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Chapter 2 The generalisation problem

We will now narrow our objectives and use the framework constructed
in the previous chapter to formalise the problem of finding i
generalisations from experience. This problem is both the simplest and -
the most common illustration of non-deductive reasoning. Indeed, so

central is it, that some philosophers even use the word induction to

mean generalisation. Here is an archetypal piece of generalisation:

The sun rose yesterday

The sun rose today

The sun rises every day

Here is another:

This crow is black

That crow is black

Every crow is black

Some more complicated examples can be found in chapters?, L4 and 5.

To follow the prescription of chapter 1, we must fill in several

parameters.

First we mustésettle the hypothesis space. This has already been
required to be some subset of the set of universal sentences. We will

simply require that it is the set of universal sentences.

Next, we must settle the set of phenomena, and the circumstances of
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their occurrence, {ei => fiii=1,n§ where e, = Ev(fi) (i=1,n) for a
certain function Ev. Each phenomenon must be an experience. Let us
say, as seems reasonable, that an experience is a fact experienced in
certain circumstances, described by another set of facts. This is
consistent with our decision to use => as indicating an experiment, if
we regard an experience as an unintentional experiment. So fi is a
fact and es is a, supposedly finite, conjunction of facts. We assume
that every fact can be described by a ground literal. This fits in
well with the view that there are basic observational predicates and
facts are what are observed. One might make two accusations of
unnaturalness. First most facts stated in English are stated in a
positive way, and this is usually possible. Thus comnsider the verbal

exchange;

John: ™The tap is on"

Mary: "No, it's off."

But here there is a piece of inbuilt knowledge, namely
VX (On(x) == Of‘f(x)}, We wish to have a theory which includes the

use of no knowledge, when one would want negations.

Secondly, it seems a little odd to allow function symbols other
than constants. ,®hey do seem to arise occasionally in English in
possessive phrases. "John's mother is beautiful™ might be rendered as-
Beautiful(Mother(Jokn)). Since they perhaps bught to be allowed in

everyday use and since they certainly ought to be allowed for

. mathematical facts and are necessary if actions are regarded as
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functions (usually from situatiomns to situations), we will allow them.
At any rate the theory can be developed just as well for the general as
the particular cases. It will, however, make a rather spectacular
difference later on. If function symbols other than constants are
allowed, then one version of the generalisation problem is unsolvable,

while if they are not allowed, it is solvable.

Thus the phenomena are given by a set of facts, f = {fili:1,n§
and a function Bv from f to finite conjunctions of facts. So far we~
have adopted the standard interpretation of => as an experiment, which
justifies the selection of the hypothesis space. In any application |
alternative restrictions may be made on => which may induce other
possible restrictions on any of the parameters: the hypothesis space,
the set of possible phenomena, the method of explanation or even,

perhaps, the niceness criterion.

We must remark that there are some problems whose solution we
assume to have taken place. The set f should be a reasonable set for
generalising from. Bv should choose the (or a superset of\ﬁhe)
relevant or correct facts which describe where, when and/or why fi took
places, Such problems would be faced in formalizing the entire process
of theory formulation. We do not attempt their formalization here,
although one migh; suspect that if Ev(ei) is relevant %o fi then every

term in fi will contain a term occurring in Ev(ei)o Perhaps the set

of atoms in Ev(ei) and £, would form a connected set under the relation

of having a common subterm. This weak requirement will not be assumed,
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howevers,

We believe that an event is a fact. This allows a widening of
the range of possible interpretations of =>. We make the notational
convention that gi is the clause {iEL is one of the literals

conjoined to form ei§.

No conditions are assumed for Th or Irr at the moment. We will
not say how k ought to be split up into two parts, except that Trr may
contain an account of the failure of certain experiments. That is, it
may contgin conjunctions of literals of the form e /\ f where e ié a
conjunction of ground literals explaining some experimental set-up and
T is a literal which expresses the fact that the expected outcome, f;
did not occur. Irr will contain such "failures"™ when we do not wish
to explain why the failure occurred, nor use the failure to explain

the successes, but merely wish to find an explanation consistent with the

failure.

