
A Domain-Theoretic Banach-Alaoglu Theorem

Gordon Plotkin ?

School of Informatics, University of Edinburgh, King’s Buildings,
Edinburgh EH9 3JZ, UK.

Abstract. We give a domain-theoretic analogue of the classical Banach-
Alaoglu theorem, showing that the patch topology on the weak* topology
is compact. Various theorems follow concerning the stable compactness
of spaces of valuations on a topological space. We conclude with re-
formulations of the patch topology in terms of polar sets or Minkowski
functionals, showing, in particular, that the ‘sandwich set’ of linear func-
tionals is compact.

1 Introduction

One of Klaus Keimel’s many mathematical interests is the interaction between
order theory and functional analysis. In recent years this has led to the begin-
nings of a ‘domain-theoretic functional analysis,’ which may be considered to be
a topic within ‘positive analysis’ in the sense of Jimmie Lawson [11]. In the lat-
ter, ‘notions of positivity and order play a key rôle,’ as do lower semicontinuity
and (so) T0 spaces. The present paper contributes a domain-theoretic analogue
of the classical Banach-Alaoglu theorem for continuous d-cones, that is, domains
endowed with a compatible cone structure [20].

We begin with some historical remarks to set the present work in context.
There have been quite extensive developments within functional analysis con-
cerning positivity and order. The topics investigated include lattice-ordered vec-
tor spaces, also called Riesz Spaces [12], Banach lattices [16], and, more generally,
ordered vector spaces and positive operators; there have also been developments
where vector spaces were replaced by ordered cones [3]. However in these contexts
the topologies considered were always Hausdorff.

In the early 80s Keimel became interested in the work of Boboc, Bucur
and Cornea on axiomatic potential theory [2]. A student of his, Matthias Rauch,
considered their work from the viewpoint of domain theory [13], showing, among
other things, that a special class of their ordered cones, the standard H-cones,
can be viewed as continuous lattice-ordered d-cones, with addition and scalar
multiplication being Lawson continuous. Next, starting in the late 80s, Keimel
worked on ordered cones with Walter Roth, with a monograph appearing in
1992 [8]. ‘Convex’ quasi-uniform structures on cones arose there, replacing the
standard uniform structure on locally convex topological vector spaces; these
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quasi-uniform structures subsume order and topology. This may be the first
time that non-Hausdorff topologies were considered in functional analysis.

Roth wrote several papers in this area including his 2000 paper [14] on Hahn-
Banach-type theorems for locally convex cones. Later, in her 1999 Ph.D. the-
sis [18], Keimel’s student Regina Tix gave a domain-theoretic version of these
theorems in the framework of d-cones, where the order is now that of a dcpo (di-
rected complete partial order), and see also [19]. These Hahn-Banach theorems
include sandwich-type theorems, separation theorems and extension theorems.
Plotkin subsequently gave another separation theorem, which was incorporated,
together with other improvements, into a revised version of Tix’s thesis [20].

The present paper can be seen as providing another contribution of that kind.
The classical Banach-Alaoglu Theorem states that in a topological vector space
the polar of a neighbourhood of zero is weak∗-compact [15]. We give an analogue
for continuous d-cones. We have a certain advantage in that the range of our
functionals, the non-negative reals extended with a point at infinity, is Lawson
compact. It turns out that, under an appropriate assumption, an entire topology
is compact: the patch topology on the weak∗-upper topology of the dual space
of the cone. It follows that various kinds of polar sets are weak∗-compact.

The work on Hahn-Banach-type theorems has found application in theoreti-
cal computer science, viz the study of powerdomains. In her thesis Tix considered
powerdomains for combinations of ordinary and probabilistic nondeterminism;
more precisely she combined each of the three classical powerdomains for non-
determinism (lower, upper and convex) with the powerdomain of all valuations.
It was a pleasant surprise that the separation theorems found application in this
development and we anticipate that so too will the domain-theoretic Banach-
Alaoglu theorem given here.

