
DIJKSTRA'S PREDICATE TRANSFOI~IERSANDSMYTH'S POWERDOMAINS

G.D. Plotkin

Dept. of Computer Science
University of Edinburgh

Edinburgh EH9 3JZ

I. Introduction

In his book, "A Discipline of Programming" Dijkstra introduces a simple non-

deterministic language based on his idea of guarded commands. He then introduces

the idea of weakest preconditions on states to give his language a semantics

called the predicate transformer semantics. This is very well-suited to showing

that systems can achieve certain goals, that is to questions of correctness, and

the whole thing fits well within the paradigm of denotational semantics where we

can regard predicatess~ conditions as a kind of cOntinuation.(See [Stra],[Gor],

[MiD],[Sto] for an account of continuations and denotational semantics, generally,

and Ede B],[de R],[Jen] for predicate transformer semantics in this style.)

On the other hand one can give the semantics of simple imperative languages using

state trausformation functions, and employing complete partial orders with a least

element to handle divergence (nontermination). This kind of semantics can be

considered as a direct abstraction from an operational semantics given, say, via

an abstract machine. Within this framework, nondeterministic state transformations

can be handled using powerdomains ([Plo2],[Smy]) which are a weak analogue of

powersets for ~he complete partial orders under consideration.

The relation between these approaches was considered by de Roever who showed, in

[de R], how, given a nondeterministic state-transformation, m, and a predicate, R,

one could define the weakest-precondition, wp(m,R) of R, relative to m; this work

employed Plotkin's powerdomai$ based on the Egli-Milner order. He showed too

that wp(m,R) was even continuous in m and R, and indicated that this enabled one

to obtain the predicate transformer semantics (for a variant of Dijkstra's

language including recursion) from the state transformation one. This was all

fully worked out (among other things) by de Bakker in [de B]. Wand and Back

have made other relevant and important contributions ([Wan],[Bacl]) and these will

be discussed later.

In the present paper we regard this work as showing a homomor~hism from the state

transformation view to the predicate transformer one. By refining the definitions

a little we succeed in strengthening the homomorphiem to an isemo~his ~ (for a

slight variant of Dijkstra'a language). This involves, on the one hand, using the

properties of predicate transformers, given by Dijkstra in chapter 3 of his book,

to define the partial order of predicate transformers and, on the other hand,

replacing the Egli-Milner order by the Smyth powerdomain.

However Dijkstra did not consider any particular language when introducing

predicate transformers. Rather he used a general, somewhat informal, idea of

528

mechanism. He gave some discussion of the relation between this view and a

direct definition for the case of his language of guarded commands. We complete

this discussion by showing how programs in our variant of his language can be

regarded as mechanisms and so obtain another definition of their weakest precondition

semantics. By examining the relationship between programs considered as mechanisms

and their state transformation semantics we are able to demonstrate that both

definitions of the predicate transformer semantics come to the same thing, thereby,

in a sense, justifying Dijkstra's ideas.

In section 2 of this paper we present a formalisation of Dijkstra's mechanisms

using the well-known idea of a transition relation. In section 5 we introduce our

variant of Dijkstra's language of guarded commands and show how programs can act as

mechanisms by defining the appropriate transition relations; this is the operational

semantics of the language. In section 4 we introduce the partial order, PT, of

predicate transformers and use it to give the predicate transformer semantics of our

language. In section 5 we use Smyth's powerdomains to define the partial order, ST,

of state transformations and use that to give the other semantics for our language;

then we show that PT is isomorphic to ST (theorem 5.9) and this is even an

isomorphism of the two semantics (theorem 5.12).

In section 6 we show how the operational semantics relates to the state trans-

formation semantics (theorem 6.1) and use this result to demonstrate that the

direct definition of the predicate transformer semantics gives the same result as

the definition via the operational semantics (corollary 6.2).

Acknowledgements

I thank Robin Milner and Willem de Roever for helpful comments and discussions,

and Dines Bj~rner and Cliff Jones for encouraging me to write this paper.

529

2. Transition Relations

In the chapter entitled, "The Characterisation of Semantics" of his book, Dijkstra

discusses mechanisms, S, and their semantics by considering the weakest precondition

on states, wp(S,R)~ of a post-condition R on states relative to a mechanism, S.

He defines this by saying, for example:

"The condition ~at characterizes the set of all initial states such that

activation will certainly result in a properly terminating happening leaving

the system in a final state satisfying a given post-condition is called'the

weakest pre-condition corresponding to that post-condition"."

This is admirably clear and perfectly precise once we know what conditions and

mechanisms are.

