DIJKSTRA'S PREDICATE TRANSFORMERS AND SMYTH'S POWERDOMAINS
¢.D. Plotkin

Dept. of Computer Science
University of Edinburgh
Bdinburgh EH9 3JZ

1. Introduction

In his book, "A Discipline of Programming" Dijkstra introduces a simple nonw
deterministic language based on his idea of guarded commands., He then introduces
the idea of weakest preconditions on states to give his language a semantics
called the predicate transformer semantics. This is very wéll—suited to showing
that systems can achieve certain goals, that is to questions of correctness, and
the whole thing fits well within the paradigm of denotational semantics where we
can regard predicatessm conditions as a kind of eomtimuation.(See [Stra],[Gor],
{Miﬂ],[Sto] for an account of continuations and denotational semantics, generslly,

and [de B],[de R],[Jen} for predicate transformer semantics in this style.)

On the other hand one can give the semantics of simple imperative languages using
state transformation functions, and employing complete partial orders with a least
element to handle divergence (nontermination}. This kind of semantics can be
considered as a direct abstraction from an operational semantics given, say, via

an abstract machine. Within this framework, nondeterministic state transformations
can be handled using powerdomains ([Ploz],[Smy]) which are & weak analogue of

powersets for the complete partial orders under consideration.

The relation between these approaches was considered by de Roever who showed, in
[de R], how, given a nondeterministic state-transformation, m, and a predicate, R,
one could define the weakest-precondition, wp(m,R) of R, relative to m; this work
employed Plotkin's powerdomain, based on the Egli-Milner order. He showed too
that wp(m,R) was even continuous I m and R, and indicated that this enabled one
to obtain the predicate transformer semantics (for a variant of Dijkstra's
language including recursion) from the state transformation one. This was all
fully worked out (among other things) by de Bakker in [de B]. Wand and Back

have made other relevant and important contributions ([Wan],[Bac1]) and these will

be discussed later.

In the present paper we regard this work as showing a homomorphism from the state
trangformation view to the predicate transformer one. By refining the definitions
a little we succeed in strengthening the homomorphism to an isomorphism (for a
slight variant of Dijkstra‘s language). This involves, on the one hand, using the
properties of predicate transformers, given by Dijkstra in chapter 3 of his book,
to define the partial order of predicate transformers and, on the other hand,

replacing the Egli-Milner order by the Smyth powerdomain,

However Dijkstra did not consider any particular language when introducing

predicate transformers. Rather he used a general, somewhat informal, idea of

528

mechanism. He gave some discussion of the relation between this view and a

direct definition for the case of his language of guarded commands. We complete
this discussion by showing how programs in our variant of his language can be
regarded as mechanisms and so obtain another definition of their weakest precondition
semantics. By examining the relationship between programs considered as mechanisms
and their state transformation semantics we are able to demonstrate that both
definitions of the predicate transformer semantics come to the same thing, thereby,

in a sense, Justifying Dijkstra’s ideas.

In section 2 of this paper we present a formalisation of Dijkstra's mechanisms

using the well-known idea of a trangition relation. In section 3 we introduce our
variant of Dijkstra's language of guarded commands and show how programs can act as
mechanisms by defining the appropriate transition relations; this is the operational
semantics of the language. In section 4 we introduce the partial order, PT, of
predicate transformers and use it to give the predicate transformer semantics of our
language. In section 5 we use Smyth's powerdomaing to define the partial order, ST,
of state transformations and use that to give the other semantics for our language;
then we show that PT is isomorphie to ST (theorem 5.9) and this is even an

isomorphism of the two semanties (theorem 5.12).

In gection 6 we show how the operational semantics relates to the state trans-
formation semantics (theorem 6,1) and use this result to demonstrate that the
direct definition of the predicate transformer semantics gives the same result as

the definition via the operational semantics (corollary 6.2).

Acknowledgements

T thank Robin Milner and Willem de Roever for helpful comments end discussions,

and Dines BjBrner and Cliff Jones for encoursging me to write this paper.

529

2. Transition Relstions

In the chapter entitled, "The Characterisation of Semantics" of his book, Dijkstra
discusses medhénisms, 3, and their semantics by considering the weakest precondition
on sta%és, wp(S,R}, of a post-condition R on states relative to a mechanism, S.

He defines this by saying, for example:

"The condition that characterizes the set of gll initial states such that
activation will certainly result in a properly terminating happening leaving
the system in a final state satisfying a given posi~condition is called the

weakest pre-condition corresponding to that post-condition®,m

This is admirably clear and perfectly precise once we know what conditions and

mechanisms are.

For conditions we first postulate a denumerable set, States, of siates, ranged over
by the variable s; for the present purposes it is not necessary to have any
particular structure on the set of states. Now we can choose between an
intensional or an extensional view of conditions (= predicates), The emphasis on
the extensional view at the end of chapter 2 of [Dij] leads us to take the set,

Pred, of predicates as:
Pred = &(Sta‘tes)

the collection of all sets of states (ranged over by P, Q and R), Note that we
have taken all subsets of States as there seems o be no reason here to exclude any
particular ones. We shall often regard Pred as a complete lattice under the
subset ordering, € . For work on the intensional point of view, see [BacZ,Mil,
de B].

It remains to discuss mechanisms, S. From the above description of wp(S,R) all we
nesd to know about § is, for any given initial state s, whether or not it will
certainly result in a properly terminating happening and, if so, whether every
possible final state satisfies R, To take exactly this view would lead us to
congidering S as a state-transformation function of some kind; this is the idea of
de Roever and we take it up again in a later chapter. However it expresses little
of the idea of what mechanisms and their happenings are. We intend to make that
idea precise by considering mechanisms as performing, somehow, transitions from one

state to another. Our method is a variant on a well-known game (e.g. [Kel]):

we postulate a set, Systems, of systems (= machines = mechanisms), ranged over by

S, and then define the set of gonfigurations, ranged over by C, to be:
Conf = (Systems ® States)) States

Next we postulate a transition relation, ->: Uanf x Conf and assume that no

relationship of the form & -> ¢ holds. The idea is that configurations, C,
represent states of a computation (happening); those of the form, <S,sd, are

posaible initial or intermediate states and those of the form, s, are final ones.

530

Further relationships, C <> C', represent one step of a computation: those of the
form <S,s8> -> <8',s'> are intermediate steps and those of the form <S,s> -> s are
final steps.

Definition 2.1 A system, S, is blocked in state, s, iff there is no configuration
C such that <S,s> ~> C.

4 system S may not terminate from state s iff either there are S',s' such that
<S,8> ->* <S',s'> and S' is blocked in state s' or else there is an infinite

sequence of the form, <S,s> = C, -> .., => Cm > aaa a

0
Now, clearly, tosy that a system 8, for a given initial state s, will certainly

result in a properly terminating happening just means that S must terminate from s.
The weakest precondition, wp(S,R), of S and R can now be formally defined as:

wp(S,R) = {s € Statesl S must terminate from s and for any s' in States if

<S,8> =>* s' then s' is in R}
The corresponding notion of precondition is defined for P,8,R by

P[S]R iff v s €P, (S mugt terminate from s and for any s' in States if
<S,s> ->* g then s' is in R}

Bvidently P[S}R holds iff P & wp(S,R) does, justifying the terminology of weakest

preconditions.

