the form of an expression and may include cell addresses. When it comes
to determining the function definition as used by the interpreter a recursive process of
substituting cell addresses for expressions begins. Starting from the output cell, any
cell references in the expression are replaced with the contents of that cell. This is done
depth-first until there are no more cell addresses remaining in the expression. Finally
the function signature is added to the expression to complete the process.

A B C
11 #DEFUN
12 Square x =x*x
13 Square y =y*y
14
15 #OUTPUT
16 =B12 + B13

Figure 3.3: Computing the Function Definition

The substitution process is as follows:

Start with out put = B12+B13
Replace B12 = (x∗ x)+B13
Replace B13 = (x∗ x)+(y∗ y)
Add signature addSquares(x,y) = (x∗ x)+(y∗ y)
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3.2.4 Testing

Unlike a normal spreadsheet the default display setting for an expression is its defini-
tion, not the result of its evaluation. This is because when developing a FunctionSheet
the user will want to know the previous calculations used. A toggle is available that
will switch to “test mode” whereby all expressions display their values. In this mode
the function parameters assume their test values so the user can inspect the output.
By changing the test values (3.4(b)) the user can immediately see the output of their
function with different arguments. Its worth noting that the cells A12 and A13 are
simply comments and do not interfere with the compilation of the function. This is
an advantage of using FunctionSheets as it allows documentation of the steps within a
function.

A B C
6 #ARGS
7 #NAME #TEST VALUE
8 x 9
9 y 10
10
11 #DEFUN
12 Square x 81
13 Square y 100
14
15 #OUTPUT
16 181

(a) Switching 3.3 to Test Mode

A B C
6 #ARGS
7 #NAME #TEST VALUE
8 x 5
9 y 6
10
11 #DEFUN
12 Square x 25
13 Square y 36
14
15 #OUTPUT
16 61

(b) Changing Test Values.
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3.3 TypeSheets

TypeSheets can be considered as a superset of FunctionSheets as they too are capable
of containing multiple function definitions. In addition to that they also allow the user
to create a type definition which is analogous to a record or struct.

3.3.1 Sheet Header

As well as the FunctionSheet headers the following are all valid within a type defini-
tion:

#FIELDS Marks the starting point of the field definitions.

#LABELS Values in this column will become named attributes of the type.

#ACCESS Provide optional access modifiers to the attributes.

#DEFAULT Specify optional default values for the type attributes.

Only #FIELDS and #LABELS are compulsory headers because they are the minimum
amount of information required to define a named record. The other properties allow
the user to customise the behaviour of the type if desired.

Unlike functions there is no header to specify the name of the type, instead the file
name is used. This is so that it is clear to the user that only one type may be defined
per sheet, the motivation for this being that the sheet acts as the scope for accessing
private attributes (more information in 3.3.3).

A B C
1 #FIELDS
2 #LABELS
3 x
4 y

Figure 3.4: A Basic Type Definition in File ’point.jks’

3.3.2 Using Type Instances

Functions using the bracket notation [e.g. SUM(. . . )] is a concept extensively used in
spreadsheets so it makes sense to use this as the method for creating a type instance. It
can be thought of as a function that takes arguments intended to be the attribute values
and returns an instance of type foo. When a new type is defined a function is created
with the same name that takes an argument for each public attribute. In the case of 3.4
a new function point(x,y) will be created that returns a point instance.

The visual representation of type instance is based on its values. By default only
public attributes will be displayed however this can be changed be overriding certain
properties of the type, see 3.3.5 for further detail on this. In the point example, the
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result of the expression =point(3,4) will return a type instance which is represented to
the user as “point {x: 3, y: 4}”.

Instead of supplying all the arguments it is possible to use a default value assuming
this has been defined in the type definition. The notation used for this is very simple,
it consists of a special symbol that replaces the function argument. The term used here
is DEFAULT because it is self descriptive however this can be changed. Given 3.5,
an example using default values is the expression =point(9,DEFAULT) which would
return an instance that looks like “point {x: 9, y: 7}”.

A B C
1 #FIELDS
2 #LABELS #DEFAULT
3 x 5
4 y 7

Figure 3.5: Using Default Values

Dereferencing a type instance is one of the most common uses of a type. The choice
of notation was based on what appears most natural to the user and fits with what is
perceived to be happening. Using function notation was considered however when
nesting multiple dereferences it becomes very verbose quickly. Instead the ! symbol
also used to reference cells in other sheets was selected. If a sheet is considered as
a type and cells its attributes this operation is conceptually the same and makes for
a consistent syntax. Furthermore it is very concise when dereferencing nested types.
Again using the point example, an expression that adds the co-ordinates of a point in
cell A1 would be =A1!x + A1!y. This transitions easily when using multiple sheets,
for example =OtherSheet!A1!x + OtherSheet!A1!y.