For conditions we first postulate a denumerable set, States~ of ,,s,,t,ates, ranged over

by fhe variable s; for the present purposes it is not necessary to have any

particular structure on the set of states. Now we can choose between an

intensional or an extensional view of conditions (= predicates). The emphasis on

the extensional view at the end of chapter 2 of [Dij] leads us to take the set,

Pred, of predicates as:

Fred = ~(States)

the collection of all sets of states (ranged over by P, Q and R). Note that we

have taken all subsets of States as there seems to be no reason here to exclude any

particular ones. We shall often regard Pred as a complete lattice under the

subset ordering, ~.. For work on the intensior~l point of view~ see [Bac2,Nil,

de B]o

It remains to discuss mechanisms, S. From the above description of wp(S~R) all we

need to know about S is, for any given initial state s, whether or not it will

certainly result in a properly terminating happening and, if so, whether every

possible final state satisfies R. To take exactly this view would lead us to

considering S as a state-transformation function of some kind; this is the idea of

de Roever and we take it up again in a later chapter. However it expresses little

of the idea of what mechanisms and their happenings are. We intend to make that

idea precise by considering mechanisms as performing, somehow, transitions from one

state to another. 0urmethod is a variant on a well-known game (e.g. [Kel]):

we postulate a set, Systems, of s~#stems (= machines = mechanisms), ranged over by

S, and then define the set of configurations, ranged over by C, to be:

Conf = (Systems X States) ~ States

Next we postulate a transitionrelation, ->: ~onf × Conf and assume that no

relationship of the form s -> C holds. The idea is that configurations, C,

represent states of a computation (happening); those of the form, <S,s>, are

possible initial or intermediate states and those of the form, s, are final ones.

530

Further relationships, C -> C', represent one step of a computation: those of the

form (S,s> -> (S',s'> are intermediate steps and those of the form (S,s> -> s are

final steps.

Definition 2.1 A system, S, is blocked in state, s, iff there is no configuration

C such that (S,s> -> C.

A system S may not t~.rm~nate from state s iff either there are S',s' such that

(S,s> ->* <S',s'> and S' is blocked in state s T or else there is an infinite

sequence of the form, (S,s> = C O -> ... -> C m ->

Now, clearly, to say that a system S, for a given initial state s, will certainly

result in a properly terminating happening just means that S must terminate from s.

The weakest precondition, wp(S,R), of S and R can now be formally defined as:

wp(S,R) = Is c States I S must terminate from s and for any s' in States if

<S,s> ->* s' then s' is in R1

The corresponding notion of precnndition is defined for P,S,R by

P[S]R iff V s ~ P. (S must terminate from s and for any s' in States if

<S,s> ->* s' then s' is in R)

Evidently P[S]R holds iff P ~ wp(S,R) does, justifying the terminology of weakest

preconditions.

This is the place to recapitulate the basic properties of weakest preconditions

which we state for any system S and predicates Q,R:

Property I Strictness wp(S,~) =

Property 2 Monotonicity If Q ~ R then wp(S,Q) ~ wp(S,R)

Property 3 Multiplicativity wp(S,Q) ~ wp(S,R) = wp(S,Q ~ R)

The arguments for these properties are just (formal versions of) those already

given by Dijkstra; note that multiplicativity implies monotonicity. For the last

property we postulate further that the transition relation is finitary; this means

that for any configuration C the set {C' I C -> C'I is finite. The point of this

condition is that it is then an easy consequence of I(~nig's lemma that for any S,s if S

must terminate from s then the set F(S,s) =def {s'I <S,s> ->* s'l is finite and

nonempty.

Property 4 Continuity Let S be in Systems and let QO~ QI~__.... be an increasing

sequence of predicates. Then,

~(S, U Qi) = U~(S,Qi)

This important property is considered in the chlapter entitled, "On Nondeterminacy

Being Bounded" where it is established for the guarded command language and a direct

definition of its weakest precondition semantics. To establish the property in the

present context note first that it follows by monotonicity that

531

• ~(S,0Qi).~ ~wp(S,Qi). For the converse suppose s is in wp(S,~Qi); then S

must terminate from s and F(S,s).~ ~ UQ i. But by the above remarks F(S,s) is

finite and so for some i we have F(S,s) ~ Qi showing that s is in wp(S,Q i) and

establishing the converse. By the way, it should be clear that these properties

should not be taken as an attempt to characterise or axiomatise wp(S,R) in any way;

for example if we just set wp'(S,R) = ~ that too would possess all the required

properties.