This is the place to recapitulate the basic properties of weakest preconditions

which we state for any system S and predicates Q,R:

Property 1 Strictness wp(S,d) = §

Property 2 Monotonicity If Q@ & R then wp(5,Q) € wp(S,R)
Property 3 Multiplicativity wp(S,Q) A wp(8,R) = wp(5,4 N R)

The arguments for these proverties are just (formal versions of) those already

given by Dijkstra; note that multiplicativity implies monotonicity. For the last
property we postulate further that the transition relation is finitary; this means
that for any configuration C the set {C'l C -> C'} ig finite, The point of this
condition is that it is then an easy consequence of XBnig's lemma that for any S,sif 8
must terminate from s then the set F(S,s) = ef {s'l(S,s) ->¥ s'} is finite and

nonempty.

Property 4 Continuity Let S be in Systems and let QO c (2155 .-~ be an increasing

sequence of predicates. Then,

Wp(sy u Ql) = UWP(SyQi)
This important property is considered in the ch%pter entitled, "On Nondeterminacy
Being Bounded" where it is established for the guarded command language and a direct

definition of its weakest precondition semantics. To establish the property in the
present context note first that it follows by monotonicity that

531

Wp(S,[}Qi)EZ k}wp(S,Qi). For the converse suppose s is in Wp(S,\JQi); then S
must terminate frem s and F(S,S)EE L}Qi. But by the above remarks F(S,s) is
finite and so for some i we have FGS,S) EE Qi showing that s is in wp(S,Qi) and
establishing the converse. By the way, it should be clear that these properties
should not be tsken as an attempt to characterise or axiomatise wp(S,R) in any ways;
for example if we just set wp’(S,R) = ¢ that too would possess all the required

properties.

With respect to [Har] our position is that, in his terminology, we are interested
only in depth-first execution without backtracking. Consequently failures are as
bad a way not to. terminate as any other and we have not distinguished them, even at
the present abstract level; they can be considered as being lumped in with the
blockings. However, with this view Harel's language is, as he points out, too
weak even to write conditionals and we prefer Dijkstra's. Note that we will find

it useful o consider failure when discussing guarded commands.

Finally we consider preconditions and show one sense in which predicate transformer
semantics can be considered as abstracting from correctness considerations., How if
PfS]R holds this can be regarded as a positive fact about S, or, following [Har], as
a kind of lower bound on ite behaviour, in that if says that certain things will
happen. S6 it is natural to define a quasiorder (transitive and reflexive relation)

on systems by putting for any S5,3':

s 5" irr VP, R e Pred. P[s]R = P[s']R
Clearly,

s s =YR e Pred.wp(s,R) € wp(s',R)

=VYR € Pred.R finite = (wp(S,R) & wp(S',R))
ZVP,R ¢ Pred.P,R finite => (P[s]R => P[s']R)

(the last two equivalences use property 4), This justifies our using the subset
ordering on predicates and the last two equivalences show there is no real harm in
considering all predicates since it comes to the same thing if we restrict ourselves

to the finite ones.

The quasiorder, ;; , was also studied in [Bac1] as the fobal correct refinement

relation, refT (more exactly, Back considered refT as a relation between certain
kinds of state transformation functions and identified programs with such

functions via their behaviour as systems). This work considered E; as one of a
family of refinement relations between programs and is part of a formalisation of

the stepwise refinement technique as developed by Dijkstra and Wirth.

Note that we can define an equivalence, -1 , over systems by: S ¥groifr SE St ES
and then:
s s = Yr,R € Prea.P[s]R <> P[s' R
= VPR ¢ Pred.P,qQ finite => (P[S]R <=> P[s']R)

532

=Y R e Pred.wp(S,R) = wp(s',R)
Z VR € Pred.k finite => (wp(S,R) = wp(S',R))

Thus if two systems are the same as predicate transformers then they satisfy the
same correctness properties and vice versa. Thus predicate transformer semantics
abstracts exactly from the desired correctness properties. Of course, changing
the correctness properties considered might very well change the semamtics needed
and indeed the idea is very general and has, apart from the present case, not been

much investigated.

533

3. Operational Semantics

Now we apply the ideas of the last section to a variant of the simple nondeter-
ministic langusge of guarded commands presented by Dijkstra. The syntax of this

language is presented in terms of four sets:

1. ACom is the set of atomic (= grimitive) commands, assumed given; it is ranged

over by the variable A,

2. BExp is the set of Boglean expressions, assumed given; it is ranged over by

the variable B.

%a) Stmte is the set of statements; it is ranged over by the variable S.

b) GCom is the set of guarded commands; it is ranged over by the variable G.
The sets, Stmts and GCom, are given together by the grammar:

st:= A | skip | zboxt | (5:8) | if ¢ £1]d0 ¢ 0d
Gri= emptle -> s] (¢ ®

The sets ACom and BExp have been left unspecified; different languages would be
obtained via different choices. Typical elements could be assignments to variables
such as "zi=x+y" or "z,yi=y,x" or fo array elements such as "ar:{j)=ar{j)-1" in the
case of ACom or simple conditions such as "x>y" or compound ones such as %=5 and

ar{j)<u" in the case of BExp, So an example statement could be:
do (o5 => xi=x~y [} >z => y1=y-x) od

This is all much as given by Dijkstra except that we do not consider block structure.
There are also some minor differences in the syntax and in particular we painfully
build up sequences of statements and guarded command sets by binary means; on the
other hand we will often omit the brackets when it makes no difference to our
assertions how they are understood. Note too that we explicitly allow compound
guarded commands as this will make good semantic sense. This is perhaps the place
to remark that guarded commands have a little more prominence in our treatment than
in Dijkstra's, but nonetheless they still have rather a secondary role compared with

statements themselves.

The operational semantics is specified by leaving States unanalysed and taking
Systems to be Stmts and defining s transition relation. To do this we assume we are

given two funetions

B : scon > (States -> States)
B : BExp -> (States -> T)

where T is the set, {tt,ff}, of truthveluess these provide, in a rather abstract

way, the semantics of atomic commands and Boolean expressions, Clearly Ja-ﬁﬁ]}(s)==s'
means that the atomic command A changes atate s to state s' and, similarly,

{gﬁBﬂ(Q = t means that the Boolean expression B has value % in state s; note the

typical use of emphatic brackets where the arguments of functions are syntactic

534

bbjects. The totality of all the functions 2 4] ana B [B]] means that we are
agsuming atomic commands always terminate properly when activated and the
evgluation of Boolean expressions also always terminates properly. On the other
hand, we could easily adjust the present theory to allow the possibility of non~

termination.
Now we define the transition relation together with an auziliary réketion,
~>: {GCom x States) x {{(Stmts x States) VU {fail})

with the same name. This is achieved by giving a little formal system of axiomg

and rules to show what relationships hold,

I1, <A,s> => ﬁ[Aﬂ(s)

II1, <gkip,s> > s

IITt, , 8> =D <S',s'> 2., £8,,8> => s'
<é ;5,),8 13 K EIFER PR (855),9 — 8,80

V1. £G,s> -> <8,8>
Gf G £i,8> ~> <S,8>

V1. <G,8> => <S,s> 2. <@,8> => fail
<do G od,s> ~> <(S; do G od),s> o G od, s> -5 8
VI1, <empty,s> => fail
VIT1, <B ~> 8,55 - <8,s> (ir BIBT(s) = t+)
2. B => 8, => fail (1eRIB(s) = ££)