We take [4] as a standard reference on domain theory and related topology;
we refer the reader particularly to the material on stably compact spaces, and
also to [6,1] for more recent material on that topic where it is argued that stably
compact spaces are the correct T0 analogue of compact Hausdorff spaces. The
needed background on d-cones can be found in Chapter 2 of [20]. We cover
it much more briefly here in Section 2 which concerns technical preliminaries.
We derive our domain-theoretic Banach-Alaoglu theorem in Section 3 and then
discuss some reformulations of the weak∗-upper topology and its dual in terms
of polar sets and functional bounds in Section 4.

2 Technical preliminaries

We are concerned with semimodules for two (unitary) semirings: R+ and R+,
where by a semimodule we mean a module for a semiring, see [5]. The first
semiring is that of the non-negative reals with the usual addition and multipli-
cation; the second extends the first with an infinite element and the extensions
of the semiring operations with ∞ + x = ∞, ∞ · 0 = 0, and ∞ · x = ∞, if
x 6= 0. Then a d-cone is an R+-semimodule in the category of dcpos, where R+

is endowed with the usual ordering with least element 0, making it a continuous



lattice; an ordered cone is an R+-semimodule in the category of posets, endow-
ing R+ with the usual ordering; and a topological cone is an R+-semimodule in
the category of topological spaces, endowing R+ with the upper topology. Our
definition of a d-cone differs inessentially from that in [20] where the infinite
element is avoided.

In any cone the action of the semiring induces an action of the multiplicative
group (0,∞), and therefore all such actions are d-cone automorphisms, and so,
in particular, automorphisms of the way below relation on d-cones. Further, 0
is always the least element, taking the specialisation ordering in the topological
case.

A function between semimodules is homogeneous if it preserves the semiring
action, additive if it preserves semimodule addition, and linear if it preserves
both. In case the semimodule is preordered, such a function f is subadditive if
f(x + y) ≤ f(x) + f(y) always holds, superadditive if f(x + y) ≥ f(x) + f(y)
always holds, sublinear if it is homogeneous and subadditive, and superlinear if it
is homogeneous and superadditive. We may sometimes mention the semiring at
hand if it is not clear which we mean, writing, for example, ‘R+-homogeneous.’

A functional on a set X is simply a function on X with range R+. Given a col-
lection F of such functionals on a set X and a topology on R+, the corresponding
weak∗ topology on F is the weakest topology making all point evaluation func-
tions evx :f 7→ f(x) continuous: so we speak of the weak∗-upper, or weak∗-Scott,
the weak∗-lower and the weak∗-Lawson topologies on F . The weak∗-upper topol-
ogy has as a subbasis the sets:

Wx,r =def {f ∈ F | f(x) > r}

where r ∈ (0,∞); the weak∗-lower topology has as a subbasis the sets:

Lx,r =def {f ∈ F | f(x) < r}

where r ∈ (0,∞); and the weak∗-Lawson topology is the join of the other two
weak∗ topologies. The weak∗-lower topology is always a separating dual topology
for the weak∗-upper topology (see [20], Definition VI-6.17), and its specialisation
ordering is the pointwise one.

We will be particularly interested in C∗ the collection of all linear functionals
on a cone C, taking these to be continuous or monotone as appropriate to the
kind of cone considered. One can endow C∗ with a cone structure, when it is
called the dual cone: the operations are defined pointwise, and then, taking the
pointwise order, we have notions of dual cone for the dcpo and poset case, and,
taking the weak∗-upper topology, gives one for topological cones.

Two examples of d-cones are L(X), the collection of continuous functionals
on a topological space X, taking the upper topology on R+, with the pointwise
ordering and V(X) the collection of continuous valuations on X, again with the
pointwise ordering. Their properties are treated in detail in Chapter 2 of [20]; we
note here a ‘Riesz Representation Theorem,’ that Λ :V(X) ∼= L(X)∗ is a d-cone
isomorphism, where Λν = f 7→

∫
fdν.



Both d-cones and topological cones whose underlying topology is T0 yield
ordered cones, taking the the underlying order and the specialisation order,
respectively. A continuous d-cone, i.e., one whose underlying dcpo is continuous,
yields a topological cone, taking the Scott topology: the point is that addition
is then continuous in the product topology.