3.3.3 Encapsulation

There are two levels of access for type attributes; public and private. By default all
attributes are public but can be made private using the #ACCESS header. The scope
of private attributes is within the defining sheet of that type meaning it is only possible
to dereference private attributes if both the type instance and calling expression are
within the TypeSheet. As mentioned in section 3.3.2 type constructor functions only
accept public attributes. In addition to that function there is also a private constructor
function which allows the user to set all attributes. As with private fields, this can only
be accessed from within the TypeSheet definition itself.

In the case of 3.6 two constructor functions are created; point(x) and point(x,y). While
the first function can be used anywhere the latter can only be invoked from within the
defining sheet. Details on how private attributes can be used within public functions
are included in section 3.3.4.
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A B C
1 #FIELDS
2 #LABELS #DEFAULT #ACCESS
3 x 5 public
4 y 7 private

Figure 3.6: Access Modifiers

3.3.4 Nested FunctionSheets

The term nested FunctionSheet refers to a FunctionSheet that occurs within a type
definition. The main incentive for constructing a function in a TypeSheet rather than
on its own is that it can access the protected attributes and constructor function for that
type. A simple example would be a “getter” function that returns the value of a private
attribute. Another common pattern would be a custom constructor function enabling
the caller to set the private attributes when creating a type instance.

In the case of point types, the user could specify a constructor called two x which only
allows the creation of points that exist on the line y = 2x. This could be done using a
nested FunctionSheet with definition two x(x) = point(x,2*x).

Another reason for using nested FunctionSheets is that it allows the user to define
custom behaviour for types, this is discussed further in section 3.3.5.

3.3.5 Operator Overriding

In classic programming languages the ability to specify the behaviour of a common
operator with user types can lead to more readable code. With one of the objectives of
this project being to integrate user types into spreadsheets it makes sense to provide an
interface for the user to override some of the common operators in the syntax; this is
done by using nested FunctionSheets to implement this behaviour.

Taking inspiration from Haskell type classes, the functions available to override are
Show, Eq and Ord. The Show function is analogous to the Java method toString()
with the exception that it takes the type instance as an argument instead. Eq takes two
arguments and is used to override the = operator for that type. Finally, the purpose of
the Ord function is to specify how two type instances should be ordered with respect
to each other. Its return values are either -1, 0 or 1 and indicate the first argument is
less than, equal to or greater than the second argument respectively.

To summarise, the signatures for these functions are as follows:

Show(UserType)→ String
Eq(UserType,UserType)→ Boolean
Ord(UserType,UserType)→ Integer ∈ {−1,0,1}





Chapter 4

Implementation

The design chapter provided a specification for how function and type sheets appear
and how the user can interact with them. It did not go into any real detail about how
these features were implemented. The purpose of this chapter is to expand on this and
explain how they were built and highlight possible future additions.

4.1 Building on Jeks

Creating a spreadsheet application from scratch would require significant work just to
produce a basic program that introduces nothing new to the concept. This was the
motivation for finding an existing application to build on, allowing development of the
new features to begin almost immediately.

The application which served as a platform is called Jeks[10], a Java spreadsheet im-
plementation licensed under the GNU General Public License[11]. From the project
page some of Jeks’s features include:

• Formulas in cells using a rich set of operators and functions.

• Parameterized functions using expressions defined by users.

• Checking of circular reference in formulas.

• Optimised update of formulas referencing other cells.

• Cut / Copy / Paste with automatic shift of cell references in formulas.

• Save / Open files at spreadsheet format.

From this point on Jeksy refers to the application that includes the features discussed
in this report, it can be considered as a fork of Jeks.

21



22 Chapter 4. Implementation

4.2 General Additions

Before work could commence on the main features of Jeksy some core functionality
had to be added, namely the ability to use multiple sheets. Previously the program only
worked with a single spreadsheet at any one time, obviously this was a problem when
trying to build a system that uses numerous sheets to create definitions.

Adding multiple sheets also required the syntax to be extended, permitting references
to cells in other sheets. In order to be consistent with other spreadsheet implementa-
tions the ! notation was used.

