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Chapter 6  Hypothesis learning theory

1. Introduction

H

Hypothesié learning theery was §tudied first, as a language learning
theory, by E. Mark Gold (1967) and subsequently, in more mathematical
detail by Jerome Feldman (1970). The importance of this theory is that
it deals with the progreséion of a hypothesis discovery methed through
time. While it appears on the surface to deal exclusively with lahguage
guessing, the theory may be adapted for other purposes. Our
presentation tries to f;ing this out by developing part of it on an
abstract level. One can continue the abstract theory to cover the rest

of Feldman's theory, but enough will be developed to give a good ground

for application, criticism and indication of possible future trends.

A11 this work is essentially an elaboration of a simple but

surprising theeorem of Gold.

A complete information sequence for a context-free grammar, G, is an

infinite 1list, I of the form 1Yy 3 eeee where:

(1) +y appears in the list iff the string y is in the language

determined by G.

~ :
-y ébpears in the list iff the string y is net in the language
2) y

determined by G.

Suppose that at time t one is presented with the signed string A

To what. extent can one succeed in Meventually" guessing G? It turns
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out that there is a method, defined independently of G and I, which
will identify G in the limit. That is,there is a time T at which
it will guess and ever thereafter continue to guess, a grammar G' ’

whose language is the same as that of G.

Let G1,.ovn be an enumeration of all context-~free grammars. The
method chooses, at time t, the first grammar, G' say, such that if +y
has appeared in the list by time t then y is in the language of G',
and if -y has appeared in the list, by time t, then y is not in the
language of G'. Evidently one can always find such a G', if only
because G appears in the 1ist,. If G" is a grammar in the 1ist whose
langﬁage differs from thét of G, then either there is a y in G but not
in G", or vice versa. At some time, t', say +y (whichever is
appropriate) will appear in the list and thereafter G" will not be
chosen by our method. Hence after some time, t'say, every G
occurring before the firét grammar in the list whose language is the
same as that of G, G' say, will never be chosen. At this time G

will be chosen and will continue to be chosens

This theorem shows that, at least in this case, it is eventually
possible to "learn" the truth. Hewever it is never pessible to "know"

the truth, since any guess G can be forced to change by some +y or

P

other.,

2.  Abstract theory

The theory is presented as an informal mathematical theory.
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The domains are the hypothesis space, Hyp and the phenomenon space,

Phen.
Axiom 1 Hyp is a recursive, infinite set of integers. i
The variables ranging over Hyp are h, h! etc.

Examples 1) Hyp is the set of GBdel numbers of first-order lawlike
universal sentences. GBdel numbers give a way of coding sentences as
integers. This possibility of coding allows us to consider the theory

a general one.
2) Hyp is the set of G83el numbers of context-free grammars.

Hyp i1s required to be infinite in order to avoid trivial
exceptional cases in later theorems. We will asume some fixed

enumeration, h hz,ooao of Hyp.

1’

Axiom 2 Phen is an infinite recursive set.

The variables ranging over Phen. are f,f1 etc. We use, F,F+,F—
etc. to range over finite subsets of Phen. _;}(Phen) is the set of
finite subsets of Phen. The fact that Phen is infinite forces

attention on the harder problems. Generally, our theory becomes

trivial when Ph%n is finite.

s

We will let 2855 Phen be a variable ranging over the recursive

subsets of Phen. 28 is to be understood as a subgect domain

separated out from Phen, the class of all possible phenomena.
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Examples 1) (G8del numbers of) strings of letters.

2) (The GBdel numbers of) the set of all ground clauses, C
!
which do not follow from Th, an arbitrary consistent set of sen’cencvesﬁ,

but are consistent with it and Irr, another set of sentences

consistent with Th.

The predicates are: Accountsfor is of sort Hyp x Phen}

MA is of sort Hyp x Phen x IntegersJ
Consistent is of sort Hyp x Q(Phen) X Q(Phen)
MC is of sort Hyp x Q(Phen) X ?‘(Phen)

x Integers.