3 The Banach-Alaoglu Theorem

We begin with a Banach-Alaoglu theorem for ordered cones. The proof follows
the general lines of the usual proof of the standard Banach-Alaoglu Theorem,
e.g., see [15], embedding the dual space in a compact one of functionals and
then showing the set one wishes to prove compact to be closed in the induced
topology.

Lemma 1. Let τ and τd be separating dual topologies and subtopologies of a
compact Hausdorff topology τ . Then τ is stably compact, τd is its co-compact
topology and τ is its patch topology.

Proof. The join of the two separating topologies is Hausdorff and so equal to τ ;
we can then apply Theorem VI-6.18 of [4] to obtain the desired conclusions.

Theorem 1. Let C be an ordered cone. Then the weak∗-upper topology on C∗

is stably compact, and its dual is the weak∗-lower topology.

Proof. By Lemma 1 it is enough to prove that the weak∗-Lawson topology on C
is compact. The weak∗-Lawson topology on the collection R|C|

+ of all functionals
is the |C|-fold power of the Lawson topology on R+, and so compact by the
Tychonoff theorem. The weak∗-Lawson topology on C∗ is evidently the subspace
topology induced by the weak∗-Lawson topology on R|C|

+ , and so compact if we

can show it is a closed subset of R|C|
+ in that topology.

To that end we show, successively, that the subsets of monotone, homoge-
neous and additive functionals are closed. The subset of monotone functionals
can be written in the form: ⋂

x≤y

〈evx, evy〉−1(≤)

and is therefore closed as the order relation on R+ is closed in the product Lawson
topology on R2

+ and the point evaluation functionals are continuous with respect
to the weak∗-Lawson topology.

The subset of homogeneous functionals can be written in the form:⋂
λ,x

〈evλ·x, (λ · −)oevx〉−1(=)

and is therefore closed as the equality relation is closed and multiplication is
continuous in the Lawson topology.



Finally, the subset of additive functionals can be written in the form:⋂
x,y

〈evx, evy, evx+y〉−1(+)

and is therefore closed as addition is continuous in the Lawson topology and so
its graph is a closed subset of R3

+.

This theorem does not extend to d-cones. Consider the d-cone C = V(Ω)
where Ω consists of the natural numbers, with the usual ordering, extended
with a point at infinity: then the weak∗-Lawson topology on C∗ is not compact
(and so, too, C∗ is not a closed subset of R|C|

+ ). For the set {F ∈ C∗ | F (η∞) ≥ 1}
is weak∗-Lawson closed and covered by the increasing sequence Wηn,0 of weak∗-
upper open sets, but by no member of it, as

∫
fn d− is in {F ∈ C∗ | F (η∞) ≥ 1},

but not in Wηn,0, where fn(m) = 0 if m ≤ n and = 1, otherwise (ηx is the point
valuation at x).

To proceed further we consider the relation between the continuous function-
als on a dcpo P and the monotone functionals on it, which we write as M(P ).
There is an evident inclusion:

φ :L(P ) ↪→M(P )

As both L(P ) and M(P ) are complete lattices and the inclusion preserves all
sups, φ has a right adjoint ψ :M(P ) → L(P ), which assigns to any monotone
functional its (Scott continuous) lower envelope, being the greatest continuous
function below it; note here that ψ is a retraction with φ the corresponding
section, so that 〈φ, ψ〉 is an embedding-projection pair. In case P is continuous,
the lower envelope is given by a standard formula:

ψ(f)(x) =
∨

a�x

f(a)

The idea of using arguments involving both closed subsets and lower envelopes
to prove stable compactness appears first in a paper of Jung [6]: the application
there was to show the stable compactness of spaces of valuations. We show below
that, as may be expected, results of that kind follow from the domain-theoretic
Banach-Alaoglu theorem.

Proposition 1. Let C be a continuous d-cone. Then, for any f ∈M(P ), ψ(f)
is R+-homogeneous if f is, subadditive if f is, and, assuming � additive on C,
superadditive if f is.