Another alteration was extending the encoding system to handle different types of
sheets, these were spreadsheets, functionsheets and typesheets. As function/type defi-
nitions were really just spreadsheets themselves the application needed to know which
type of sheet it was processing. One alternate solution was to use the file extension
however incorrect file naming could lead to errors. The more robust (and chosen) ap-
proach was to add meta-data into the file itself and take the responsibility from the user
and give it to the application.

4.3 FunctionSheets

4.3.1 Function Parameters

FunctionSheets use named arguments in their expressions which are assigned test val-
ues by the user. In Excel this could be implemented using cell labels however Jeks
did not support this meaning it had to be added in. There are two components of a
function parameter in Jeksy, its name and the test cell associated with it. When the
expression parser encounters a token that it does not recognise (e.g. a function argu-
ment) it queries the spreadsheet model for a list of defined parameters for that sheet.
It then replaces the token with the cell address that corresponds to that parameter. The
interpreter can then evaluate the expression using then test values specified by the user.

Function parameters are constructed when the file is loaded and updated after each
subsequent save. As each parameter is linked with a cell address rather than a value it
means that expressions are automatically updated when a user changes the contents of
the test cell, the sheet does not require re-parsing.

There is one limitation with how this is currently implemented. When creating a new
definition the user must save the file after completing the arguments definition but
before using any of the parameters in expressions. This is to force Jeksy to compile
the sheet and load the parameters into the run-time. Unless this is done the parameters
will be undefined and expressions using them will not evaluate. A better solution would
be to automatically compile the file after any changes to the sheet are made so the user
does not need to save explicitly.
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A B C
6 #ARGS
7 #NAME #TEST VALUE
8 x 9
9 y 10

Figure 4.1: FunctionSheet Parameters

Using the parameters from 4.1, the process of evaluating the expression x + y would
be as follows:

Encounter unknown symbol x, search defined parameters for an entry x and replace
with the test cell address.
x + y → B8 + y

Encounter unknown symbol y, search defined parameters for an entry y and replace
with the test cell address.

B8 + y → B8 + B9

4.3.2 Compiling Functions

Section 3.2.3 gave a brief overview of the recursive algorithm used by the Jeksy com-
piler to build the function definition, Algorithm 1 shows the implementation of this
function. One consideration was ensuring that the algorithm would always terminate
and could not loop indefinitely. This would be caused by two cells that reference each
other in their expressions. Fortunately this cyclical referencing is forbidden by the ex-
pression parser so it is not possible for the user to create expressions that would cause
the algorithm to infinitely loop.

Algorithm 1 Generating the Function Definition from a FunctionSheet
1: function EXPANDEXPRESSION(expression)
2: for all token ∈ expression do
3: if token is cellAddress then
4: contents← GETCELLCONTENTS(token)
5: if contents is cellExpression then
6: expansion← EXPANDEXPRESSION(contents)
7: else
8: expansion← contents
9: end if

10: expression← REPLACE(expression, token,expansion)
11: end if
12: end for
13: return expression
14: end function
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4.3.3 Recursive Functions

When creating a recursive function using a FunctionSheet the user will need to create
an expression within the sheet that calls said function. One problem was that when
first constructing the sheet the function would not exist in the run-time, this meant the
user was unable to enter the expression issuing the recursive call.

The solution to this was based on the similar problem faced when using function pa-
rameters. The user must save the file after completing the argument definition but
before implementing the actual function. Doing so will generate an empty signature
for the function using the name and specified arguments, it simply returns null. The
user can then enter expressions using the function and make recursive calls.

Once the user has completed the definition saving the file will update the existing
empty function in the run-time to reflect the implementation in the FunctionSheet.

4.4 TypeSheets

4.4.1 Type Instances

The basic data types that were initially available as cell values were integers, floats,
strings and booleans. As the application was built in Java they were mapped to Java
classes; Long, Double, String and Boolean respectively. To support instances of user
defined types another class was created called UserTypeInstance. Fundamentally this
is a map from String keys to any permitted cell value; it also includes meta-data such
as the definition of the type it represents.

Another import data structure used in Jeksy is the UserType class which represents a
type definition. Important features of this include a collection of compiled functions
corresponding to the overridden operators. When a UserTypeInstance is involved in an
operation that can be overridden the UserType object is queried to check if a compiled
function for that operation exists. The other main feature of a UserType is the sequence
of attribute descriptors. An attribute descriptor is essentially a 3-tuple that holds an
attribute name, its access level and default value.