Axiom 3 Accountsfor is partial recursive, M’A is primitive recursive

and Accountsfor(h,f) = Hm M’A(h,f,m),

We extend Accountsfor to a partial recursive predicate of type

Hyp x ?é" (Phen) by:

Accountsfor(h,F) = of Vf ¢ F Accountsfor(h,f). -

a

Similarly M, is extended to a primitive recursive predicate of

A
type Hyp x ?‘(Phen) x Integers by:

MA(h,F,m)/."':." def Vf ¢ F 3 m' < m MA(h,f,m‘)u
Evidently, Accountsfor(h,F) = Hm MA(h,F,m)o

Accountsfor is the type of implication being used to explain the

phenomena .
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Examples 1) Accountsfor(h,C) = }Eh h -> C.
2) Accountsfor(h,c) = h < {C} (Th).
3) Accountsfor(h,f) = f is a string in the language

given by the grammar h.

MA corresponds to a program for Accountsfor.

Axiom L  Consistent is partial recursive, M, is primitive recursive

c
and Consistent(h,F+,F“)EE.E3m MC(h,F+,F',m)°

Consistent(h,F+,F-) means that h is consistent with the occurrence
of the phenomena in Fr (hence the plus sign) and with the non=-occurrence

of those in F .

If Accountsfor were a logical implication such that a completeness
theorem held and one had sufficient logical symbolism, one could define

Consistent in terms of Accountsfor by:
. + - __.3 + -
Consistent(h,F ,F )= Af = Accountsfor(h A F A —F ,f),

However we do not want such a strong implication in general, since
it may be easier or more relevant to look for hypotheses bearing

implications of a weaker sort, such as generalisation.

MC corresppnds to a program for =i Consistent.

Examples 1) When F' = {c, | i=1,n} and F = {:Dj | 5=1,m},
n

m
. + oY . . ‘
Consistent(h,F ,F )_V(h A i/=\1 Ci A j/z\,le) A Th A Irr is consistent.

2) h is a grammer and F' and F are sets of strings.

Consistent(h,F ,F )= (FF € L) A (L) OH F = g).
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The other axioms give some of the logical properties of the
predicates. They are meant to be a small set which allows Feldman's

theorems to be proved in a general form.

Axiom 5 Consistent(h,F ,F ) -> \/f- ¢ F =1 Accountsfor(h,f ).

Accountsfor is a consistent deduction principle.

Axiom 6 Fj]' 2F, A F, 2F, A Consistent(h,FT,F:) -> Consistent(h,F;,F;).
Consistency is hereditary downwards (preserved by any operation which

produces subsets).

Axiom 7 Consistent(h,F ,F ) -> F'fN ¥ = 4.

The phenomena in F are effectively negated.

The next axioms use a special hypothesis, T, which functions as a

tautology.

Axiom 8 Ve Consistent(T,f,8) A Consistent(T,d,f).

No phenomenon is necessary but every one is possible.

Axiom 9 Consistent(h,F',F ) -> Consistent(h,F’ U {f},F ) V
Consistent(h,F ,F U {f}).

This is a partial version of the law of the excluded middle.
Axiom 10 Tt i& decidable whether or not Consistent(T,F ,F ).

Axiom 11  Consistent(T,F',F ) -> dh(Consistent(h,F",F ) A Accountsfor(h,F"

Every consistent finite set has a consistent explanatioen.
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Information seguences

Information sequences are sequences of observations of the

occurrence or non-occurrence of certain phenomena. i

Formally, an information sequence is an infinite sequence in
oo
(10,1} x Phen) or else a finite one in ({0,1} x Phen)*. We will

display <1,f> as +f and <0,f> as =f.