With respect to [Har] our position is that, in his terminology, we are interested

only in depth-first execution without backtracking. Consequently failures are as

bad a way not to terminate as any other and we have not distinguished them, even at

the present abstract level; they can be cnnsidered as being lumped in with the

blookings. However, with this view Harel's language is, as he points out, too

weak even to write conditionals and we prefer Dijkstra's. Note that we will find

it useful to consider failure when discussing guarded commands.

Finally we consider preconditions and show one sense in which predicate transformer

semantics can be onnsidered as abstracting from correctness considerations. Now if

P[S]R holds this can be regarded as a positive fact about S, or, following DIar], as

a kind of lower bound on its be~viour, in that it says that certain things w~ll

happen. SO it is natural to define a quasiorder (transitive and reflexive relation)

on systems by putting for any S,S':

S ~ S' iff ~P, R c Pred. P[S]R => PES']R

Clearly,

S ~ S' = ¥ R e Pred.~(S,R)~-- wp(S',R)
~ R 6 Pred.R finite => (wp(S,R) .~ wp(S',R))

__~P,R ¢ Pred.P,R finite => (P[S]R => P[S']R)

(the last two equivalences use property 4). This justifies our using the subset

ordering on predicates and the last two equivalences show there is no real harm in

considering all predicates since it comes to the same thing if we restrict ourselves

to the finite ones.

The quasiorder, ~ , was also studied in [Bac]] as the total correct refinement

relation, ref T (more exactly, Back considered ref T as a relation between certain

kinds of state transformation functions and identified programs with such

functions via their behaviour as systems). This work considered ~ as one of a

family of refinement relations between programs and is part of a formalisation of

the stepwise refinement technique as developed by Dijkstra and Wirth.

Note that we can define an equivalence, = , over systems by: S ~ S' iff S S

and then:

S ~S'--=~P,R ~ Pred.P[S]R <=> P[S']R

~P,R c Pred.P,Q finite => (P[S]R <=> P[S']R)

532

=- ~ ~ ~ Pred.~ finite -> (wp(S,R) = ~(S',~))

Thus if two systems are the same as predicate transformers then they satisfy the

same correctness properties and vice versa. Thus predicate transformer semantics

abstracts exactly from the desired correctness properties. Of course, changing

the correctness properties considered might very well change the semautics needed

and indeed the idea is very general and has, apart from the present case, not been

much investigated.

533

3. Operational Semantics

Now we apply the ideas of the last section to a variant of the simple nondeter-

ministie language of guarded commands presented by Dijkstra. The syntax of this

language is presented in terms of four sets:

I. ACom is the set of atomic (= orimitive) commands, assumed given; it is ranged

over by the variable A.

2. BExp is the set of Boolean expressions, assumed given; it is ranged over by

the variable B.

3a) Stmts is the set of statements; it is ranged over by the variable S.

b) GCom is the set of Araarded commands; it is ranged over by the variable G.

The sets, Stunts and GCom, are given together by the grammar:

s = A I ski I abo t I (S;s I f Ido od
G-.: em .y [B -> s U

The sets ACom and BExp have been left unspecified; different languages would be

obtained via different choices. Typical elements could be assignments to variables

such as "x:=x+y" or "x,y:=y,x" or to array elements such as "ar: (j)=ar(j)-1" in the

case of ABom or simple conditions such as "x>_y" or compound ones such as ~--~ and

ar(j)<u" in the case of BExp. So an example statement could be:

d oo (x>y -> x:--x-y 0 y>x -> y:--y-x) o_~d

This is all much as given by Dijkstra except that we do not consider block structure.

There are also some minor differences in the syntax and in particular we painfully

build up sequences of statements and guarded command sets by binary means; on the

other hand we will often omit the brackets when it makes no difference to our

assertions how they are understood. Note too that we explicitly allow compound

guarded commands as this will make good semantic sense. This is perhaps the place

to remark that guarded commands have a little more prominence in our treatment than

in Dijkstra' s~ but nonetheless they still have rather a secondary role compared with

statements themselves.

The operational semantics is specified by leaving States umanalysed and taking

Systems to be Stmts and defining a transition relation. To do this we assume we are

given t~o functions

~ : ACorn-> (States -> States)

: BExp-> (States-> T)

where T is the set, {tt,ffl, of truthvalues; these provide, in a rather abstract

way, the semantics of atomic commands and Boolean expressions. Clearly ~ EA~(s)= s'

means that the atomic command A changes state s to state s' and, similarly,

~EB~(~ = t means that the Boolean expression B has value t in state s; note the

typical use of emphatic brackets where the arguments of functions are syntactic

584

bbjects. The totality of all the functions ~ ~A~ and ~ ~B~ means that we are

assuming atomic commands always terminate properly when activated and the

evaluation of Boolean expressions also always terminates properly. On the other

hand, we could easily adjust the present theory to allow the possibility of non-

termination.