As mentioned in section 3.3.3 about type encapsulation there are two functions that
create type instances. One only sets the public attributes and the other sets every at-
tribute. Originally the intention was to allow multiple functions with the same name
but different argument counts to be defined but due to time constraints this was not
implemented. The justification for not implementing it was the fact that it did not add
new functionality but rather improved the user experience. In the current implemen-
tation there are still two constructor functions per type but they have different names.
The public attribute only function is named after the type whereas the function for all
attributes is named after the type with the suffix “ unprotected”. For example a point
type would have two constructor functions point and point unprotected.
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4.4.2 Dereferencing

Syntactically dereferencing is done using the ! operator as previously discussed in
section 3.3.2. When using types with attributes that are also user defined types it is
possible to apply multiple ! operations to access fields in a concise way. A basic
example might be line!point one!x which returns the x value of the first point on the
line.

In the actual implementation dereferencing is done using a function called deref. Be-
fore an expression is evaluated any ! operations are transformed into deref calls. The
reason for using a function was twofold; firstly it was easier to right rules for apply-
ing string based transformations than it was to change the expression parser to handle
the dereference operator. The other reason was the derefencing requires additional
information such as scope and using a function was a convenient way to pass this
information without the user being aware.

The signature for the deref function is: deref(env, type, fields).

env is the sheet from which the expression was called, its purpose is discussed further
in 4.4.3. type is a UserTypeInstance and fields is an array of attribute names. Examples
of how user expressions map to deref calls are as follows:

A1!x→ deref(env, A1, [x])
Sheet!A1!x→ deref(env, Sheet!A1, [x])
Sheet!A1!x!y!z→ deref(env, Sheet!A1, [x,y,z])

It is worth clarifying that the ! operations remaining in the deref call (e.g. Sheet!A1 )
are references to cells in other sheets and so handled separately. These arguments are
replaced by the cell contents prior to the expression being evaluated.

4.4.3 Encapsulation

To provide a way to encapsulate type attributes deref calls must be aware of the con-
text from which they are called. This is done using the variable env which is set by
the interpreter when the expression is evaluated. Algorithm 2 provides an abstracted
view of how this process works. For these examples expressions and functions can be
considered equivalent, in practice the main difference is that expression arguments are
mapped to cell addresses.

Algorithm 2 Binding the env Variable
1: function EVALUATE(expression, args)
2: env← GETCALLINGSHEET()
3: return COMPUTEVALUE(env,expression,args)
4: end function

The function computeValue returns the result of evaluating expression with parameters
args. Any deref function calls that occur within expression take the context to be
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the env argument. When an attempt to dereference a private attribute occurs the env
argument is compared with the sheet that defined that type. If they are the same then
the expression is being called within the scope of the private attribute and a value is
returned, if there is a mismatch then an access error is returned.

Users are able to provide controlled access to private attributes by defining functions
within TypeSheets. The process of how these public functions are given access to
private fields is presented in algorithm 3.

Algorithm 3 Encapsulation with User Defined Functions
1: function COMPILE(function)
2: env← GETCALLINGSHEET()
3: return λx.COMPUTEVALUE(env, f unction,x)
4: end function

In the compile function a closure is formed over the env variable, its value is the
context from which the function was compiled. The returned value is an anonymous
function that accepts a sequence of arguments and computes the function value using
these. This anonymous function is then associated with the function name (specified
by the #FUN NAME sheet header) to complete the compilation.

The purpose of the closure is to add state to the compiled function. In this case a
value for env is now associated with that anonymous function. Compiling a function
within a TypeSheet will set the value of env to be that sheet for all invocations of the
function. As a result the scope of the function will include private attributes for that
type regardless of where the function is called.

4.5 Remaining Work

Features that were not implemented in the final application but were discussed in the
design include functions that can have multiple signatures and automatic compilation
of sheet definitions.

Allowing multiple functions to have the same name but different parameter counts
would unify the type constructors for user defined types. It would also make Func-
tionSheets more versatile enabling users to implement functions such as get(map, key)
and get(map, key, key-not-found) whereby a default value can be specified if a key
does not exist in a map.