We will use the variables I,I1,,.., to range over information
sequences. |I| is the length of I. Note that O < |1} < oo, If
0<t < |I|, I(t) is the tth component of I. If I, is finite, I, + 1,
is that information sequence consisting of I1 followed by Izo I

I1 is finite then n I1 = I1 + oaeowo + ]ﬁ, where n > O.  Mere formally,

n times

0 I1 = the empty informationsequence,
(n+1)I, =nI, + L.
If I, = I, + I, where |I3| > O then I, extends I,. This is

written as I1 > I2,

If t < |I], then ° = <I(1),eeee,I(t)>s If t > |I|, then - 1.
The positive information in I is defined to be s™(1) = {f | + f occurs
in I}, Simila¥ly, we define $ (I) = {f | - f occurs in Ij. I, agrees

.. . + ot e e~
with I, iff § (11) =8 (Ié) and S (11) =S (12).

T is complete iff S(I) U S (I) = Phen. If I is complete it is

infinite. I is consistent iff for all t, Consistent(T,S+(It),S_(It).
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A hypothesis explains an information sequence I, for the subject
29 iff
v . +, % ) +,_t e T
g t Accountsfor(h,S (I ) Ngf )A Consistent(h,S (I'),8 (I7)).

When eg = Phen we suppress, both here and elsewhere, any reference

to it,

Induction machines

An induction machine, /m/ , is a recursive function from the set

of finite information sequences to Hyp.
' %
m identifies h in the limit on I iff H’Uv'c > %7”(1 ) = h.

/m, matches an explanation of I for the subject )J in the limit

ire A7V > TMI®) explains I for d .
m approaches an explanation of I for the subject »QX iff

1) Vf e ST(T)N ,JHTV’C > T Accountsfor(??’l(lt),f)e
2) Y h not explaining I for the subject J , 3’8\7/1: > T %(It) £ h.

The approach is strong iff, in addition:

3) 3 h e}cplaining I for ;z? such that ]’C \7[1: > T 3 Pinite

I' extending It and agreeing with It such that /m,(I'): h.

This condition is slightly stronger than Feldman's for a strong

approach.
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3. Inferring hypotheses

Qur first induction machine ‘m’l is essentially due to Gold. It
is defined under the assumption that Accountsfor is recursive, and i

relative te a sli"bjec‘l:9 25 o
’ h1 (if ™ Consistent(T,S+(I),S_(I)))
. +g.
the first h, such that Accountsfor(hi,s ()N J) and
m @ -
Vet € s* (0. € s7(0) ¥ag 1| = ugln, 7.5, 1))

(Otherwise).

That m’l is total recursive follows from the assumption that

Accountsfor is recursive and axioms 10 and 11.

Theorem 1 If h explains a consistent, complete I for J then %1

jdentifies a hypothesis, h', in the limit on I which explains I for «J o

Proof First we show that if ht’ does not explain I for k’? then

Av¥e s oM, # 5y,

There are two possibilities. Either 1 ACCOL’LntSfOI‘(ht',ft ) for
1
-t
some £, ¢ S+(I)/U€J} or else ™ Consistent(ht,S"L(It”gS (1°1)) for some
1
t,l»o In the fir;st case we can take U = t1 .
/

In the second, there is an m such that Mc(h,S+(It1),Sw(It1)sm)o
As Phen is infinite and I is complete, there is a T such that II v l > e

This T has the necessary properties in this case.
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Suppose that h' is the first hypothesis which explains I for xg N
. . ; . . Zn ty . .
Then there is a time T such that if t > T} 1(I ) is net a hypothesis
t .
occurring before h'.,  Now, */t Accountsfor(h',8 (I )/\xX ) and since

L by - -
V‘t Consistent(h' ,S+(I ), S (It)), Vm Mc(h,S+(It), S (It), m) by axioms kL

t
and 6, Hence \ft Zf?’7ﬂ1(I ) = h'. This concludes the proof.