Now we define the transition relation together with an auxiliary r@~ation,

->: (GCom × States) × ((Stmts × States) ~) {fail})

with the same name. This is aohieved by giving a little formal system of axioms

and r~les to show what relationships hold.

ii <A,s> -> ~A~(s)

III. <skip,s> -> S

III1. <S~,s> -> <S'~,s'> 2. <S.,s> -> s'
<-T~ 1;S2),s>"i> ~ <(S~;S2),s'> %(~I;S2)'s> '> <S2,s'>

IVI. <G,s>-> <S,s>
<AZ G f__i,s> -> <S,s>

VI. <G,s> -> <S~s> 2. <G,s> -> fail
<do G o_~d,s> -> <(S; do G od),s> <do G od,s> -> s

VII. <empty,s> -> fai____!l

VIII. <B-> S,s> -> <S,s> (if~B~(s) : tt)

2. <~ -> s,s> -> fail (if~B~(s) : ff)

VIIIJ. <G.,s> -> <S,s> (for i=1,2)

<-~I D ~2), s> -> <S,s>
2. <G -s> -> fail,<G .s> -> fail

Hopefully these rules are in accord with the reader's intuitions: atomic commands

do as they are assumed to do; skip does nothing; abort is always blocked as

it has no rules or axioms; to execute the composition of two commands, execute the

first and then the second. If the remaining rules are not so immediate consider

instead the following derived rules:

IXI. <i_~f B I -> S I ~ ~ B n -> S n f_.!,s> -> <Si,s>

(if ~ ~Bi~S) -- tt where 1<i<__n)

XI. <d_.% empty o_~d, s> -> s

2. <do Bf -> S I ~ 0 B n -> S n o~d,s> -> <Si; d__~o B I -> S I Q ~ B n -> S n o~d,s>

(if ~ EB$(s) = tt where I_<i<~)

3. <do B I -> S I ~ D B n -> S n o_dd,s> -> s

(i f ~ IBiS(s) = f f whenever l<...i<n)

These "non-binary" rules can replace IV - VIII as far as statements are concerned.

Note that if G fi blocks when the guarded command G fails, whereas do God termin-

ates, as expected; note too %hat nondeterminism is introduced in rule VIIII (or,

alternatively, IXI and X2).

As an example let G I be x>y -> x:=x-y and let G 2 be y>x -> y:=y-x and take G to be

535

G I D G2; let States, ~ and~ have the (hopefully) evident definitions. Now, if

m>n then

<~ G o_dd,<m,n>> -> <x:=x-y; d_~o G od,<m,n>> (by X2)

-> <do G od,<m-n,n>> (by III2 ,II)

and if m=n then

<d__q G o_~d,<m,n>> -> <m,n> (by X3)

and if m<n then

<d__oo G o__dd,<m,n>> -> <m,n-m> (by X2 , III2 , II)

and these are the only possibilities. For other examples of this method of giving

operational semantics see [Plol], [Mil3], [Hen].

As an example of equivalent statements consider:

$I =def do x=-x -> y:=y o_~d

$2 =def x:=1; do x>0 -> x:=O~ x>0 -> x:=1 o_~d

$3 =def x,y:=1,0; do ~F=O -> y:=1 0 y=O -> x:=x+1 o_~d

The point here is that for any initial state any of these statements ~v r~ot terminate

and so we always have wp(S i,R) = ~. Therefore abort~ S I ~S 2 ~S 3.

As an example of the quasiorder, ~ , consider:

S 4 = if x=x -> x:=O ~ x=x -> x:=1 f_~

S 5 = x:=O

Here S 4 ~ S 5 since producing more final states (for a given initial one) means

that fe__~we~r preconditions hold. This somewhat strsnge reversal of orders is also

characteristic of the Smyth powerdomain and explains ~hy it appears in the present

setting.

5S8

4. Predicate Transformers

Given any mechanism S we can "fix" the first argument of wp to obtain a predicate

transformer, fs: Pred -~ Pred where:

This section gives a direct definition of the predicate transformers for our

language followin~ [Dij ~ 41. Of course we could always turn this around, saying

that this section specifies the predicate transformer semantics and any implement-

ation - in particular the abstract one in section 3 - must be in accordance with it

(see [Dij ~ 26J). In any case the relation between the two definitions is clearly

what is important.

Following a standard denotational approach we first decide what the collection, PT,

of all predicate transformers is to be. It will be useful to first recollect a

few standard ideas (see [Wads for a leisurely account).