Another enhancement to FunctionSheets would be to provide local scoping of function
parameters. Currently if there are multiple function definitions in one sheet then pa-
rameter names must be unique within the sheet for test values to work correctly. Local
scoping within functions is a standard across most programming languages and adding
this to Jeksy would tighten the integration between spreadsheets and programming
languages.
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Evaluation

The evaluation of Jeksy is separated into two sections; the first looks at the capabilities
of the new features and ultimately how well they integrate into the spreadsheet concept.
This is done by examining non-trivial examples that utilise the range of new tools
available to the user. The second component of the evaluation investigates how Jeksy
can be used to improve existing industry level spreadsheets.

5.1 Spreadsheet Characteristics of Jeksy

As one of the goals of project was to not only add new features but to ensure they fit
within the spreadsheet paradigm, it is critical to define what actually constitutes the
“look and feel” of a spreadsheet. The most prominent aspect of spreadsheets is the
tabular layout where the contents of a sheet are structured into rectangular blocks, this
is unlike a conventional programming language that opts for a tree structured syntax.

Other traits of a spreadsheet include the feedback loop whereby a user can enter a value
and immediately see the effect of its evaluation. Not only does this make interactive
development fast, but it makes it easier to understand the program because data can be
seen flowing through it actively.

Another constituent to the appearance of spreadsheets is the notation and syntax used
in expressions. Ensuring that the syntax is consistent reduces the amount of content
that must be remembered in order to operate the program; it also aids the user in
understanding what new operators do because intuitively features that look similar
should behave in a similar manner.

27
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Figure 5.1: Tree Node TypeSheet Definition showing type attributes and overridden
functions

5.1.1 Binary Tree Definition

When implementing traditional programming language features in a spreadsheet it
seemed fitting to implement a classic data structure in a spreadsheet to demonstrate
the potential of Jeksy. The following example consists of the definition for a positive
integer binary tree along with basic operations search and insert. These examples use
the value -1 to represent the null pointer though a more general binary tree could use
a NULL user defined type.

The first component of the tree implementation is the definition of the TreeNode type
as shown in 5.1. Upon inspection it looks like any normal spreadsheet with the eval-
uation of expressions suppressed. The structure itself is concise; expressions have
annotations to give them context and the components of the definition (fields and func-
tions) are separated clearly. Cell expressions within the sheet - in particular the defi-
nition of the function Eq - are consistent with formulas likely to be found in a typical
Excel spreadsheet. Where features specific to Jeksy are introduced the appearance
and fundamental meaning of the expressions are still within expectations of a regu-
lar spreadsheet. For example the ! operator commonly used to refer to cells in other
sheets is also used by Jeksy to dereference type attributes. Although technically dif-
ferent, the meaning of “look up the value stored at x in structure y” is common across
both applications of the operator and so conceptually it is easy to transition between
the two.
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Figure 5.2: Interactive Debugging Part A

Figure 5.3: Interactive Debugging Part B

As discussed previously the ability to enter data and see the results immediately is
crucial to spreadsheets and Jeksy embraces that idea when it comes to FunctionSheets.
Figures 5.2 and 5.3 provide an example of how test arguments can be used to ensure the
function is correct. Here a user can change the test values to check that each conditional
in the function AND is computed properly. Another situation where visual feedback
is available immediately is when defining the string representation of the type. Instead
of having to save or compile the file first, the result of changing the Show function can
be viewed immediately by examining the contents of the output cell. This behaviour
utilises the benefits of spreadsheets whilst still providing a structured way to define
functions.
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5.1.2 Binary Tree Functions

For the functions that operate on a binary to work correctly certain invariants must
hold. In this implementation those conditions are:

• Let x be a node in a binary tree. If y is a node in the left subtree of x, then y.key is strictly less
than x.key

• If y is a node in the right subtree of x, then y.key is strictly greater than x.key.

• Both left and right subtrees are binary trees.

• All keys are unique.

If it were the case that the left and right attributes were publicly accessible it would
be possible for a user to create a tree where the invariants do not hold, causing search
operations to behave unexpectedly. Jeksy is able to enforce these properties by mak-
ing the pointer attributes private and only allowing access to them from within the
TypeSheet definition itself.

Figure 5.4: Binary Tree Insert

Figure 5.4 shows the nested FunctionSheet definition for the function insert tree. The
term nested refers to the fact that the definition occurs within the TypeSheet rather than
on its own. This gives the function access to the private attributes of the TreeNode type
and the unprotected constructor function. Through (and only through) this function can
a user build a tree. The result is that it is therefore not possible to break the properties
of the structure at any time. The definition for the function search tree (5.5) is also
placed within the TypeSheet because it requires access to the both pointer attributes.
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Figure 5.5: Binary Tree Search

As the complexity of functions increase the benefit of FunctionSheets become more
apparent. Implementing the functions in 5.4 and 5.5 as single line formulae would be
unwieldy and exceptionally hard to read. Furthermore FunctionSheets encourage the
user to separate components of the function into logical steps which in turn make it
easy to inspect the value of intermediate expressions.