If in addition, Consistent is recursive, then we assert, leaving

the proof to the reader, that one can choose a simpler machine, :Z”2°
"n, (i 7 Consistent(T,87(I),5 (1))

M (1) =

the first h, such that Acoountsfor(higs+(I)(l4¥ )

and COnsistent(hi,s+(I),s”(fl))o
(Otherwise).

We cannot extend the result to the case where Accountsfor is not

recursive. In fact under the assumptions:

VF‘“,F" Consistent(T,F,F7) - [ Jf Consistent(T,F" U {f},F )

A Consistent(T,F,¥ U {f])],

we can show that no machine can identify an explanatory hypothesis in the
1limit when 43 = Phen. The assumptions hold when Hyp is the set of

A
general rewritifig systems (Feldman, 1970) and Phen the corresponding set

of strings.

Theorem 2 Suppose that the assumptions hold. For every machine, 7” s

 there is a consistent, complete and recursive information segquence on
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which 7” does not identify an explanatory hypothesis in the limit.

Proof Let f1,,@9, be an enumeration of Phen., We will find an I
satisfying the conditions of the theorem such that I(t) = % f,. Let us ’
say that a sequence, I' is suitable iff when I'(t) is defined, I'(t) = + fos
or else I'(t) = —fto
Suppose first'that:
] finite suitable T'(Consistent(T,5%(I'),87(I')) A
Vfinite suitable I" > I'[ Consistent(T,s7(1"),s(I")) -

(M) = ("]

.In this case we choose I' as guaranteed by the supposition. Let

ft be the first phenomenen such that Consistent(T,S+(I‘) U {ftg,s-(l’))

and Consistent(T,87(T'), S (I') U {ft§)° The existence of f,  is guaranteed Dj

the assumption and axiom 7. Let I" be a finite suitable extension of I
such that I"(t) = + ft":'E"lAccountsfor(M(I‘),ft)° The existence of I
is guaranteed by axiom 9,' As I" is finite, it is recursive. Axioms
9 and 10 guarantee that I"™ has an extension I which is a complete,
consistent and suitable information sequence. Now 7” identifies

M(1') in the limit, by the supposition. If -—\Accountsfor(w(z'),ft)
then I(t) = + £,. If Accountsfor("l(l'),ft) then I(t) = ~f,, and so, by

t

axioms 5 and 6, -1 ConSistent(m,(I'),S+(I't)93_(l“t))°
e

Therefore under the supposition, 7n does not identify, in the limit,

a hypothesis explaining I.

Let us assume, to the contrary that:
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Vfinite suitable I'(Consistent(T,87(I'),87(T"))
-> Enginite suitable I" > I'(Consistent(T,S+(I"),S—<I"))

A N(T') £ M(I™). ‘ .

In this case, IM™ may be obtained recursively from I' since Z@ is
recursive and by axiom 10, given I" one can tell by a recursive procedure
whether or not Consistent(T,S (I"),8 (I")). Therefore there is a
recursive function g such that b/I'(Consistent(T,S+(I'),S—(I')) -> (g(1")
is a finite sultable sequence extending I' such that

Consisfent(T,S+(I“),S—(I”))/\ 2%(1‘) # lyi(l“))@

Let I =<+ f,>. By axiom 8, Consistent(T,f1,¢); Then

Io<g(IO)<-°~5<8t(10)<°~°~ and so there is a unique, recursive I > gt(IO)

(for all t > 0) such that for every t' there is a t such that It‘ < gt(IO).
Therefore by the properties of g and axiom 6, Consistent(h,sz(I),S;(I)).

Therefore I is consistent and is certainly complete. Now Zﬂ(gt(lo))

7 7” (gt+1(IO)) (t > 0). Therefore Zﬂ cannot identify any hypothesis

in the limit.
This eatablishes the theorem.

Tf Hyp includes every recursive predicate of Phen, then although %n

will not identify a hypothesis explaining I in the limit, there is one.

e

Notice also that the I described in the theorem, although recursive,
is not obtained recursively from 7% . We conjecture that there is

no such recursive map when Hyp includes every recursive predicate of Phen.