VI, £8.,8> => <S,s> (for i=1,2)
1 06y),8> > <8,8>

<G s) —> fail,<G,,8> ~> fail

2 <{ ¢,),s> -_—gazl

Hopefully these rules are in accord with the reader's intuitions: atomic commands

do as they are assumed to do; gkip does nothing; abort is always blocked as
it has no rules or axioms; to execute the composition of two commands, execute the
first and then the second. If the remaining rules are not so immediate consider

instead the following derived rules:

IX1., <if B, => 8,1]) B > s _rfi,s> -> <S,s>
== 1 n n == i
(ir BB Ks) = tt where 1<ign)
X1, <do empbty od,s> -> s
2. <@ By >8] ... I8 > ode> > <5508 >s, 0 .08 5 ot
(1f ‘8 H:B]] 8) = tt where 15i_§n)
3. <do B, > 8 n..-.UBn->Snods>~—>s
(if B[3,]6) = £f whenever 1<icn)

These "non-binary" rules can replace IV - VIII as far as statements are concerned.
Note that if G fi blocks when the guarded command G fails, whereas dop G od termin-
ates, as expected; note too that nondeterminiem is introduced in rule VIII1 (o,

alternatively, IX1 and X2).

As an example let G, be x>y -> x:=x-y and let Gy be ydx => yr=y-x and take G to be

535

G1 B G,.; let States, /@‘ a,ndﬁ have the (hopefully) evident definitions. Now, if
m>n then

<do G od,<m,n>> => <xi=x-y; do G od,<m,n>> (by X2)
> <do G od,<m-n,n>> (by ITI2 ,I1)

and if m=n then
{do € od,<m,n>> => <m,n> (by X3)
and if m<n then
<do & 0d,<m,n>> -> <m,n-m> (by X2 , ITI2 , I1)

and these are the only possibilities. Por other examples of this method of giving

operational semantics see [Plo? } ,[Milﬂ,[ﬂen].

As an example of equivalent statements consider:

S1 “qef do x=x -> yi=y od
8, =4er xi=13 do ®0 > x:=0 | x50 - x:=1 od
S5 =ger To¥3=1,05 do y=0 => yi=1] y=0 -> x:=x+1 od

The point here is that for any initial state any of these statements mov not terminate
and so we always have wp’(Si,R) = @#. Therefore abort ¥ S, ~ 82 ~ 33.
As an example of the quasiorder,E , consider:

84 = if x=x -> x:=0 n x=x -> x3=1 fi

55 = x3=0

Here 84 ,’C; 85 since producing more final states {for a given initial one) means
that fewer preconditions hold. This somewhat strange reversal of orders is also
characteristic of the Smyth powerdomain and explains why it appears in the present

setting.

536

4, Predicate Transformers

Given any mechanism S we can "fix" the first argument of wp to obtain a predicate

transformer, fs: Pred -> Pred where:

£5(R) = wp(8,R)

This section gives a direct definition of the predicate ftransformers for our
language following [Dij § 4]. Of course we could always twrn this around, saying
that this section specifies the predicate transformer semantics and any implementw
ation - in particular the sbsiract one in section 3 - must be in accordance with it
(see '[Dij §26]). In any case the relation between the two definitions i clearly

what is important.

Pollowing a standard denotational approach we first decide what the collection, PT,
of all predicate transformers is to be., It will be useful to first recollect s

few standard ideas (see [Wad] for a leisurely account).

We will make some use of the typed)\ -caleculus so that if x ranges over the set X
and ...eeXes.. i3 an expression denoting an element of the set Y (possibly

involving x) then the expression /\x € Xe veeeXeoss (OT equivalently, /\ Xe ssseXenney
if X can be understood from the context) denotes the function f: X ~> Y where, for

any x in X
F{X) = coveXeoee o
We also need a few definitions concerning partial orders.

Definition 4.1 1. A complete partial order (cpo) is a partial order, <D,E> with a

least element, 'LD’ in which every increasing sequence dOE d1 g +sss has a least
upper bound, uDdi; the greatest lower bound of two elements d and 4' is, if it
exists, written as 4 M1d'.

2, Let f: D <> E be a function from one epo D to another, E,
Then £ is gtrict if f(_LD) =.LE; it is monotonie iff whenever 4 and 4' are
elements of D with d & d' then £(d) E £(d')s it is continuous if it is monotonic
and for every increasing chain dol_: d1 € ..., of elements of D we have:
f(uDdi) = UEf(éi); it is multiplicative if whenever d and d' are elements of D
such thet dT1 @' exists then £(a)N £(d') exists and £(aN a') = £(a) N £(a*).

Tor example Pred is a cpo withl =4, Udi ={J d; and d MNa =aNqg. 1Itis
well-known that the identity idp: D -> D {where 1d{d) = d) is strict, continuous
p,gt D=> E (vhere —LD’E(d) =d); further if £: D> B

and g: B ~> F are strict (nonotonic, cnntinuous,multiplioative) go is their

and multiplicative as is L

composition g ® £ D => F., Finally, if f: D «> D is continmuous it has a least
fixed~point, namely ¥(f) = quk (,LD).

Rather than take PT to be the collection of continuous functions from Pred to Pred
as do some suthors ([de B1,[Jen]) we follow the properties of weakest preconditions

discussed in section 2 and put:

537

PT = {f: Pred -> Pred] f is sirict, continuous and multiplicative}
and turn it into a partial order by the pointwise ordering:
£C g iff VR € Pred. £(R)e &(R).

Proposition 4.2 1. The partial order, PT, is a cpo with least element"LPred,Pred
and with least upper bounds of increasing chains f, E £, E ... given by:

(Ufi) ®) = fi(R)’ Further greatest lower bounds of pairs f,2 of elements
always exist, Dbeing given by: (1 g) (R) = {(’R) N g(R).

2. The identity, idPred is a predicate transformer and so is the

composition of any two predicate transformers.

3. Let f,2 be in PT and let P and Q be disjoint predicates. Then
L is a predicate transformer, where h(R) = (PN £(R)) U (@ N &(R)).

Proof 1, We have already observed that L is a predicate transformer

Pred,Pred
and it clearly must then be the least one. For any increasing sequence, fO E f1 E tees
of predicate transformers put f£(R) = Ufi(R). It is well-known that this defines

a strict continuous function as the fi are all strict and continuous. For

multiplicativity we calculate for any Q,R:

senr) =Ye@nar Yr@nr®
Uz, (@ nUs,®) (as s e £,(@g ...)
r{Q) n £(®).