We will be particularly interested in the case when Th is empty,
although we will also comsider, in less detail, some other cases.
However, much of the theory can, and will, be formulated in general,

There are some restrictions that must be placed on Th, Ev and f,

y
v .
if the phenomena are to admit any explanations.

1 For every i, e, —> fi must not be deducible from Th.

, n
2 Th A j_/—-\1(ei A f‘i) must be consistent,
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We must now capture a suitable notion of general%satien in order to
formalise the intended type of explanation. The word genmeralisation is
used in many contexts both formally and informally. It is‘not clear ot
that there is a commen intuition behind these uses, For example
\é@(x) andzgﬂ?Cx) are, respectively called universal and existential
generalisations dfP(a). Yet only the former could qualify as an

inductive generalisation.

Generalisation froﬁ experience seems to occur in twoe stages.
First a relevant part of experience is selected and then generalised by
universal generalisation, that is, the replacement of constant terms by
universaily quantified variables. To reversé this, én experience is
explained by a generalisation if it follows logically froh an instance
of it, It is this sénse of generalisation for which we shall attempt

a formal parallel.

In our case, an experience is typically an experiment_&éﬁcribed by
e, => fi for some i. We assert that the process of selecting a relevant’
part of it may be divided up into two parts; one of selection and one

of rewording.

In a selection, some of the circumstances are regarded as irrelevant.
That is, ei => f{ is a selection from e, => fi if e' is obtained from e

by removing some of its conjuncts.

In a rewording, the experience is redeseribed in different terms,

possibly using Th. This is how knowledge interacts with generalisation.
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e t 3 3 = -3 V-
Formally, es => fi is a rewording of e, => f‘;.L if ‘—Thei = e and

"' £! 2 f., e! is a conjunction of ground literals and f! is a
Th i i’ i i

ground literal, ;
. v o ¢ s _ P o £
Finally, es => fi is a part of e, = fi if it can be obtained from

e, => fi by a series of applicatiomns of selection and rewording to e, => fi.
1 -1 s ¥ e | |

Notice that in this case, }Ehfi = fio Therefore e; —> fi is true,

as fi is., However it may be no longer possible to justify the

assertion that ei => f{ as some selection may have removed a relevant

part of the circumstances.

The second stage is the replacement of constants by universally
quantified variables. We say, therefore,' that V(e:': => f':{)is a

generalisation from e, => fi iff for some & and ei' => fi, which is a

- " - ] " — P, w_y ), e
part of e, => f., ef6™ = e, and ffo" f£! ( V(ei > fi)abbrev:Lates

VX cooX (e => £%), where x,...x_ are all the variables in el => £7,)
1 n' i i 1 n i i

Here Vé" => f'.')is said to be a generalisation of e! => ff.
? i i i i

To give a good Iﬁeaning to v«a: => f:_:)would take a longer excursion
than is practical. One would have to reread => as a counterfactual
(Goodman, 1965, Tredwell, 1965). For example Vx ‘%fistotle(x) =>
Speaksgreek(x)) would mean that anyone who was Aristotle could speak

Greek. P
e

Let us illustrate the above by an informal example imn which =>

means mo more than material implication and therefore causes no trouble.

Suppose we observe that 'some crow in Stonehaven is black' and that 'some
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other crow in Dunoon is also black'. We may decide that the place of
observation is irrelevant and that the essential observatioms are that

beth crows are black. Now if we know, (from Th) that “craw" is a '
Scottish word meaning “crow" we may reword the observations, so noting

that two craws were black. From this we conclude by a stage of
"generalisation of" that all craws are black. We can even, by a final

rewording see that all crows are black.