This is not the case if we are guaranteed that for every finite I',
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;Lf Accountsfor( H(I'),f) is always a recursive predicate on Phen.
There is a unique recursive complete and consistent suitable information

sequence recursively specified by: T

1) 1I(1) = +f,

2) ™ Consistent(T,${(I),S;(I) U ff, 1) = I(t+1) = +f .
3) = Comsistent(T,5.(I) U {f, ,1,50(D)) = I(t+1) = £, .
L) Consistent(T,S:(I),S;(I) }) Eft+1§)/\ Consistent(T,SI(I) U

t :
{ft+1§,3t(I)) - (I(t+1) = o4 <> Accountsfor(M(T ),ft*4)‘

Of course we are still using the assumption behind theorem 2.
(The definition of I is very close to the familiar proof that there can
be no recursive enumeration of the recursive functions.-) In this case
we can actually find an 7' which will do as well as Zﬂon any I' £ I
and will identify a hypothesis, in the 1limit, which explains I (provided
Hyp contains all the recursive fumctions). Putnam (1967) has made

similar observations.

Although it is not possible to devise a machine which will identify
an explanation in the limit, it is possible to strongly approach one,

using a machine %”3.

To calculate 203(1) proceed as follows:
A
1) If = Consistent(T,s(I),87(I)) then 7W3(I) = h,.

2) Otherwise, find, by some fixed effective means, an h and an m

such that M,(0,8" (1) A4 ,n) ana YV cm v 1] ¥ 5 € s*@F € 57D

M (h,FLF n'). Then 7ﬂ3(1) is the first h, such that
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MA(hi,Sq'(I)f) ,(8 ,m + |I]|) and VF+ < S+(I),F- < 8 (1) Vm' < m +|7f

~1MC(h,F+,F',m').

i

H
Theorem 3 77?3 strongly approaches an explanation in the 1limit on I

for ,3 , if there is one.

Proof  Suppose that there is an explanation of I for «J o Then T is
consistent and so Accountsfor( 77/3(11;),8+(It)/) J) and so condition 1
for approaching a strong explanation is verified. Suppoese hi does not

explain I. Then either ™ Ac:countsf'or-(hi,f',C ) for some ft in S+(I)

1 1
or else ™ Consis’cem:(h:.L,S"-(ItI )5S (It1)) for seme t,. In the first

1
case, if T > t s WBCIT) # h . In the second case there is a t2
such that M (h 29 (I ’1) S (It1)) Therefore if t > ma.x(t1 ,t2), 7773(:['5) # h,.

This verifies condition 2.

Let hi be the first hypothesis explaining I for Qy o For some
T s 7723((17’/) is not any h occurring before hio Suppose t > T and
choose an n such that MA(hi,S+(It) /\Xy ,m)e If I' = ° . nI(t) then

7713(1') = hi° This verifies condition 3 and concludes the proof.

These theorems have all been concerned with good behaviour in the

limit. It is worth noting their local behaviour.

Suppose I is gonsistent. The Aceountsfor( Mi(It),S+(It)n J) for
i=1,3 and all t. Further COnsistent(ﬁﬂ1(It),s+(1t),s'(1t)) for all t,

although we only have, for i=2,3, MC('Mi(It),S+(It),8_(lt),m) where m

depends on t and m => @ as t -> 00
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Lo Inferring good hypotheses

By incorporating a complexity measure one can obtain better

standards of good local behaviour. S

We require that the standard ordering of the hypotheses, h1,h2,.,o.'
is according to their simplicity. For example if the hypotheses are
context-free grammars then, perhaps, if j>i,hj has no less symbols than
hi° The number of symbeols will alse order sets of clauses in this

linear way.

The derivational complexity d(F',h) of F' from h is defined when

Accountsfor(h,F’) and then,
d(F',h) = the smallest integer m such that MA(h,F+,m).

In other words, using a standard notation, d is that partial

function defined by d(F',h) = M m MA(h,F+,m).