[

2. This has already been observed.

3. It is clea¥ that B is strict and continuity and multiplicativity are easy
calculations. For example for the latter:

0 r®RY A @)YV Qn g®N 2())
easERIAPN RNV ENns®IN QN BNV
QAag®mNPen @)V @QAzR)NANgR))
eas®R)U @A) AlEAas®R)V @n ¢E)]
=h(R)A n(r"). B

Now we define a few operators in order to give the semartics in a more or less

algebraic way, following [ADJ]. First define two sets, d-S8T, of deterministic

n(R A R')

il

I

state-transformation functions and Bool bye

d-ST = States -> States
Bool = States -> T

and for any p,q in Bool put p = p~1(tt), p = 9'1(ff) and define p ¥ q by:
(p v a)(s) = p(s) ¥ als)

where we are using logical disjunction on the right. It is worth remarking here
that we need Bool as well as Pred since the ordering on Pred is not appropriate for

values of Boolean expressions: if we wanted non-terminating Boolean expressions we

538

would rather use the partial order, States -> ?L (see the next section for

defipitions).
Convergion Define Conv: d~3t -> PT by:
Conv(m) (R) = u™' (R)
and it is an easy calculation that Conv(m), so defined, is in PT.
Composition Define Comp: PT2 -> PT Dby:
Comp(f,g) = fo g
and Proposition 4.2.2 assures us that Comp(f,g) is in PT,
Conditional Define Cond: Bool x PT => PT by:
Cond(p,£)(R) = 2" N £(R)
and since Cond(p,f){R) = (p+ﬂ £(R)) VU (p~ n‘LPT(R))
Proposition 4.2.3 assures us it is in PT,
Iteration Define Dot Bool x PT ~> PT by:
Do(p,£)() = T(AQ € Prea. (5™’ R) U (5" N £(2))

What this means is that for p,f and any R if we define the funciion hR on

predicates by:

(@) = (TA RV ("N £(a)
k

we observe that hR is continuoug and so has a least fixed-point Y(hR) =\J hR(¢)'
which is what we take the value of Do(p,f) at R to be,

So if we define Dok(p,f): Pred ~> Pred by
ky
Doy (p,£)(R) = np(#)
then Do(p,f)(R) = i) Dok(p,f)(R). Now by induction on k one easily sees that
each Dok(p,f) is in PT. This is clear for k=0 and for k+1 we observe:
(Do, (p,1)(R))
bp \ Doy
- +
("N RYU (p" N £(Do, (p,£)(R)))
k

and so, by the induction hypothesis and Proposition 4.2.3, Dok+1(p,f) is also in PT.

DokH (P;f) (R)

It now follows by Proposition 4.2.1 that Do{p,f) is alsoc a predicate transformer

and so is well-defined.

Bar We introduce a function which will give semantic significance to Dijkstra‘s
bar symbol,] . Define Bar: (Bool x Pr)% =5 (Bool x PT) by
Bar(<p,£>,<q,8>) =
+ + -
<pv a, AR ePred.(p N [(¢"n £B)N e®)V (g™ n £(R))])
- +
v na n e®>
The arrangement of this definition and Proposition 4 shows that the second

component iz indeed a predicate transformer; it can also be written as:

539

AR € Pred. (r'v q+)ﬂ ("I (RN (" UV gR®)

Thus Bar is clearly commutative; one can also show that it is associative and
further, using an obvious notation that, for n>0:
Bar(p ,f, > = <Vp ,)gR € Pred(U p
i=1;n" i=1,% i=1,
On the other hand, Bar is not absorptive; indeed as Bar(<p,f>,<p,»f>} =
<p,AR € Pred. p' N\ £(R)> absorption holds at <p,f> iff £(R)& p for any R.
Similarly the natural zero <>«s € States. ff,._L > does not work as

PT
Bar(As.£f, L5>,4,2) = <p, AR N £(R)> too.

(v ur;(R))>

i=t,n

It is now straightforward to present a classical denotational semantics for

predicate transformers by defining two denotation functions.
6,p: Stmts —> PT
?PT: GCom => Bool x PT
The idea for statements is that where Dijkstra would write
WP(S,R) = 4pe R ase
one writes instead
& _.Is] = AR e Pred. ... R ...

and so LPT is just a Curried version of wp. The idea for guarded commands is
that if 9 PTIIG]]’ = <p,f> then p is the meaning of an implicit guard of G and f is

a predicate transformer for an implicit command of G.

The denctation functions are defined by a mutual structural induction on statements

and guarded commands via the following clauses:

¢t 6, [T = Conv(R4])

02 fpylacin] = idp,

0% 5 [[abort]] _L

c4 PT[[(s?s)] = coms(8 op5.0,6,.Ts,)
5 6PT]I_:§ ¢ £ill = Cond QPT[[G]])

06 Gppled 6 0dll = Do(§ el

61 4 o lawty]l = <As ¢ States. £z, -
@ Yo [[B..> s]= BEL6 ,,[sT>

b 9}:—@ 10'8)] = zax ?PT[[SJLf prllS;])

Just as in thecase of the operational semantics it is not necessary to define a
semanties for guarded commands if we do not mind a certain clumsiness of expression.
For a8 is easily seen from the above remarks the following holds and could replace
5

c7 Ia P’I& empty g}] = _,L PT

s b, lxs s, []....UB -> 5,

AR € Prod. (N, Blz1% O @Is.]u 4,,[5,16)

and for C6 we have:

c9 6 P’I[[@' empty .O_dﬂ = idPT

cio £,le s - sjﬂ .l B, -> sn]]=)\R € Pred.\ij{nk
{where D (R) = § and

1Y BT n L) (BIsT 6,,1516,0))1v

a1 L]

Dijkstra's kai corresponds to our Dk .

k+1

Note the following equvalences which either follow from the above remarks or are

easily proved directly:
b (505,55,] = 6 [l s,)s8,]
6onl(2cin9)] = 6, [(53 skin)] = 65T
£ o[(@or)] = 4, [(ssabort)] = 6, [abors]
6, it empty £4]] = 6,1 abort]]
6 poll d0 empty 0al = € [skinl
g oo I (e, Do)l = ¢, e, Dey) oyl
§ ool (el e 0= bll(c, e

Among other things these equivalences allow us to disrsgard brackets when

considering the semantics of statements and guarded commands. On the other hand

the following two equivalences fail:

;PTE(G1 0 e)l= g o5

§ollapty De)]=§ prlle]
as, for example, one could take G1 to be x = 0 > x:=1, It would be interesgting
to see a semantics for guarded commands which does not suffer from these problems.
To further emphasize the secondary status of guarded commands, in the present
treatment, note that everything is all right if we congider statement contexts,

vee & ou. a8 we do always have:

b [...cle)..T-C 0...c ..]
6o L. (empty 1 6)euT= 6,00 o ... T

541

5. State Transformastions

We now look for & state transformation semantics which reflects the operational
gsemantics more directly than do predicate transformers, Indeed we want a cpo, ST,
of state transformation functions, which is isomorphic to PT. Because of the
possibilities of nontermination and nondeterminism, the simple set d-ST = States->

States will not do. To handle nontermination we introduce the so-called flat cpos.

Definition 5.1 Let X be a set. The flat cpo X..L is X ¢ {_,L} ordered by:
xpyiffx=Lorx=y.

Clearly X_L is a cpo with least element 1. (used for nontermination) and with lubs
of any increasing sequences xOE x, E .. a8 all such sequences are eventually

congtant, having at most two different elements (hence the term 1r1ath),

If it were not for nondeterminism we could take the collection of state trans-
formations to be States -> States_L; ingtead we use multi-valued functions

: - S S i St .
m: States > 05(tates_sl) where PS(tatea‘L) is a cpo of subsets of atesiL

Definition 5.2 Let X be a set. The Smyth powerdomain 0S(X.L) of X_L is the set
{xg }&Jx = X.L or (x ;é 2‘ and x & X and x is fini'te)} partially ordered by:

xCyiff zx2vy.