Proof. For the preservation of R+-homogeneity, ψ(f) is clearly strict if f is and
taking r ∈ (0,∞) we have:

ψ(f)(r · x) =
∨

a�r·x f(a)
=

∨
b�x f(r · b) (r · − acts automorphically)

= r · (ψ(f)(x)) (by the homogeneity of f
and the continuity of the action)



For the preservation of subadditivity we calculate:

ψ(f)(x+ y) =
∨

c�x+y f(c)
≤

∨
a�x,b�y f(a+ b) (by the continuity of +

and the monotonicity of f)
≤

∨
a�x,b�y f(a) + f(b) (by the subadditivity of f)

= ψ(f)(x) + ψ(f)(y)

And for the preservation of superadditivity we calculate:

ψ(f)(x+ y) =
∨

c�x+y f(x+ y)
≥

∨
a�x,b�y f(a+ b) (by the additivity of �)

≥
∨

a�x,b�y f(a) + f(b) (by the superadditivity of f)
= ψ(f)(x) + ψ(f)(y)

Let us remark that the preservation of homogeneity and subadditivity was al-
ready shown by Tix, see, e.g., [19].

We also need a different topology from the weak∗-Lawson topology. Given
a collection F of continuous functionals on a topological space X, define the
open-lower topology on F to have as subbasis all sets of the form:

LU,r = {f ∈ F | ∃x ∈ U. f(x) < r}

for U open and r ∈ (0,∞).

Lemma 2. Let F be a collection of continuous functionals on a domain P .
Then the open-lower topology is a separating dual topology for the weak∗-upper
topology.

Proof. First suppose that f ≤ g in the weak∗-Scott specialisation ordering, which
is the same as the pointwise one. Then if g ∈ LU,r we also clearly have that
f ∈ LU,r. Conversely, suppose we have f 6≤ g in the pointwise ordering. Then
there is an x and r ∈ (0,∞) such that g(x) < r < f(x). So, as f is continuous
there is an a� x such that f(a) > r, and it follows that f ∈Wa,r and g ∈ La��,r;
note that the sets Wa,r and La��,r are disjoint. It follows that g 6≤ f in the open-
lower specialisation ordering, as otherwise we would have that f ∈ La��,r ∩Wa,r.
So the topologies are dual and separating, as required.

We now have everything needed for the domain-theoretic analogue of the
Banach-Alaoglu theorem:

Theorem 2. Let C be a continuous d-cone with an additive way-below rela-
tion. Then the weak∗-upper topology on C∗ is stably compact, and its co-compact
topology is the open-lower topology.

Proof. We know from Proposition 1 that ψ cuts down to a function from (Cm)∗

to C∗, and φ evidently cuts down to a function in the opposite direction. Both



these functions are continuous with respect to the weak∗-upper topology. This
is obvious for φ, and for ψ we calculate:

ψ−1({f ∈ C∗ | f(x) > r}) = {f ∈ (Cm)∗ |
∨

b�x f(b) > r}
=

⋃
b�x{f ∈ (Cm)∗ | f(b) > r}

So as C∗ is a weak∗-upper retract of (Cm)∗ and as, by Theorem 1, that topology
is stably compact, the weak∗-upper topology on C∗ is also stably compact as
retracts of stably compact spaces are stably compact [10,6].

If the LU,r are co-compact, it follows, using Lemma 1 (and Lemma 2) that the
open-lower topology is the co-compact topology for the stably compact weak∗-
upper topology. So we show that all sets of the form {f ∈ C∗ | ∀x ∈ U. f(x) ≥ r}
with r ∈ (0,∞) are weak∗-upper compact, and that follows from the equation:

ψ({g ∈ (Cm)∗ | ∀x ∈ U. g(x) ≥ r}) = {f ∈ C∗ | ∀x ∈ U. f(x) ≥ r}

as ψ is weak∗-upper continuous and {g ∈ (Cm)∗ | ∀x ∈ U. g(x) ≥ r} is weak∗-
upper compact by Theorem 1, being a weak∗-lower closed subset of (Cm)∗. To see
that this equation holds, first note that, as ψ acts as the identity on continuous
functionals, the right hand side is included in the left hand side. Conversely,
suppose that g is in the left hand side, and x ∈ U . Take any s < r. Then, as
U is open, x � some a ∈ U , and then we see that g(a) ≥ r > s and so that
ψ(g)(x) > s. It follows that, ψ(g)(x) ≥ r, as required.