At this point, there occurs an important transition. Rather
than dealing with assertions of the form e => f (where e is a
conjunction of ground literals, and f is a ground 1itera1)wé consider
the corfesponding clause e U {fEQ The aboﬁe definition of generalisatibn
will be mirrored by an analogous one for clauses which will allow a
mathematical theory to be developed using reasonably well-known ideas,
This theory makes no use of => and consequeﬁtly some rough Justice is

dealt to => in the transition.

As a matter of fact, we could have continued to use =>. But we
feel that there would be a mismatch between our informal sign, =>, and
the increasingly formal nature of the rest of the work. A mere formal

treatment, perhaps using modal logic, would result in a better-knit

theory.
The clauses Ci = Ei (} {fi§ are particularly impértant° We set
HO = §0i|i=1,n§, There are some conventions,. A clause, G, abbreviates

a formula which is a disjunction of all its members. A set of clauses,

. H, abbreviates a conjunctibn of all its members. ¥/C is the universal
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closure of the formula C abbreviates. \/ﬁ is the universal closure

of the formula H abbreviates.

A ciause, C, is a selection from D iff ¢ § D. If D corresponds tof
ei => f{ Which is a part of some e, => fi9 ande contains fi this
cerresponds to the abéve definition of selection. We ailow C not te
contain fi since this will make rather smoother goeing, formally° It
will not alter the class of chosen hypotheses since G must then be
inconsistent with {Eg(ei A fi) and sc will not be chesen by any of our
induction methods. For the same reason the reader will see that
neither will any rewording or generalisation of C or indeed any clause
reached.by continued application of the generalisation operations to C

be choseno -

The clauses G and D are said to be rewordings relative to Th, iff

F&h \fx1°..,,,xn(c;= D) where X ae0.00X are the variables in C or

in D. This is equivalent to !—Th C= D.

Even when C and D are ground, this need not c®rreéfond to the
previous definition pf a rewording. This is the only‘plaée where real
injustice is dome to =>, However, when Th is empty, kﬁ? = D iff
C = Dﬁand then the two definitions correspond properly. The reader may
however verifj, ag;the»appropriate ppihts in chapter fivé that for' the
various types of Th investigated in any detail, the two definitions deo

in faet correspend. :

The clause C is a generalisation of D iff, for some substitution,

: G, Co =D This does not quite correspond to the previeus
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definition. For when D corresponds to‘ ei' => fz{g which is a part of
some e. => fi, then it may be that C = -é.':'.:" (U C* where C' is not a
singleton. However the correspondence could be straightened out by
weakening the demand, implicit in the above definition of a
"generalisation from", that f;.’_ be a literal. This would seem to be

harmless.

There seem to be several possible definitions of "generalisation
from". A weak one, which seems to be a special case of the corres-

ponding definition is:

C is a generalisation from Ci relative to Th, iff there are
clauses E and F and a substitution & such that C6 =E, E € F, F is

ground and F = Ci°

Th

We may certainly drop the restriction that F is ground, for
< . — | -
suppose F has the variables X,......x and let M= {a()/x1,oo.,°3a()/xn}o
Then we have Co‘/u. =EMm , E/A SF/A s P is ground and
h‘-h F/u, = Ci since ci/u. = Ci’ (Ci is ground)., Therefore this

definition is a special case of the more general definition:

C is a generalisation from D relative to Th iff for some E and © ,

Co~ € E and HTH’E = D.

There is a much stronger general definitiens C is a generalisation

from D relative to Th iff there are Dj(j=1 ,m) such that C = D1 s D = Dm

or ch' = D, , for some & or '.-Th Dj = Dj+1 (for j=1,m=1).