Before discussing the lattice-theoretic properties of y S(X) we examine the

motivations for what is, at first sight, a somewhat curious definition. Using
this definition we can define ST in such a way that state transformations m can
capture exactly enough of the operational meaning of programs to determine their

associated weakest preconditions

Definition 5.3 1. The partial order, ST, of giate transformations is the set
Stateg =-> 0S(Statesl) ordered (pointwise) by:

miSm' iff V s € States. m(s) Cn(s")

2. The weakest precondition wp(m,R) of a state transformation, m,
relative to a predicate, R, is given by:

wp(m,R) = {s € States‘.l.ﬁ n(s) and n(s) € R}

Now the first point is that if m is to be the denotation of a statement S then we
expect that n(s) is %o say what the results of the possible computations of S
starting from s are, and also that _L is to record nontermination so that _,L € m{s)
iff S may not terminate from s. The KBnig's lemma argument in section 2 shows that
it L £ n(s) then m(s) is finite and nonempty., So far, this would lead us to
taking those nonempty subsets which are finite or contain A and then to the
Egli~Milner ordering on them; this is the approach used in [de R] and discussed
more generally in [Ploz]. However for the purposes of giving weakest preconditions,
we note that if L e m(s) and L € m(s') then m(s) and m(s') are equivalent in that
both s € wp(m,&) and s' € wp{m,R) are impossible for any R, Hence we have simply
ddentified such sets with each other in the definition of ys(states .L)’ equating them

542

all, for convenience, with S’ca‘cesl. This explains our choice of the elements of

the Smyth powerdomain.

The choice of ordering follows the examples in section 3. Clearly Sta’ces__L should
be the least element. For the other elements suppose m(s) 2 m{s') and neither
contains __L . Then, for any R, if s € Wp(m,R) then s' € Wp(m,R); thus m(s') is
better than m(s) in that it makes s' satisfy more preconditions and so we put

m(s) c n(s'), explaining the curious order reversal in the definition. For a
general account of the Smyth powerdomain, and other moitivations for its choice, see
[suy].

Propogition 5.4 1. The partial order 03(X¢) is a cpo: it has least element X
and every increasing chain %y E z, E ves 18 eventually constant with least upper
bound Uxi -:-n X, - Further any two elements x and y have greatest lower bound

xfly=xVUy and, considersed as a function of iwo arguments, the greatest lower

bound is continuous in each argument,

2. The partial order, ST, is a cpo: it has least element
/\s € States. lp (States

) and every increasing chain n, ;_m1 _E_: e~ has least
upper bound m, Wgere m(s)L=Umi(s}.

Proof 1. As X.L includes any other element it is the least element. If

%y _I:.‘_zc1 E ve- 18 increaging and non-constant, it is eventually a decreasing
sequence of finite sets, with respect to &€ , and so is eventually constant. It
follows at once that Lin = ﬂ X It is easy to see that if x and y are
elements of @S(X_L) then go is xV y and it follows at once from the definition of
€ that x[yo=x U y; as for continuity it is clear that x U y is monotonic in x
and y and since every increasing sequence is eventually constant it must alsc be

continuous in x and y.

2, Immediate from the pointwise definition of the partial order on ST and

the fact, proved in part 1, that (P (States)) is a cpo. M
s L

There are two other useful basic functions aside from {}; we restrict ourselves

to @ S(S‘ta’ces ..L) glthough these fumetions exist in general:
Singleton The function a -B ¢ States > OS(StatesJ-) is defined by:

fa} (@#L1)
{<f -

As 3'K is monotonic and S’catesl is flat it is continuous; generally we omit the

Sta’cesi (a = _L)

vertical bars when writing a -& .

Application The binary function App: (ST x QS(StatesL)} > OS(Statesl} is
defined by:

543

m(s))s € x} {ir x;‘ﬁl and for any s in x

n(s)#1)
APP(E, X) =
_L {otherwise)

Lemma 5,5 The function App is continuous in each argument. It is strict and

multiplicative in its second argument and for any s in States, App(m,{s}) = m(s).

Proof It is a straightforward calculation, which we leave to the reader, that App
is monotonic in its second argument (and therefore continuous in its second
argument as all increasing sequences in @s(States_L) are eventually constant) and

that it is strict and multiplicative in its second argument and that App(m,{s}) =

m(s).

To see that App is continuous in its first argument, we begin with monotonicity and
assume m Em' and show App(m,x) € App{m' ,x) for any x. If x =] this follows as

App is strict in its second argument and otherwise x is finite and we proceed by
induction on the size of x. If x is & singleton, {s}, then App(m,x) = m(s) = m'(s) =

App(m',x). Otherwise x = xou x, where x. and x, are strictly smaller than x and

0
30 we can calculate:
App(m,xo v x1) = APP(m,XO)"’ App(m,x1> E App(m',xo)] App(m’,x1)
= App(m,z, U x,).

For continuity one just proceeds in the same way to show that for any increasing

chain m B m B ... and any x we have: App(Umi,x) = LlApp(mi,x). B’

Now we can give the state transformation semantics, starting with the definition of
operators similar to those in section 4 and with the same names, First, however,
note the useful conditional function, defined for every cpo D,

(if+ then+else»)t T X D x D ~> D where

a (£ = tt)

I3

if t then d else d' =
ar (¢ = fr)

It is easily seen to be continuous in ibts second and third arguments.
Conversion Define Conv: d-ST -> ST by:
Conv(m)(s) = {un(s)}

Composition Define Comp: S'l‘2 => 8T by:

Comp(m,m*)(s) = App(m',n(s))

Prom Proposition 5.4 2, and Lemma 5,5 we see that Comp(m,m’) is continuous in m

and n',

Conditional Define Cond: Bool x ST -> ST by:

Cond(p,m) (s} = if p(s) then m(s) else L

544

‘Tteration Define Do: Bool X ST -> ST by:

Do(p,m) = YAm' € ST, s € States. if p(s) then Comp(m,m')(s) else {s})
VWhat this means is that for any p and m we can define a continuous function, h, of

state transformations by:

h(n*)(s) = if p(s) then Comp(m,m’)(s) else {s}-

and Do(p,m) is the least fixed-point, Llhk(_LST), of h.
So if we define Dok(p,m): ST by:
k
Do, (p,m) = b (hgp)
then Do{p,n) = UDok(p,m) end the Do, have the recursive definition, Do, = ‘LS’I.‘

and:
Dok-H (p,m)(s) = if p(s) then Comp(m,l)ok(p,m))(s) else {s}.
Bar Define Bar: {Bool x s1)2 =5 (Bool x ST) by:

Bar(<p,m>,<q,m'>) =
<»VYa, As € States.
if p(s) then (if q(s) then m(s)V u'(s) else u(s))
else (if q(s) then m'(s) else L)>

Now we can define the denotational semantics ag usual via two functions:

o Stwts ~> ST

Gor

The semantic clauses C1, 04, C5, 06, G2 and @3 are just as before (except with

[

GCom -> Bool x ST.

iPT, ?PT replaced by éST’ 9 g0 of course) and the others are:

c2 'eSTlI skip]] = A s € States. {s}
3 'gS‘I'[I abort]| = "LST
¢ QSTEe_mmﬁ] = s « states. £, L >

We are now in a position to show first that ST and PT are isomorphic and second

that the two semantics baged on state transformations and predicate transformers
are also isomorphic. Definition 5.3 2, will enable us to go from ST o PT and

for the converse direction the key lemma is:

Lemma 5.6 Stability Let f: Pred -> Pred be any map of predicates. Then f is in
PT if and only if whenever s € f(States) there is a finite non-empty set, min(f,s),

satisfying the following condition:
YR ¢ Pred. s € £(R) = min(f,s) & R.
Proof Suppose f is in PT and s € f(States). Since States is denumerable there

is an increasing sequence xog x, € ... of finite sets of states such that

States = U X;. Then we have:

s € f(States) = f(Uxi) = Uf(xi)

545

by the continuity of £. Hence there is a finite set, x, such that s € f(x).