We remark that C∗ is always compact in the weak∗-upper topology, for any
d-cone C; this is just because 0 is its least element. So the force of the conclu-
sion is more the local stable compactness of C∗. The d-cone V(Ω) used in the
counterexample above satisfies the conditions of the theorem (see [20], Chapter
2.2) and so also provides an example where the open-lower and the weak∗-lower
topologies disagree: {F ∈ V(Ω)∗ | F (η∞) ≥ 1} is closed in the latter but not the
former.

Comparing our domain-theoretic Banach-Alaoglu theorem with the standard
one, one may notice the assumption that � is additive, and also the difference
in the proofs, where we consider projections as well as subsets. It is shown in [20]
that the condition on the way-below relation is equivalent to the requirement
that addition is quasi-open, meaning that (U + V )↑ is open whenever U and V
are. In the case of topological vector spaces not only is addition an open map,
but a stronger condition holds, that each map x + − is open. This entails that
any linear functional (to R or C) bounded on a neighbourhood of 0 is continuous,
and so difficulties with continuity do not arise in that setting.

Some theorems of [7,6,20,1] concerning the stable compactness of spaces of
valuations on a topological space X follow from Theorem 2. We sometimes
slightly weaken the hypothesis on X from stable compactness to local stable
compactness or strengthen the conclusion by identifying the co-compact topol-
ogy. Write V≤1(X) for the collection of subprobability valuations and V1(X) for
the collection of probability valuations.



Corollary 1. Let X be a stably locally compact topological space. Then V(X) is
stably compact in the weak∗-upper topology with co-compact topology the open-
lower topology. The same is true of V≤1(X), and also of V1(X) in case X is
stably compact.

Proof. Since X is stably locally compact we have, by Propositions 2.25 and 2.28
of [20], that L(X) is a continuous d-cone with additive �, and so, by Theorem 2,
that L(X)∗ is weak∗-upper stably compact, with co-compact topology the open-
lower topology.

The isomorphism, Λ :V(X) ∼= L(X)∗ induces a corresponding pair of topolo-
gies on V(X). We will show that these include the weak∗-upper and co-compact
topologies, respectively. Then as, by Lemma 2, those are a separating dual pair
of topologies, it follows by Lemma 1 that the weak∗-upper topology is indeed
stably compact with co-compact topology the open-lower one.

For the inclusion of the weak∗-upper topology we need only observe that
Λ({ν ∈ V(X) | ν(U) > r}) = {F ∈ L(X)∗ | F (χU ) > r} for any open set U and
r ∈ (0,∞). For the inclusion of the open-lower topology it suffices to prove that:

Λ({ν | ∀U ∈ O. ν(U) ≥ r}) =
⋂

U∈O,s∈(0,1)

{F | ∀f ∈ (sχU )��. F (f) ≥ sr})

for O an open set of O(X) and r ∈ (0,∞), since the set on the right is closed
in the open-lower topology on L(X)∗. The inclusion from left to right is clear.
In the other direction, take a Λν in the set on the right, and a U ∈ O to prove
ν(U) ≥ r. Then there is a U ′ � U with U ′ ∈ O, since O is open. Choose
s ∈ (0, 1). Then, by Lemma 2.26 of [20], χU � sχU ′ , and so ν(U) ≥ sr. But s is
an arbitrary element of (0, 1), and so we see that ν(U) ≥ r, as required.

The set of subprobability valuations {ν ∈ V(X) | ν(X) ≥ 1} is weak∗-upper
closed in V(X) and, when X is compact, the set {ν ∈ V(X) | ν(X) ≥ 1} is closed
in the open-lower topology on V(X), and so the set of probability valuations is
closed in the patch topology. The rest of the theorem follows from these two
observations, using Proposition 2.16 of [6].