1 J+1

and D, € D.
. dJ J+
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This turns out to be equivalent to the weaker definitiom. We

show this by induction on ms Suppose m=1, - Then as Ce &€ C and

}Eh C= C, the condition is satisfied. Suppose j>1, then by ;
induction there is a © and an E such that DO C E and \—Th E= D,

= ' c
Suppose C/u, = D2 for some/u, o« Then C/u.G‘ &£ E and so the
condition is satisfied for C and D. Suppose C & D2, then
e & Dzd" & E and the condition is satisfied in this case too.
ihs -hat = o = o
Suppose, finally, that [—Th C = D,o Then I-Th (e = Do and
= , iy < e ] =

s0 f—Th Ce UE=D, VU E. But since D,6" € E, }—Th Coo U E=E.
Now, as ’Eh E= D, |—Th o~ U E = D and we see in this last case

that the condition is satisfied.

We are thereby justified in adopting the simpler condition as our
definitioen, It is worth introducing some extra symbolism. By
C<D (Th) (read G generalises D relative to Th), we mean that C and D

satisfy the above condition.

We can now forget the notions of selection and rewerding and the
distinction between "seneralisation from" and “generalisation of™.
A1l these notions served only to help establish our notiom of relative

generalisation.,

As an example let us formalise the crows. We can take
4

f = {Black(crowl), Black(crow2)}, Ev is given by:

il

Ev(Black(crowi)) = Crow(crowl) A Place(crowl,Stonehaven)

crow(crow2) A Place(crow2,Dunoon).

Ev(Black(erow2))

1]
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We may suppese that Th includes the statement:
VX(Zrow(x) = CraW(x))ﬂ | ; ‘

Then { = Craw(x), Black(x)] < { = Crow(crowl),

Place(crow!,Stonehaven), Black(crowt)} (Th).

When Th is empty, then F&h ¢ = D iff either C = D or both C
and D are tautologies. Then C<D (@) iff there is a o such that
C6- € D or Dis a tautolegy. For if D is a tautology then

;-Th Co U D= D, no matter what & is. Let us write C<D (read
C generalises D) iff there is a & such thé‘ﬁ CG‘ € D. -(In fhe
literature, this relation is called subsumptiono) Thefefore C<D is
not identical to C<D (8). Practically, however, there is no

difference since assumption 1 (that no f, follows from Ev(f’i)) ensures

that no Ci-is a tautology.

Rather than assume that one generalisation canm consistently
explain all the phenomena, we look for a set of generalisations which
de. That is we expect to find a set; H, of clauses such that for
every.Ci‘there is & C in H so that Cipi (Th)g" This allows for the
possibility that several distinct classes of phenomena have been
bunched together %? f by mistake. We adopt the following notation:

H,<H, () (read H, gemeralises H relative to Th) iff for every C, in

2
Hz_there is a C1 in H,[ such that C‘IS-CZ (Th).

H1_§_H2 (read as H, generalises H2) iff for every 02 in H2 there is

Jl
! C,‘ in H,[ sueh'that C1iC

2°
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We may now define the notion of explanation which will be used.

Recall that C, = e, U [f;} for i=1,n and that Hj = {c; |i=1,nl.

VH explains §ei => f‘il‘i=1 ,n} iff

1) For some C in H, C<Cy (Th)s given any i between 1 and n.

n .
2) VH ATh A Irr A :'L/=\1(ei A f‘i)‘.is consistent,

We do not need a condition corresponding to E2 of the previous
chapter, since it has already been assumed. Condition EL is also
redundant since we have shown that VH is lawlike. This discussion

of Ek only applies when => represents an experiment.

We can write the conditions that VH explains every phenomenon,
as
1) HeHy (Th)

n

2) HA Th A Irr A :i./—\1(ei A fi) is consistent.