Let min(f,s) be such a finite set of the smallest possible cardinality; it is
non-empty as f is strict and furthermore we claim it satisfies the condition. For
on the one hand if min(f,s) Q R then s € f(min(f,s)) _C_'-:- f(R), by the monotonicity
of 3+ on the other hand if g € f(R) then, by the multiplicativity of f,

g € f(R)n f(min(f,s)} = f(Rn min(f,s)) and so by the choice of min(f,s) we
must have R ﬂ min(f,s) = min(f,s) and so min(f,s) g R.

Conversely suppose f: PT => PT satisfies the proposed criterion. To see it is

continuous, suppose RO < R1 € ... is an increasing sequence. Then:

s € f(URi)

min(f,s) © URi (by the criterion)

min(f,s) c Ri’ for-some i (as min(f,s) is finite and the

i m

sequence is increasing)

s € f(Ri), for some i (by the criterion)
s € U‘ﬁ'(Ri).

For strictness if we had s € f(@'), for some s, then by the criterion min(f,s)g ¢

1]

which would contradiet the fact that min(f,s) is nonempty. For multiplicativity,

we have:

s € £f(QNR) min{f,s) & QNRZ nin(f,s)< Q and nin{f,s) & R

; sef(QN £x). B

Berry has investigated a very general idea of gigble continuous functions; our

predicate transformers are stable in his sense and Lemma 5.6 is a straightforward

consequence of the work in]:Ber].

Note that for any predicate transformer, f, the lemma shows that min(f,s) exists and
ig determined uniquely by the criterion; we now extend the notation when

E] /é f(S‘tates) by putting min(f,s) = States_L in that case. Thigs makes

As € States. min{f,s) an element of ST, showing how we obtain state transformations

from predicate transformers,

Lemms 5,7 1. Let m be in ST. Then f = AR. wp(m,R) is in PT and, indeed, for any

state, s, min(f,s) = m(s),

2. Let £ be in PT, Then wp()‘s.min(f,s),R) = f(R).

Proof 1. We apply the test of lemma 5.6 to show f is in PT. First suppose

s € f(S'ba’ces) = wp(m,States). Then m(s) ,4 _L, by Definition 5.3 2. and so n(s)
is finite and nonempty. Therefore we show min(f,s) = m(s} by calculating, for
any R:

s € £(R) s ewp(n,B) B (mls) # L) andu(s) & &

= n(s) € R {since mls) £ L)

2. We just calculate, using lemma 5.6:

546

{s € States ‘ min(f,a) ;é_Land min(f,s)_C_ R}
e € States[s € P{States) and s ¢ £(R)}

£(R).
Definition 5.8 The functions &J: ST -> PT and W '1: PT -> 8T are defined by:

@ (m) (R) = wp(m,R)
@) (s) = min(t,s).

prs.min(f,s),R)

it

#

i

It follows from the above remarks on min(f,s) and lemma 5.7.1. that these are good

definitions.

Theorem 5.9 (Isomorphism, part I) The function &J: ST 2 PT is an isomorphism of

cpos with two-sided inverse & .

Proof Lemma 5.8 shows that &) and & -1 are mutual inverses as we can calculate:
(u'10 S(m))(s) = min()\R.Wp(m,R),s) = n(s) and also: (Wew~'{#)R) =
Wpas.min(f,s) ,R) = f(R).

It remains to show they are monotonic. For), suppese mfL m' and s € wp{m,R).

Then m(s) # L and m(s) S R. So m'(s) ;4_\._ and m‘(s)g n{s) & R (as m{; m'})

and so s € wp(m',R). TFor & - suppose f & f' and min(f,s) # Statesj. Then

using lemma 5.8 we see that s € fmin{f,s)) & £ {min{f,s)) and so min(f',s)_g min(f,s)
ghowing that min(f,s) _E_ min(f',s) (order reversal, again!) |

Wand considered a very slight variant of ST in [Wan]; using our terminology he
showed that & was a bijection, Back independently saw the connection with Smyth's
powerdomains in [Bac1] and it is a trivial corollary of his work hat &) is mono-

tonic and reflects the partial order on ST; that is for any m, m' in ST,
m [o' iff W (m) gw(m').
Taken together this gives another proof that &J is an isomorphism of cpos.
I

Lemma 5,10 1, For any p in Bool, m, m' in ST and R in Pred, wp(,\s. if p(s) then
+ —
n(s) dse n'(s),8) = (p N wp(n ,R)) U (»"N wp(n',R))
2, Wor any m, m' in ST and R in Pred: wp(As.m(s)U m’(s),R) = wp(m;R)n
WP(m‘ 1R)o
%, For any R in Pred, WP(LST’R) = ¢ and Wp(I\S.{s},R) = R,
Proof An easy calculation and left to the reader. E
Lemma E.ﬂQHomomorghism) 1. Conversion Vm € 4-3T, M(Cenv(m)) = Conv(m},
2. Compogition Vm,m‘ e 87, w(Comp(m,m*)) = Compl(m),&(m*))
3. Conditional Yp € Bool,m ¢ ST, W (Cond(p,m)) = Cond(p, & (m))
4. Iteration V'_p € Bool,m € ST. @ {Dol{p,m)) = Dolp, W{m))
5. Bar Y op,q € Bool,m,m' € ST, N(Bar(<p,m>,<q,m'>)1) = Bar(<p,w(m)>,<q,w(m')>)1

(where for any p,m, <p,m>1 =m),

Proof We will often use lemma 5,10 without explicit comment. For any R we

547

calculate:

1. W{conv(m)}(®R) = wp(ls. {n{s)},R)
= {s | Le {n(s)} and {u(s)} € B}
=o' (R)
= Conv(m) (R)

2, {comp(m,n'))(R)

= wp(As.4pp(n*,n(s)),R)

= s'm(s} ;4..{.. and, for all s'4n m(s), m'(s) ;é L

and U {n'(s") ‘ s' e m(s)}e R}

= {slm(s) # Lang, for all s' in n(s), n'(s) # L and n'(s') & B}
{s|n(s) #L and n(s)& wp(n',R)}
wp(m,wp(n',R))

= Comp(W{m) &{n'))(R),
5. w(Cond(p,n))(R) = wo(As.if p(s) then m(s) else L ,¥)

= (p N wp(m,R)U (x"'n wplhgn,R)) (by lemma 5.10.1.)
= Cond(p, W (m)) (R) (by lemma 5.10.3.),

1

I

5. @(Bar(<p,m>,4q,m'>),(R) =
' nl’n Wp(ls n(s) ¥ m'(s),R))U (¢~ N wp(=,R)) U
™AL A s, RV (67 A ey, 7))
= Bar((p,ld(m)>,<q,6d(m’)>)1. {using lemma 5.10).