When X is locally compact, the open-lower topology on V(X) has a subbasis
of closed sets of the form:

{ν ∈ V(X) | ∀U ⊃ K. ν(U) ≥ r}

for K compact and r ∈ (0,∞). This form of the co-compact topology was noted,
without proof, for V≤1(X) and V1(X) in [6]; one can evidently then restrict to
r ∈ (0, 1). The restriction to stably compact X in the last part of the corollary is
necessary as a topological space Y is compact if V1(Y ) is compact in the weak∗-
upper topology. (To see this, suppose V1(Y ) so compact and let Ui be a directed
covering of Y by open sets. Then Wi =def {ν | ν(Ui) > 0} is a directed covering
of V1(Y ) by weak∗-upper open sets, and so some Wi includes it. But then Ui

includes Y , as x ∈ Ui holds iff ηx ∈Wi does.)
One can specialise these results to domains following, e.g., [20]. A domain,

qua topological space, is stably locally compact iff it is coherent, and stably



compact iff its Lawson topology is compact. If P is a domain then both V(P )
and V≤1(P ) are—but not, in general, V1(P ). Lastly, on both V(P ) and V≤1(P )
the weak∗-upper topology coincides with the Scott topology [9,17]. So we see
from the corollary that if P is a coherent domain then both V(P ) and V≤1(P )
are Lawson compact.

Lawson has proved a certain converse: for a domain P , if V(P ) is Lawson
compact then P is coherent, see [20], Theorem 2.10 (d). The necessity of the
additivity condition of Theorem 2 follows. Take any domain P and assume that
the weak∗-upper topology on L(P )∗ is stably compact. Then, following the proof
of the corollary, the weak∗-upper topology on V(P ) is also stably compact, and
so, by Lawson’s result the Scott topology on P is stably locally compact, and it
follows, by Proposition 2.28 of [20], that L(P ) has an additive way below relation.
So if we take any non-coherent domain P we see that L(P ) is continuous, but
that � is not additive, by Proposition 2.29 of [20], and then that L(P )∗ is not
stably compact.

Finally, we mention a natural question: having Banach-Alaoglu theorems for
ordered cones and d-cones, is there also one for topological cones? In this respect
note that the conclusion of Theorem 2 relates to the dual of C considered as a
topological cone.

4 Polar sets and Minkowski functionals

The weak∗-upper topology and its dual can be defined in two other ways: us-
ing polar sets and using Minkowski functionals, more precisely, their domain-
theoretic analogues.

Definition 1. Let X be a subset of a d-cone C. Then its lower polar is defined
to be X◦ = {f ∈ C∗ | ∀x ∈ X. f(x) ≤ 1}, and its upper polar is defined to be
X◦ = {f ∈ C∗ | ∀x ∈ X. f(x) ≥ 1}.

Proposition 2. Let C be a d-cone.

1. The weak∗-upper topology has as a subbasis of closed sets all lower polars,
and also all lower polars of non-empty Scott-closed convex sets.

2. The open-lower topology has as subbasis of closed sets all upper polars of
open sets (not containing 0), and also, if C is continuous, all upper polars
of convex open sets (not containing 0).

Proof. 1. Regarding the first assertion, every lower polar set is evidently closed
in the weak∗-upper topology on C∗, and, conversely, Wa,r is the complement
of {r−1 ·a}◦. For the second, we can evidently disregard lower polars of empty
sets, and the lower polar of a set is easily seen to be the same as the least
Scott-closed convex set containing it.

2. Regarding the first assertion, every upper polar set is evidently closed in the
topology generated by the LU,r, and, conversely, the complement of LU,r is
(r−1 ·U)◦. We can evidently disregard upper polars of sets containing 0. The



second assertion follows from the fact that when C is continuous it is locally
convex in the sense that every neighbourhood contains a convex open one,
see [20], Proposition 2.5.