Only one thing is now left unspecified, the niceness rélation, '§ o
Several different ﬁiceness relations will be considered most of which
are constructed from quite simple syntactic measures, However most:
attention will be paid to one in particular, 'gcpgo Others will be
considered, particularly when we wish to show in chapter L4 that an
unsolvability result is largely independent of the choice of -£ ; some

philosophical discussion in chapter 5 will also use a different mniceness

relation from "gcpgo
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Tn order to 'mix' quasi-orderings, (that is, reflexive and transitive

binary relations) we define the lexicographic product -3 °-3' of two

quasi-orderings =8 and =-§', thus

¥ 3 s .
H, 203 Hy iff either H, -3 H, and Hzﬂé H, or else H, -3 Hys

. !
H, ] H, and H -8’ H,o

Thus to decide which is nicer, the léxicographic product, -0 3!
first consults -§ and if that gives no definite decision, tries -§'.

We also say that -§o-§' is a lexicographic refinement of -3,

Lemma 1 The lexicographic product -$e —3' is itself a quasi—ordering.
If =8 and -%' are linear, so is -§'. The lexicographic product is

associative and idempotent.

Proof Reflexivity is obvious. Suppose H, o A & H, and H, £ o -3 HBo
If H, -$H, and H, 4 H then H —3 H, end H; 78 H,, since -§ is
transitive. It follows, in this case, that H, -5 0 Hye Suppose
H, =§ H,, H,=3 H, H,=3 H; and HBﬁ Hy. Then H, 7é‘H1 and so here,
t00,H, 5 o4 Hg. The only other case is when H, -5 H,, H2 -$ H,,

¢ t 3 ]
H, -§'H,, H,-$ Hyy Hy - H, and.H, -§ ' H;.  In this case, as -3

is transitive, H —§ H,, HB-{‘ H, ~3'H, and therefore H, —§ ¢ 4 H,.

3

Suppose "gar;d ~$' are linear. Suppose that H1 - 5%‘ H2 is

false. Then firstly H1 7@ H2 or H2 - H1 s and secondly either H1 7é H2

. s
or H, -7? B, or H, -3 Hyo Therefore, as -§ is linear H, -5 H. If

H, #§ H, then H, o~£' H,. If H =3 H, then H &' H,. Therefore,

~as -§' is linear, H, —§' Hy. So in this.case, too, Hz—g a—S'H,I and
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we see that %oag' is linear.

In proving associativity, the fact that H’I 7§1 H2 implies the o
falsity of H, ——31 ® -—@2 Hy, is useful.  Suppose H, 7é Hyo Then
H, 45( %' 0o 8") H, cannot hold, nor can H, —so-P* H, and so
neither can H1( $ec-$') o 8" H,. Suppose H - H, and H27£g H, -
Then H, =% o ( ' o ") Hye Also H, -% o ' H, holds and

Hg-éo -3t H1 does not hold. Therefore H,!( ~o—f') o -3" H2 holds.

Suppose H, - H, and H, —=§ H,. Then H,l—-go (' —5") H, holds
iff H,]” — ' o " H‘,2 holds. Similarly H’l £ o -g H2 holds iff

H, -§'H, holds and H, —§o =3' H, holds iff H, -$' B holds.  Therefore

H1(<go £') o 4" holds iff H —§' o <" H, holds iff H Fo (~2'c 5")
H, holds. In all cases we see that H, (§0-4"') e 4" H, holds iff

H’l =3 o ' -s"') H2 holds, which concludes the proof of associativity.

H,—§o <4 H, holds iff H, ~§ H, and either H, 4 H, or H -3 H,.
This condition is evidently equivalent to requiring that H1 —g H2,

which proves idempotency and concludes the proof.

Here are a few quasi-orderings which give possible measures of

niceness,

1 Complexity Hf -3 Hy iff ||H || < e, | e
Ilicy « Hy | cecy (i,
EHPower(C),

H, —gp H, iff Power(H1 )_>_1=‘ower(H2)o

2 Power Let Power(C)

1

Power(H)

This ordering is defined in terms of HO and so of Ev and f.
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3 Generality H, ,gg H, iff Hy<H, (Th).
L Literals H, —§; H, iff || Usr <l U syl
5 Literal occurrences H, —é&, H, iff C§%1hﬂch“ < é?%z“cllo
6 Symbols H1 -—§S H2 iff the number of symbols in H1 is less than or
‘ equal to that in H2°
7 Symbol occurrences H1 ~q§s, H2 iff the number of symbol occurrences
in H1 is less than or equal to that in H2.