4, It is enough to show by induction on k that for all R:
wp(Do, (p,m),R) = Do, (p, &(m))(R)
For k = O both sides are equal to @3 for k+! we calculates

wp(Do, ,, (p,m),R) = (»" A wp(Comp(m, Do, (p,m)),R)) U
(p™0 wpQs. {s},R))

= (5" wplm,wp(Do, (p,m),2))) U
()" AR) (by part 2)
= (p" N @(n) (Do, (p, w(m))(R))) VU
("N R) (by induction hypothesis)
= D0k+1 (P, ”{m))(ﬁ)o E

Theorem 5,12 (Isomo;_"ghism, part II) The isomorphism &J : ST -> PT is also an
isomorphism of the semantics, with inverse W&l “1, in the sense that the following

diagrams all commute:

Stmts GCom

;S BoolxsT¥ -

001

548

Stmts GCon
¢
€:r S ; BT &

PTy

-~
ST BoolxXPT X =T 7 BoolxST
~ ,.
w 1 1dB001xw

where (idBool x &) (Xp,m>) =ef <p, &m)> and (id

-1 =1
Boor X ¥ J(<p,>) =tep P (£i>.

Proof It follows at once from lemmas 5,10, 5.11, using mutual structural induction
on statements and guarded commands that the top two diagrams commute. For
example, a typical cagse iss

o4 (6 ll5;:5,)T) = wicom(b s, T, 6,51

Comp(w((aSTﬂ:S1]]),ld(ST[[SZH)) (by lemma 5,12)

Comp(PT[[S1:U’ &PTESZB) (by induction hypothesis)

6, (s55,)1.

It then follows immediately that the second two diagrams commute as, for example:

w6 ED - w WG [T)) -6, Ls]. B

Another way to state the theorem is to say that

i

it

[

R . . . ~
<1dStmts’ldGCom’ U’ld’Bool X W>: <Stmts,GCom,ST,Bool x ST> = <Stmts,GCom,PT,Bool x PT>

is an isomorphism of heterogeneous algebras, with inverse,

. . -1,
Aginie? Macon’ @ 1195001
de Bakker corresponds to showing that &4J is a homomorphism: that is that

xw'1>. The corresponding part of the work in

&: ST => PT is continuous and the top two diagrams commute,

549

6. Operational ~ Denotational

In this final section we tie-up the operational semanticy and state transformation
function semantics, proving the following theorem.
Theorem 6.1 1. For any statement S and state s, S must terminate from s iff
6, IsT(s) £.1 .
2. If S must terminate from state s then ,68‘1[[8]](8) = {s'l <S,s>

->% g},

The first part of the next corollary shows Dijkstra's direct definition of the
predicate transformer semonties is in accord with the operational definition.

The second part shows that all the available quasi;orders are the same.
Corollary 6.2 1. For any statement S and predicate R,
w(5,8) = (B [TR) = A, IS ®)
2. For any statements S and S',
s s irr 6ST[[S]]1_: 681[[8']] iff »GPT[[SJ]E ‘GPT[[S']]
Proof 1. Let s be a state. Then,

s € wp(S,R) iff S must terminate from s and for any s' in States if
<S,8> ->* g' then s' is in R
iff gsﬂs]](s) £d ana 68,1[[81:'(&‘.)5 R (by Theorem 6.1)

i#f s € wp(g [[ShR) (by Definition 5.3.2.)
and it follows from Theorem 5.12 that Wp(ésT[[S]],R) = 6PT[[s]](R).
2. We have,

s £ s iff YR € Pred. wp(S,R)E wp(S',R) (by definition)
iff VR € Pred. éPT]IS]]’(R)S 6PT|IS']](R) (by part 1)
ier A, [S]E 4, [s']
ief 4[] _I;é;[[s']] (by Theorem 5,12).

To prove Theorem 6.1 we begin with some useful formulae.

Lemms 6,3 1, Por any state s, ‘6STD:_:i:_f'_ empty _f_ﬂ](s) = _L and

6

srrbﬁ _em_JE’.t;Y Qﬂ(s) = {S}a
2, Let G be B1 -> 810 aae ﬂ Bn -> Sn and let s be a state,
(a) If ﬁﬂ:Bi:ﬂ(s) = ff for every i with 1<i<n then ‘G ST[[_JE G ﬂ]](s) = .,L and
6o e odl) = s},
(v) 1f ﬂ-[[Bi]](s) = tt for some i with 1<ifn then
6ol ¢ £176) = Uib s T6) | BI5T6) = 4]
and G glldo ¢ 0alle) = U164 fls, 500 ¢ 0al)| B I8T) = tt}.

3.Let Sbe @0 B, -> 5, [} w.. 1B -> 5 o0d. Then
n n =
30[[5]]'; 81]IS]]E is an increasing sequence with least upper bound éST[[S]] where

[i§

550

the ﬂk[[S:ﬂ are defined inductively by putting 5011:3]] = .L and for any state s,

s} (if ‘BIIBl]](S) = ff for every i with 1_§_i§n)
Be, [516) =
Wicomp(6, 08,0,8,[sTXe) [B [8.]6) = vt}

(otherwise)
Proof An easy calculation, B

Now we see that ‘65,1, satisfies a kind of operational fized-point equation. (The
reader may care to improve this to show 65‘1’ is eventhe least such function of

statements.)
Lemmg 6.4 If S is not blocked at s then,
brlsT(e) = {s']<s,9 > s'Jul g lesn)] 5,85 > 57,7

Proof The proof is by structural induction on S and cases according to its form.

¥When 8 is an atomic command, gkip or abort, the result is trivial., TFor S = (81;82)

calculate:

6,0(5,55,)16)

]

126,151,605 16))
6 I516))<s 8> > sty
App(& 1[{s]]65T]Is 16| <s;,8> => <8287}
(hv induction hypotheses and Lemma 5.5)
= #4576 <5, -> s}y
6 I[(svs VI [<s, 0 - <s1,9}
_\MST[[S']](S '<(s1,sz),s> > <8¥s">} (consider rule ITT)

il

For S = if empty fi blocking occurs; for § = if B1 -> 8, H “os ﬂ Bn -> Sn fi
if blocking does not occur then B []:Bi-ﬂ(s) = t} for some i with 1<i<n and:
6. [sT(s) = UG lsT(a)] B[BDG) = tt} (by Lemna 6.5.2.)
= U%GSTIIS' }}(s)[<8,8> -> <8',s>} (consider rule IX)
For S = do empty od the result is trivial from Lemma 6,3.1. For
S = do B1 -> S1 ﬂ ...ﬂ Bn -> Sn od we divide into cases on whether 6 EBiﬂ(s) = tt

for some i and use Lemms 6.3 and consider rule X. X

The proof of the next lemma uses Noetherian induction (see [Coh],[Hue‘J). It is
also possible to use ordinary induction on the integers by using Kbnig's lemma

and the finitary nature of the transition relation.
Lemma 6.5 If S must terminate from s then
b ls16) = fs'|<s,05 >+ o}

Proof Since 8 must terminate from s we can define a partial order which satisfies
the minimum condition (see [Coh]} on the set {C}<S,s> =>* ¢} by putting GLC* iff
c' =>* (, (That is, ->"1 is well-founded on this set,) Then we use Noetherian

inductions:

551
6ST[[s]](s) {st]¢s,s> > s'iu U {{ST[[S"]](S')]<s,s> -> <81, 81}
(by Lemma 6.4)
fst]¢s,> > s WU ts"]| g 5,548, - <57, 5% o}
(by induction hypathesis)

i

{s"(S,s) % s‘}. H
Now we only need one more lemma to prove Theorem 6.7,

Lemmg 6,6 Let S be a statement. Then for any state s if QSTES:H(S) ;4_L then S

must terminate from s.