In practice when using an application such as Microsoft Excel functions of this size
may be implemented using the Visual Basic editor. It must be acknowledged that this
does have advantages over the approach of FunctionSheets; namely that the language
itself is more expressive with access to more control statements as well as typed vari-
ables.

Using the spreadsheet allows the user to view the evaluation of statements within the
function on the fly as changes are immediately propagated throughout the sheet. An-
other feature that contributes to the advantage of using spreadsheets to define functions
is that it requires no further knowledge beyond that of the application itself. In practice
most spreadsheet users do not have programming experience and so cannot make full
use of the Visual Basic integration with Excel, it is reasonable however to assume that
users of spreadsheets understand the spreadsheet language to some extent.
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5.1.3 Limitations & Improvements

The binary tree example demonstrates how it is possible to build data structures in a
way that is in keeping with spreadsheets while still retaining much of the functionality
of a standard programming language; for example operator overloading and structured
function definitions. However there are also some missing features in Jeksy which
would improve the user experience and make the integration of TypeSheets and Func-
tionSheets into the spreadsheet environment more natural.

Using the binary tree as an example, there is no easy way to create a large instance of
the data structure. Currently it relies on many repeated calls to the function insert tree
which quickly becomes cumbersome. A more idiomatic approach would be to allow
FunctionSheets to operate on collections of data or cells, constructing the tree from a
single data source. As spreadsheets are essentially functional programming languages
an intuitive solution would be to provide higher order functions to the user which in
conjunction with the ability to create collections, would greatly extend the power of
Jeksy.

Although Jeksy does have a basic concept of a collection, the cell set, there is currently
no way to use these within a FunctionSheet. Operations that make use of collections
are currently limited to those that already ship with the application such as SUM. Pro-
viding higher order functions that work with sequences would enable the user to create
FunctionSheets that take collections as well as individual values as arguments. Under
this new system creating a binary tree from a large collection of values can be as simple
as one function call:

De f ine seed value Cell A1 contains the value -1
Construct tree reduce(insert tree, A1, A2 : A100)

The function reduce would be a predefined function that comes with Jeksy allowing the
user to combine a collection into a single result. Its implementation would be based on
a left fold operation because this mirrors the cell range notation : which operates left to
right. In addition, left folds are tail recursive which is important when trying to avoid
stack overflows caused by especially large collections. An example implementation
might be:

reduce( f unction,val, []) = val
reduce( f unction,val, [x : xs]) = reduce( f unction, f unction(val,x),xs)

where [x : xs] does not denote a cell range but a destructuring bind of the collection to
the variables x (the head) and xs (the tail).

Calling reduce(insert tree, A1, A2:A100) would then expand to:

insert tree(. . . insert tree(insert tree(insert tree(A1,A2),A3),A4) . . .A100)
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Another shortcoming with the current version of Jeksy is when creating FuntionSheets.
Currently a user will not be allowed to enter an expression that contains unknown
symbols, for example an undefined function. This is an issue when making recursive
calls or using a function parameter because the symbol will not have been loaded into
the application at that time, therefore preventing the user from entering the expression.

The current solution to this problem is the user to save the file after completing the
function signature, that is, after the name and arguments to the function have been
specified. This allows the user to then continue with the function definition, issuing
recursive calls if necessary as now a signature exists in the run-time. Unfortunately this
has two main drawbacks; the first being that it exposes some of the internal workings
of the application and requires knowledge of the tool that is not immediately appar-
ent. The second issue is that the process of having to save the file explicitly does
not sit comfortably with the spreadsheet concept of evaluating expressions instantly; a
spreadsheet user should expect the contents of a sheet to become active straight away.

A better solution would be for Jeksy to compile the signature on the fly, thereby re-
moving the need for the user to save the file before continuing with the definition.
This could be triggered by a listener that checks for FunctionSheet headers being en-
tered into the current sheet, particularly #DEFUN. At this point the sheet will contain
the function arguments and name so it is possible for Jeksy to create a signature and
load it into the running program. For small spreadsheets it would even be possible to
compile the file any time the contents of a cell changes.