Our main alternative description of the polar topology is in terms of func-
tional bounds; the connection between the two is given using Minkowski func-
tionals. For any subset X of a d-cone C, define its upper and lower Minkowski
functionals by:

µX(x) =
∨
{r ∈ (0,∞) | x ∈ r ·X}

and
νX(x) =

∧
{r ∈ (0,∞) | x ∈ r ·X}

yielding two monotone functions, µ :P(C) → R+ and ν :P(C) → (R+)op. It would
be equivalent to let r range over R+, but we find the above form of the definition
more convenient. Our Minkowski functionals are defined by an obvious analogy
with the standard ones; they, and some of their properties, are also implicit in
the proof of Tix’s Separation Theorem, see, e.g., [20], Theorem 3.4.

In the other direction, given any functional g on C we define:

S(g) = {x ∈ C | g(x) > 1}

and
L(g) = {x ∈ C | g(x) ≤ 1}

Both µ and ν are complete lattice homomorphisms and so left adjoints. The
next lemma provides relevant information on these two adjunctions; we do not
distinguish notationally between functions and their various restrictions and
corestrictions.

Lemma 3. Let C be a d-cone. Then

1. µ cuts down to an isomorphism of the complete lattice of the Scott open
subsets of C not containing 0 and that of the homogeneous continuous func-
tionals on C, with the pointwise ordering; it has inverse S. This cuts down,
in its turn, to an isomorphism of the complete lattice of convex open subsets
of C not containing 0 and that of the superlinear continuous functionals on
C. Further, for any homogeneous continuous functional g and open set U
not containing 0 we have that g ≥ µU iff g ∈ U◦.

2. ν cuts down to an adjunction between the complete lattice of the subsets of
C containing 0 and that of the (opposite of) the R+-homogeneous function-
als on C; it has right adjoint L. They, in turn, cut down to an adjunction
between the complete lattice of the non-empty convex down-closed subsets of
C and that of the (opposite of) the R+-sublinear monotone functionals on
C. Further, for any R+-homogeneous functional g and non-empty set X we
have that g ≤ νX iff g ∈ X◦.



Proof. 1. That µ sends (convex) open sets not containing 0 to (superadditive)
homogeneous continuous functionals is a straightforward verification; the
corresponding properties of S are immediate. Next, µ is monotone and S ev-
idently is too, and we prove that they are inverses. To see that µS(g) = g for
any homogeneous continuous function g, note that x ∈ r · S(g) iff g(x) > r,
for any x ∈ C and r ∈ (0, 1). To see that S(µU ) = U , for any open set U not
containing 0, note that, for any x ∈ C:

x ∈ S(µU ) iff µU (x) > 1
iff ∃r ∈ (1,∞). x ∈ r · U
iff x ∈ U (as U is open)

All these equivalences are obvious except the last. The ‘only if’ holds as U is
open and therefore upper closed; the ‘if’ holds as for any x ∈ C we have that
x =

∨
rn · x where rn is any increasing sequence of positive reals tending to

1. So if x ∈ U then for some rn, rn · x ∈ U and so x ∈ r−1
n · U .

By the isomorphism, for any positively homogeneous continuous functional
g and open set U , we have g ≥ µU iff S(g) ⊃ U and we now show that
the latter is equivalent to g ∈ U◦. Only the implication from right to left
is in question, so suppose that g(z) ≥ 1 for all z ∈ U , and choose x ∈ U .
As U is open we have rn · x ∈ U for some rn (the rn are as before) and so
g(rn · x) ≥ 1, which implies that g(x) > 1, as required.

2. That ν sends (convex down-closed) subsets of C not containing 0 to R+-
homogeneous (subadditive monotone) functionals is a straightforward veri-
fication; the corresponding properties of L are immediate. To see that the
right adjoint is S, we calculate:

g ≤ νX iff ∀x. g(x) ≤
∧
{r ∈ (0,∞) | x ∈ r ·X}

iff ∀x. ∀r ∈ (0,∞). x ∈ r ·X ⊃ g(x) ≤ r
iff ∀x. x ∈ X ⊃ g(x) ≤ 1 (as g is R+-homogeneous)
iff X ⊂ L(g)

The final assertion follows from the adjunction and the fact that X ⊂ L(g)
iff g ∈ X◦.

We remark that in part 2, L is actually a closure operation: one easily verifies
that νL(g) = g for any R+-homogeneous functional g.