Proof We use structural induction on S and divide into cases according to the
form of S, When S is an atomic command, gkip or abort, the result is trivial.
For S = (S1;SZ) assume & is a state with ﬁsqu:szﬂ(s) ;é_l_ . Then x = 6 ﬂ:S1:|](s) ;é.L
and for every s! in x, '6 Eszﬂ(s') ;é_L . Then by induction hypothesis S1 must
terminate from s and, by lemma 6.5 for every s' with <S1,s> ¥ s’,'é IISz]](s‘) ;4_‘_
and so, applying the induction hypothesis again to each such s', S2 must

terminate from s'. Therefore using rule ITI to consider the possible transition

sequences <(ST;Sg),s> = CO -> C1 ~> .es. we see that S must terminate from s.

For S = if G fi, assume s is & state with ‘&STB:SE(S} ;é _L. Then, by lemma 6.3,

G cannot be gmpty but must be of the form B1 -> S1 H cee ﬁ Bn -> Sn with

'ﬁ[[Bi:ﬂ 8) = tt for some i. Then applying Lemma 6,3 again, we must have
QSTﬂ:%]]Cs} £ 1 whenever B f[)ﬂ(s) = t% and applying the induction hypothesis we
gee that for each such Si that Si must terminate from s. And so, considering rule

IX for the possible transition sequences we see that S must terminate from s.

For S = do G od assume s is a state with 4p oiBT(s) £L . 1t follows by lemma
6.3.3. that ,B II[S] &) # ..L for some k. We finish the proof by showing by
induction on k that for any state s if b Klfsﬂ(s) ;4_L then 5 must terminate from
s. This is trivial for k = 0; for k+! assume that ¢ is a state such that
%_HD:S]](.%) £ _L R The case where G is empty is trivial and we can assume G is
B> s, 0...D B > s 1r BI8I6) = £ for svery i with 1<i<n then the
result is trivial; otherwise by lemma 6.5.3, we have Comp@STESiﬂ,ﬁﬂS])(s) ;4 _L
for every i such that "6 IIBi]](s) = %3, Then using the induction hypothesis and
applying the same argument as in the case where S had the form <S1;82) we see that
(Si;S) mist terminate from s and it follows at once that S too must terminate from

s, concluding the proof by induetion, &

Proof of Theorem 6,1 Part 2 is just Lemma 6.5, For part 1 the necessity half is

immediate from part 2 and sufficiency is just Lemma 6.6, [

552

'References

[ADJ] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977) Initial
Algebra Semantics and Continuous Algebras. JACM, Vol. 24, No. 1, 68-95.

[Bac1] Back, B-J. (1979) On the notion of correct refinement of programs.
Department of Computer Science, University of Helsinki.

[BacZ] Back, R-J. (1979): Proving Total Correctness of Nondeterministic Programs in
Infinitary Logic. Department of Computer Science, University of Helsinki.

[Ber] Berry, G. (1978) Stable Models of Typed A ~Calculi. Proc. of Sth ICAIP.
Lecture Notes in Computer Scisnce, Vol. 62 (eds. G. Ausiello and C. BBhm)
Berlin: Springer-Verlag.

[con] Cohn, P.M. (1965) Universal Algebra. New York: Harper and Row.

[de B] de Bakker, J.W. (1978) Recursive Programs as Predicate Transformers,
Formal Description of Programming Concepts (ed. E.J. Neuhold) Amsterdam: North
Holland,

[de R] de Rover, W.P. (1976) Dijkstra's Predicate Transformer, Non-Determinism
Recursion and Termination. Proc. 5th Symposium Mathematical Foundations of
Computer Science (ed. A. Mazurkiewicz) pp. 472-481, Lecture Notes in Computer
Science, Vol. 45, Berling Springer-Verlag.

[Di3] Dijkstra, B.W. (1976) A Discipline of Programming. New Jersey: Prentice-Hall.

[Gor} Gordon, M.J.C. (1979) The Denotational Degeription of Programming languages.
An Introduction. Berlin: Springer-Verlag.

[Har] Harel, D. and Pratt, V.R. (1978) Nondeterminism in Logics of Programs,

Proc. of the 5th Ann. ACM Svmposium on Principles of Programming Languages,
Tucson, Arizona, pp. 203-213.

[Hen] Hennessy, M.C.B. and Plotkin, G.D. (1979) Full Abstraction for a Simple
Parallel Programming Language. Pxroc. of the 8th Symposium on Mathematical
Foundations of Computer Science. Lecture Notes in Computer Science, No, 74
(ed. J. Becvar) pp. 108-120, Berlin: Springer-Verlag.

{Hue] Huet, G. (1977) Confluent Reductions: Abstract Properties and Applications
to Term Rewriting Systems. Proc. of the 18th IEEE Symposium on Foundations of
Computer Science, pp. 30-45.

fJen} Jengen, K. (1978) Connection between Dijkstra's Predicate Transformers and
Denotational Continuation Semantics. DAIMI PB-86, Dept. of Computer Science,
Univergity of Aarhus,

{Kel} Xeller, H.M. (19‘76) Formal Verification of Parallel Programs. Comm., ACM 19,
1, 371384,

[Mi11] Milne, R.E. and Strachey, C. (1976) A Theory of Programming Langusge
Semantics., New York: Wiley.

[MilZ] Milne, R.E. (1978) Trangforming Predicate Trangformers. Formal
Deseription of Programming Concepts {ed. E.J. Neuhold) Amsterdam: North
Holland.

[M313] Milner, R. {1976) Program Semantics and Mechanised Proof. Foundation of
Computer Seience IT (eds. K.R. Apt and J.W. de Bakker) Mathematical Centre
Tracts 82, Mathematisch Centrum, Amsterdam.

[P101] Plotkin, @.D. {1975) Call~by-Name, Callwby-Value and the A-Calculus.
TCS, VYol. 1, 125-159.

[Ploz} Plotkin, G.D. (19’76) A Powerdomain Construction. SIAM Journsl on
Computation, Vol, 5, No. 3, 452-487.

{8my] Smyth, M. (1978) Powerdomains. JCSS, Vol. 16, No. 1.

[sto] stoy, J.E. (1977) Denotational Semantics: the Scott-Strachey Approach to
Programming Language Theory. MIT Press.

553

[Str} Strachey, C. and Wadsworth, C.P. (1974) Continuations, A hathematical
semantics for handling full jumps. Technical Monograph PRG-11, Oxford
University Computing Laboratory.

[WAd] Wadwworth, C.P. (1980) Semantic Domains for Programming Languages. Prentice-
Hall, To appear.

[Wan] Wand, M. {1977) A Charscterisation of Weakest Preconditions. 4CS8S, Yol. 15,
No. 2, 209~212.