Ag remarked above, we will mostly be interested in —5;pg Which is
—‘gc [~} -‘%PO —-ggo

This choice may be partially justified. The niceness eriterion is
(-1§()ot—§p) o —gg and corresponds to preferring the least general of the
simplest, given by'-1§CP = '1§C ° —é;, hypotheses. There are three'
conflicting properties guiding the choice of hypotheses current in the
literature. One would want & hypothesis to be justifiable and the
less general it is the more it is likely to be Justifiable. However
it is quite cléar that the least general hypothesis which explains the
phenoﬁena is,HOs which is even weaker than the statement of tﬁe phenomena
themselves.  Another factor is the desire that the hypothesis be as
general as possible in order to say something interesting. However
there is no ﬁost general hypothesis since one can keep on adding
irrelevant clause# to H. .The fifst factor would, we suppose, be
emphasized by Carnapians and the second by Popperians, But we see tﬁat
the first leads to no interesting hypotheses whatever and the second
does not seem to lead anywhere. The solution we adopt, as urged by

- Goodman (1961) is to place simplicity, the third factor, in first place,
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So we only debate whether to follow the counsel of safety or strength
among hypotheses of equal simplicity. We will discuss this in more

detail in chapter 5 when we have a little more mathematical equipment. |

As can Ee seen, in choosing ‘%%Pg»we have decided on the safest
of the simplest hypotheses. Essentially this is an ad hoc decision.
We can scarcely decide between Carnap and Poﬁper) and some choice had
to be made. We chose the Carnapian one, since it allows us to prove
some theorems to the effect that the hypotheses formed in this way will
be acceptable to certain Carnapians in a precise techmical sense

(Hintikka and Hilpinen, 1966, Hilpinen, 1968).

We should now give some justification‘of the simplicity méasure,

-‘gcpo This is based on both a loose analogy with a measure for
propositional formulae and also, simplj, mathematical convenience.
Propositionél formulae iﬁ conjﬁnctive normal form are often compared
by‘prefeyring first those with fewer conjuncts and of th@ée with the
same number of conjuncts that one.is preferred which has the fewest
number of literals. 'This analogy woul(i favour % o o —51, rather thran

—1§C 0 —%Po However power has the property thag H15ﬁ2 implies -
,}H —gP H2, which is not shared by -131,,va1though for pfopositianal'
formulae both cgiﬂ’and —gz)have this.proper{;y° ' Thus the choice of

—gcp is dictateéﬂby rather ad hoc factors. A fuller study would %ry

the effect of other obvious measures of simplicity in more detail and

use any relevant philoesophical work on simplicity.

We have now specified or indicated the possible values of every
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parameter and cantgive the formal problem of finding a nicest

explanatory generalisatioh from experience.
One is given k = Th A Irr, Ev and £ subject to the restrictions:

n
1 x A ANfe. A £.)is consistent.
- i=11 i

2 TFor no i does e, —> fi follow from Th.
One is required to find a set of clauses, H, such that

P14 HeH (Th).
0 n
P2 VHA T A Irr A (e, A ;) is consistent.
P3 Of all the sets of clauses satisfying P1 and P2, H is minimal

with respect to ‘% o

We will be particularly interested in the case where -4 is “éépgo

When Th is empty, the problem may be reformulated by replacing P1 by:
P HeHye

The next chapter develops the relevant formal properties of relative
generalisation. In order to make it formally self-contained, several
-definitions are repeated. This chapter has been concerned with giving

a fairly rational explanation for the choices of the definitions.

y