The complexity fumnction Y is a partial recursive function from
?‘(Phen) x Hyp to IR , the set of the rationals. It combines the

simplicity of a hypothesis with the derivational complexity.

2 ;
There is a total recursive function ’K': N - ﬂ{ inereasing

unboundedly with e%ch of its arguments such that:
A
¥ ) = ¥'(E,4(F,h)).

The machines 7”1, Zﬂz and 2”3 could all be specified, using a

‘recursive (under the appropriate conditions) predicate,
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Pj(1sjs}) on Hyp x ({0,1} x Phen) , by:
mj(I) = the first h, such that Pj(hi,I)
For example: °

P (b, 1) E (7 Consistent(T,87(1),87(I)) > by = h,)
(Consistent(T,s(1),8 (1))
-> (MA(hi,s‘“(I)/\J s+ |I])

A Vet e s, ¥ e 5@ g, e s (1D,
where m is obtained recursively from I.

In each case for every finite information sequence I there is an h
such that Pj(h,I). Further, if I is consistent then Pj(hSI) implies that

Accountsfor(h,s+(l)/]48 )e

We will define corresponding machines 7%3(13353) with the

properties:

1 P. 'W(1),I
) P, (M3D,0)
2) Suppose that I is consistent. If Pj(h,I) then

T madm e T, my).

That is 7"3 will choose a best machine rather than a first one.

To compute 2”3(1)/Bne proceeds as follows:

1) If i is not consistent, then 7n3(I) = 7773(1)°
2) Otherwise, compute }ﬂj(I). Let k be the least integer such

thet  ¥'(k,0) > Y(SHDN A, M 4(1))-
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mj(I) is that Pirst hypothesis minimising U (87(I)0 o/ ,h) smongst

those hl(‘l_<_l_<_max(k,j)) such that Pj(hl,I).

To see that ’}713(1) is well-defined and effectively obtainable,
note that b"" is computable and increases unbounaedly with its first
argument, thus ensuring the existence and computability of k, that Pj
is recursive and that if Pj<hl’I) and I is consistent then

Accountsfor(hl,s+(l)/\ laV) and so ¥ (87(D)n o ’hl) is defined.

Evidently ’"\3(1) has property one. Suppose I;is consistent and
that Pj(hi,l), If i < k then ¥ (s7(D)n & Jhy) > ST DA S ,7713.61)).
Otherwise T (ST(T)N & h) 2 r'(1,0) 2 y'(k,0) 2 ¥ EOn S, 713(1))

> X(S+(I)n Qy ,’}713(1)). Therefore Y/ "j(I) also has property two.

Theorem 1 Suppose that Accountsfor is recursive.” mé matches an
explanation of I for 28 in the 1limit, if I has omne. Ir (S+(It)/)&p ,h)
converges for all h explaining I for Jj , then Wé will eventually guess

only hypotheses, h, which minimise lim U (S¥(z%)n J ,h).
T >0

Proof  From theorem 3.1, 777 identifies some explanatory hypothesis h in

2
the limit. 8o there is a T such that if t > 2;77/2(It) = h. Hence,
when t > 77 , the k calculated by 77(% will be independent of t and only
a finite number of hypotheses will be considered by %éo From the
properties of P‘2 ’éeveloped in the proof of theorem 3.1, if, hi does not
explain I for RX then eventually Pz(hi,It) will always be false. There~-

fore in the limit %é will choese only hypotheses explaining I for EX .

That is, ’}ﬂé matches an explanation of I for Q? in the limit. The
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The second part of the theorem is obvious. This concludes the proof.

When both accountsfor and consistent are recursive, m,‘; has the
!
same limiting behaviour as mé although, of course, its local behaviour

is better..