We next consider a ‘homogenising’ operation. For any functional f on a set
X define:

Hu(f) =
∨

r∈(0,∞)

r−1 · f(r · x)

Lemma 4. Let f be a strict continuous functional on a d-cone C. Then Hu(f)
is the least homogeneous continuous functional above it.

Proof. It is evident that Hu(f) is continuous and below any homogeneous func-
tional above f . To see that it is homogeneous, note that it is strict and that for



any s ∈ (0,∞) and x ∈ C:

Hu(f)(s · x) =
∨

r∈(0,∞) r
−1 · f(r · (s · x))

= s ·
∨

r∈(0,∞)(rs)
−1 · f(rs · x)

= s ·
∨

t∈(0,∞) t
−1 · f(t · x)

= s ·Hu(f)(x)

It is interesting to note that the Minkowski functionals can be understood as ho-
mogenised characteristic functions, since µ(X) = Hu(χX) and ν(X) = Hl(χX),
where Hl is defined analogously to Hu, but taking infs instead of sups.

We can now reformulate the weak∗-upper and the open-lower topologies in
terms of functional bounds:

Proposition 3. Let C be a d-cone.

1. The weak∗-upper topology has subbases of closed sets of each the following
forms: all sets of the form {g ∈ C∗ | g ≤ h} with h any functional; all
sets of that form with h an R+-sublinear monotone functional; and, if C is
continuous, all sets of that form with h a sublinear continuous functional.

2. The open-lower topology has subbases of closed sets of each of the following
forms: all sets of the form {g ∈ C∗ | f ≤ g} with f a strict continuous
functional; all sets of that form with f a homogeneous continuous functional;
and, if C is continuous, all sets of that form with f a superlinear continuous
functional.

Proof. 1. That the sets of the form {g ∈ C∗ | g ≤ h} form a subbasis of closed
sets for the weak∗-upper topology is evident. By Proposition 2.1 all lower
polars of non-empty down-closed convex subsets X also form a subbasis,
and by Lemma 3.2, these can be written in the form {g ∈ C∗ | g ≤ νX}.
So, as νX is R+-sublinear and monotone, we can restrict the subbasis to the
required form. Finally, if C is continuous, then such lower polars can also be
written as {g ∈ C∗ | g ≤ ψ(νX)} and, by Proposition 1, ψ(νX) is sublinear
and continuous.

2. We know from Proposition 2.2 that the open-lower topology has a subbasis
consisting of sets of the form U◦ with U an open subset of C not contain-
ing 0. Lemma 3.1 tells us that U◦ = {g ∈ C∗ | µU ≤ g} and that µU is
homogeneous and continuous; further applying Lemma 3.1, we obtain that
{g ∈ C∗ | f ≤ g} = {g ∈ C∗ | µS(f) ≤ g} = S(f)◦, for any homogeneous
continuous functional f . We therefore conclude that the open-lower topol-
ogy has a subbasis consisting of all sets of the form {g ∈ C∗ | f ≤ g} with
f a homogeneous continuous functional. Similar reasoning shows that we
can restrict to superlinear continuous functionals f in the case that C is
continuous.
Finally, for any strict continuous functional f , by Lemma 4 we have that
Hu(f) is homogeneous and continuous and also that f ≤ g iff Hu(f) ≤ g, for
any g ∈ C∗. So the sets of the form {g ∈ C∗ | f ≤ g} with f homogeneous
and continuous also form a subbasis.



This proposition evidently allows quite a number of equivalent formulations of
the weak∗-upper topology and its dual. We note the following immediate conse-
quence of Theorem 2 and the proposition:

Corollary 2. Let C be a continuous d-cone with an additive way-below relation,
and suppose that f is a continuous superlinear functional on C and h is an R+-
sublinear functional on C. Then the ‘sandwich set’ of functionals:

{g ∈ C∗ | f ≤ g ≤ h}

is compact in the patch topology (on the weak∗-upper topology).

This complements the Sandwich Theorem, see, e.g., [20], Theorem 3.2, which
says—though without the assumption that way-below is additive—that the sand-
wich set is non-empty.
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