The final issue raised by the binary tree example is the difference between the eval-
uation of test values and the actual invocation of the function. Figure 5.6 shows the
intermediate expressions for the FunctionSheet insert tree. This image shows the ex-
pression for “Recurse Left” being evaluated to (6, (8, -1, -1), -1) however when the
function is actually called this statement is never reached. Currently there is no no-
tification to the user that this statement would not be executed given the current test
values, 5.6 presents a solution. Statements that are reached given the test cases are
given colour overlays to signify that they are relevant, the numbers show the order of
execution.

Figure 5.6: Path of Execution Overlay



34 Chapter 5. Evaluation

5.2 Real World Applications

The underlying motivation for adding new features was to create a spreadsheet appli-
cation that would produce better programs. The definition of a better spreadsheet in
this context is largely based on two aspects; how well structured the program is and
the probability of it producing errors. The following example is a real spreadsheet ob-
tained from industry along with a version implemented using Jeksy to demonstrate the
benefits of the new system and its features.

5.2.1 Excel Data Triangles

This spreadsheet uses a sheet as a data source from which the values are then imported
into other sheets and used in calculations. The data (5.7) is structured into rows where
each rows has a key that is used in the look up process. Figure 5.8 displays the triangle
of keys that are computed using a formula and parameters defined at the top of the
sheet. Once the desired keys have been determined, another triangle is built using the
keys to look up values in the data source, in the example 5.9 the target is the Paid
column.

Figure 5.7: Data Source

The method to look up data by key used in this example relies on the Excel function
SUMIF ; it takes two ranges (range and sum range) and a criteria. If the current el-
ement in range matches the criteria, then the corresponding element in sum range is
added to the running total. In this context it means if the current element in the Key
column matches the supplied key, add the corresponding element in the Paid column
to the result.
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Figure 5.8: Computing the Keys Required

Figure 5.9: Key Look Up
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5.2.2 Jeksy Data Triangles

In the Jeksy based implementation the structure of the data is captured in a user defined
type DataRow. The signature of the type is as follows:

DataRow
Attributes Functions
key - private build(uw year, rep year, paid, next)
uw year Show(data row)
rep year key(data row)
paid paid(data row)
next - private

There are two points of interest in the DataRow type; the custom constructor function
build and the next attribute. The attribute next is a pointer to another DataRow in-
stance. This allows the user to combine related DataRows into linked lists which can
then be traversed recursively. The purpose of the build function is to compute the key
based on both year parameters and set it accordingly. As key is private a user cannot
create a DataRow instance where the key is specified explicitly, this guarantees that
two DataRow types with the same uw year and rep year will always have the same
key. Another property of the build function is that it ensures that the keys are unique.
When a new DataRow is created, the list starting from next is searched for the current
key. The function only constructs a new type if its key cannot be found in the list.

Figure 5.10: Jeksy Triangles Data Source. Note the Show function has been overridden to
allow the user to view the private attribute key.

Figure 5.10 demonstrates how the data is represented in Jeksy. Cell A1 serves as the
head of the list with the next list element appearing in A2 and so on. The values
themselves are inserted directly into the build function however they could just as
easily be imported from other cells or sheets (as is the case in the Excel version).

Unlike the spreadsheet built in Excel, Jeksy does not use the SUMIF function to look
up the data. Instead the linked list is traversed recursively returning the row with the
matching key (5.11).

Figure 5.11: Function to find element with matching key
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Figure 5.12: Jeksy Triangle Formula

Figure 5.13: Jeksy Triangle

Figure 5.12 shows the formula that is used to populate the triangle in 5.13. The cell B4
corresponds to the key required to fill that position in the triangle and Data!A1 is the
head of the linked list, this is located in a sheet called Data. Function paid is simply an
accessor function that returns the value of the paid attribute for the given type instance.
It could be replaced with a dereference operation however this approach allows the user
to apply additional computation over the value (e.g. rounding) if desired.

5.2.3 Comparison

Whilst the Excel solution works correctly there are some aspects of the design which
could lead to future errors when maintaining or re-using the program; the Jeksy spread-
sheet addresses some of these issues.