Theorem 2 Suppose I has an explanation, hi for J o 77/[% approaches

an explanation. If K(S'*'(It)/]{y ’hi) is bounded as t -> 0& , then
77?; will only consider finitely many hypotheses and will match an
explanation of I for )3 in the limit. If ¥ (S+(It)/\ J ,h') converges
for all h* explaining I for -Qy s then %{% will eventually guess only

hypotheses, h', which minimise lim D’(S+(It) (\J ,ht).
t ->00

Proof The properties of P3 developed in the preoof of theeorem 3.5 show
at once that ﬁ’l% approaches an explanation. Ir v (S+(It)/\,e8 h.)

> max d(S (1 )/\J h)
TO<t<

Then MA(hig,S-l-(It) nd »t,).  Therefore, if t > t, ,Ph(hi,I ). From

is bounded, so is d(S+(It)_/]eg ,hi)o Suppose t,

the properties of U we see that for some k, 1 > k implies that
X(S+(It)/\ J ghl) > (S+(It)(\,df ,hj,_)o Consequently 7”% only
considers finitely many hypotheses. Since in general, it approaches an
explanation, it must, in this case matech one. The last part of the

theorem is obvious and this concludes the proof.

A
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5. Generalisation and hypothesis learning theory

The algorithms and theory developed in the previous chapters
' !
provide a class of induction machines each of which chooses a nicest
explanatory hypethesis generalising a given HO and consistent with its

knowledge. We will take a brief look at the behaviour in the 1limit

of one such machine in a decidable case.

The hypothesis space, Hyp, is the set of finite sets of clauses

containing no function symbols, other than constants.

Phen is the set of ground non-tautologous clauses containing no

function symbols other than constants.

Accountsfor(H,HO) iff H < Hyo

COnsistent(H,Hg,Hg) iff VH A C/e\H CA /\- D is consistent,

g DGHO

Since Accountsfor and Consistent are both recursive there is an
algorithm which identifies an explanation in the limit. However, we
will see that if we take -9 = —%Cpg, any algorithm which chooses a
nicest explanation need not match an explanation in the 1limit even on

natural information sequences which arise from repeated presentations

of the formal problem.

Suppose thaﬁifi (izO) is a sequence of ground literals and BEv is a
map from {fi l izpi to conjunctions of ground literals such that

Ev(f;) U {f.}is in Phen and {f, A Bv(f,) | i=1,n] is consistent, Let

Ev(fi) = &4y N\ ocooe N eij(i) where the eij are ground literals and we
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let £8 :{EET?;S \){figl in§§ a natural complete and consistent
information sequence for the fi and Bv is one such that

S*(I)Z2£y U{eij | 20, 1<j<d(i)} and if i'>i, +t§?(§;7 U.gfiyoccurs/
doing so before +Q§;{§;:7’\)Zfizb in I.

¥

Recollect the D2j of chapter 3, section 3.3.2 which pro?ided an
example of an infinite strictly decreasing chain and the B‘E of the

representation theorem, theorem 3.3.3.2.4 and their properties.

One can find fi and an Ev satisfying the necessary conditions

outlined above such that:

B . 1
for = Uy 011 T u(a)

Foge = Q(X[1,2i]) T ﬁ(i)
Ev(f,;) = Dzi B’;(i)

L 2
Br(fp; ) = Dot T L3y

for suitably large n(i) and all i > 1.

Now such an fi and Ev has a natural information sequence explained

by §Q(x)}. Yet by the properties of the D, j and the representation

2

theorem %.3.3%.2.4 the nicest hypothesis, in the sense of *3 ope’

explaining {EvZfii,u §f£}k 1<i<2n} and consistent with $*(1) and the

set of negations/bf members of S (I), is D2n v EQ(X[1 Zn])zz En S58Y e
2

Thus at time tn)En will be chosen. As this is a strictly decreasing

sequence no member of which explains I, our machine will not even match

an explanation in the limit,
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One might object that QB does not contain enough instances of the
explanation. If it contains all instances, we will see that choosing

the nicest will match an explanation in the limit, ;