When selecting the data from the source to import into the triangles an assumption is
made that all the keys in the source will be unique. Should this assumption be broken
and duplicate keys exist in the data, the resulting look up will be the summation of these
values. As the return types of both correct and incorrect results are numeric there is no
way to ensure that the value of the expression is in fact right without checking the data.
This means that to be guaranteed of a correct result the user must check for duplicates
themselves; this is both time consuming and potentially redundant. Whilst Excel based
solutions exist to remove repeated values in a range, they are not particularly well
suited to this task. Should new data be added to source the de-duplication process
must repeated again over the entire collection. Here it is possible that a user forgets
this process or incorrectly selects the range, missing repeated keys.
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(a) List becomes invalid with duplicates. (b) Value look up fails as a result.

Figure 5.14: Duplicate Detection

The Jeksy solution is superior because it is visually apparent to the user when the
uniqueness invariant is broken. If a duplicate key is added to the data set the head of
the linked list will become invalid, as shown in 5.14(a). Fetching any values using
the function get will return an error instead of a number, see 5.14(b). Furthermore
the replicated key will be marked in the data set so tracking the source of the error is
relatively quick.

Another benefit of this solution is that it is not coupled to the formatting of a particular
region in a sheet, rather it is bound to the data itself. Simply using the DataRow type
and build function are enough to guarantee that values returned from the function get
are unique.

In addition to reducing the likelihood of errors the spreadsheet can also be evaluated
on its structure and ease of use. Although there is some complexity in defining the
types and recursive look up functions used in the Jeksy solution, much of this can be
hidden to the spreadsheet user by deploying as a library or API. The actual functions
used to fetch and display the data are considerably simpler and easier to understand.
When comparing the formulas:

• =SUMIF(OFFSET(Data 1;0;KeyCol 1;;1);$HHTriangles.C12;OFFSET(Data 1;0;PaidCol 1;;1))

• =paid(get(Data!A1,B4))

it is self evident that the Jeksy expression is clearer; its purpose to fetch the paid
value. At first glance a user might believe that the Excel formula is summing values
however only with greater understanding of the domain does it become obvious that it
is intended to select a single value.

A further advantage of using the type driven approach is that it does not force the
user to store the data in a contiguous block. This means that it is possible to structure
the data in a way that is more manageable to the spreadsheet user whilst still being
able to operate over it as single unit. In this example for instance, a user could easily
use multiple sheets of DataRows by simply linking them together via pointers rather
than combining the results into a single sheet. Not only does this save time but it also
maintains the original separation of the data.
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Conclusion

This report presents the spreadsheet application Jeksy; an attempt to offer spreadsheet
users classic programming functionality through a convincing spreadsheet interface.
Two features were introduced: FunctionSheets and TypeSheets. Using these it is pos-
sible to define structured function and type definitions in a style that is in keeping with
common spreadsheet design patterns.

6.1 Main Achievements

Summary of the main achievements using FunctionSheets and TypeSheets:

• Define a binary tree user type where invariants are guaranteed by the encapsula-
tion of type attributes.

• Implement some of the standard binary tree operations using recursive Function-
Sheets, all using the spreadsheet syntax.

• Interactively test and debug binary tree functions using the test mode available
in FunctionSheets. The main example is the implementation of the function Eq.

• Derive sections of an existing industry spreadsheet using FunctionSheets and
TypeSheets.

• Greatly simplify the formulas used in the example spreadsheet.
e.g. =paid(get(Data!A1,B4)).

• Mitigate potential errors caused by the use of the SUMIF function in the example
spreadsheet. Incorrect values are now returned as errors rather than numeric
values.

39
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6.2 Future Directions

There are multiple directions of further work available, some are due to insufficient
implementation time and others as a result of analysing the project outcomes. They
are:

• Permitting functions to have multiple signatures that have different parameter
counts. This would unify public and private type constructors as well as making
for interesting examples with FunctionSheets.

• Local scoping of function parameters inside FunctionSheets.

• Automatic compilation of definitions to further enhance the spreadsheet appear-
ance of Jeksy. A user should expect features declared in a definition to become
active immediately.

• Support for collections of raw values such as vectors and matrices. In conjunc-
tion with user types this could make for very advanced data structures such as
hash tables.

• Higher order functions such as map and reduce, or more generally the ability
to pass functions as arguments. As discussed in the evaluation, functions such
as reduce are a very good way of avoiding many nested function calls when
creating large data structures.

• Enhancing test mode for FunctionSheets. In particular providing visual feedback
to the user indication the path of executing within a function. This is important
when the definition contains conditional statements. A candidate solution is the
Path of Execution Overlay presented in the evaluation.
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