For, suppose H is an explanation of a natural, complete and
. . . iy . .
consistent information sequence I and that ,5?'2 Hy = U in \o’j | i,5>11.
+,.t
Then for some tO’ H is equivalent to a subset of gé(s+(1 0)(35? ) by

the representation theorem. Therefore if t > t., the nicest explanatory

0’
hypothesis will have complexity less than or equal to that of H. Let
C be in Ho The set {C 75:;: | i,5>1, C )”“:7; is ground and if

1<3'<J aij“ does not occur in C§'is infinite. Therefore it must
eventually be the case since the complexity of the nicest explanatory
hypothesis is bounded that any nicest explanatory hypothesis must
contain a clause subsuming at least two members of this set, and so
subsuming C itself, by the represéntation theorem. Therefore after
some time t, > t

1
Further, af'ter t

o ey nicest explanatory hypothesis must generalise H.

4 1o clause can occur in such a hypothesis which does
not subsume some clause of H, as H is an explanation. Therefore by
the minimality, with respect to '—écpg requirement, such a hypothesis
will be equivalent to a subset of gé(H), generalising H. There is a
fixed collection of such subsets of (§Q(H) of equal cardinality any
member of which j4 consistent with S+(I) and the set of negations of
members of SE(I) such that eVentually the nicest explanation will
always be equivalent to one of this set, the choice being determined

solely by power. Which has the greatest power depends on, amongst

Tt
-~ other things, the order of occurrence of the C'Kg (C « H) and so,

in general, any machine which
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chooses a nicest explanation will mateh rather than identify an

explanation in the limit.

These results are critically dependent on —%cpg° Let us look
instead at ,'ﬁsvgo H -gis'gH' iff H has a smaller number of symbol
occurrences than H or, if they have the same number of symbols, then

There is now a machine which will identify a nicest explanation
in the limit. Let XypecoesXisocoe be an infinite list of distinct
variables. Let 2¥-= {H | If H cbntains n variables these are precisely
X19°obagxn§° Notice that any H has an alphabetic variant in Z% o
Now there are only finitely many members of ?¥ with a fixed number of
symbols, and < is a quasi-ordering. Hence Z[ can be enumerated as
H1,H23°ooo where H1,““,Hi1 have one symbol, Hi1’°°°°’H12 have two
symbols and so on, and where if Hj and va have the same number of
symbols then if Hj < qu either j < j* or qu < Hj° This follows
easily from the fact that any finite partial ordering can be enlarged
to a linear one. Consequently, if j < j'%, Hj “—gs“g vao Since
every H has an alphabetic variant in ﬁk if there is an explanation of
some given I there will be one in the enumeration. Consequently that
machine which piqks the first explénation in the enumeration which

A

s .
consistently explains the phenomens will identify an explanation in the

limit and will always pick the nicest.

These examples show that much work remains to be done in picking

- niceness relationse.
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Do Conclusions

We have presented a generalisation of Feldman's (1970) work.
Feldman remarks that one of the more interesting theoretical éroblems o
was the inference of systems with semantics. In so far as our general
theory covers systems using the predicate calculus which has a semantics,
we have covered this problem; Here however we see that the notion of

complexity seems inadequate to apply to some of the niceness relations

developed earlier.

The various machines used and developed do not behave at all in
accordance with any hypothesis discovery procedure employed by
practising scientists; One could look for reasons in two general
directions. A better description of normal scientific practice,
including the discovery methods used would lead to more reali;tic
machines, For example one might study how old theories ére modified

to obtain new ones. This is a descriptive approach.

On the other hand, it may be that the machines do not behave in
the way they ought to. There is no formulation of any notions of

justification of criticism of hypotheses. This is a normative approach.

Leaving these general points aside, the machines all have one
deficiency, thejgare extremely inefficient. Each one would take so
long to operate that the process of hypothesis discovery would lag
irretrievably far behind the process of information acquisition. We

believe therefore that it would be illuminating to formalise and prove
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