We will make some use of the typed ~ -calculus so that if x rarges over the set X

and x is an expression denoting an element of the set Y (possibly

involving x) then the expression ~x ~ X x (or equivalently, ~ x x

if X can be understood from the context) denotes the function f: X -~ Y where, for

any x in X:

f(x) x

We also need a few definitions concerning partial orders.

Definition 4.1 I. A complete partial order (cpo) is a partial order, (D, ~ with a

least element, -4D' in which every increasing sequence do~ d I ~ has a least

upper bound, ~di;~ the greatest lower bound of two elements d and d' is, if it

exists, written as d ~I ~v

2. Let f: D-~ E be a function from one cpo D to another, E.

Then f is strict if f~4~) =~; it is monotonic iff whenever d and d' are

elements of D with d ~ d' then f(d) ~. f(d')~ it is continuous if it is monotonic

and for every increasing chain d O ~ d I C of elements of D we have:

f(~Ddi) = ~Ef(~i); it is multipl!cative ' if whenever d and d' are elements of D

such that dP1 d' exists then f(d)~1 f(d') exists and f(dfl d') = f(d) rl f(d').

For example Pred is a cpo with .4 -- ~, ~d i --U d i and d ~ d' = d ~ d'. It is

well-known that the identity idD: D -~ D (where id(d) = d) is strict, continuous

and multiplicative as is -4D,E: D -~ E (where J-D,E(d) ~ ---4E); further if f: D -~ E

and g: E -~ F are strict ~onotonic, ~ ~nntinuous,multiplicative) so is their

composition g • f: D -~ F. Finally, if f: D -~ D is continuous it has a least

fixed-point, namely Y(f) = ~Df~).

Rather than take PT to be the collection of continuous functions from Pred to Pred

as do some authors (Kde BS,[JenS) we follow the properties of weakest preconditions

discussed in section 2 and put:

537

PT = If: Pred -> Pred ~ f is strict, continuous and multiplicative}

and turn it into a partial order by the pointwise ordering:

f~ g ~f YR ~ Pred. f(R)_C g(R).

proposition 4.2 I. The partial order, PT, is a cpo with least element~

and with least upper bounds of increasing chains fo~_fl ~_ ... given by:

(~fi)(R) = 4~fi(R). Further greatest lower bounds of pairs f,g of elements

always exist, being given by: (fr~g)(R) = f(R) ~ g(R).

Pred,Pred

2. The identity, i~red is a predicate transformer and so is the

composition of any two predicate transformers.

3. Let f,g be in PT and let P and Q be disjoint predicates. Then

h is a predicate transformer, where h(R) = (P~ f(R)) U (Q ~ g(R)).

P~oof I. We have already observed that]. Pred,Pred is a predicate transformer

and it clearly must then be the least one. For any increasing sequence, fo~ f1~

of predicate transformers put f(R) = Ufi(R). It is well-known that this defines

a strict continuous function as the f are all strict and continuous. For

multiplicativity we calculate for any Q,R:

f(Qn R) :~q(Qn ~) :~ fi(Q) n fi(R)
=Ufi(Q) N Ofi(R) (as f0(Q)~fI(Q)~C- ...)

= f(Q) n f(~).

2. This has already been observed.

3. I~ is cleat that h is strict and continuity and multJ~licativity are easy

calculations. For example for the latter:

h(Rn R') = (Pn f(R) n f (R ')) U (Qn g(R)n g(R'))

= (Pn f(R)~ Pn fCRr'))U (Pa f(R)~ Q~ g(R'))U
(Q n g(~) n P n f(~,)) u (Q g g(R) n Q n g(R,))

=[(P n f(~)) u (Qng(~))] n [(P n f(~,)) U (Qn g(~'))]
= h(R) n h(R') .

Now we define a few operators in order to give the semantics in a more or less

algebraic way, following [A~T]. First define two sets, d-ST, of deterministic

state-transformation functions and Bool by:

d-ST = States -> States

Bool = States -> T

+
and for any p,q in Bool put p

(p v q)(s) = p(s) v q(s)

= p - l (t t) ' p- = - l (f f) and define p V q by:

where we are using logical disjunction on the right. It is worth remarking here

that we need Bool as well as Pred since the ordering on Pred is not appropriate for

values of Boolean expressions: if we wanted non-terminating Boolean expressions we

538

would rather use the partial order, States -> T~ (see the next section for

definitions).

Conversion Define Cony: d-St -> PT by:

and it is an easy calculation that Cony(m), so defined, is in PT.

Composition Define Comp: PT 2 -> PT by:

Comp(f,g) = f, g

and Proposition 4.2.2 assures us that Comp(f,g) is in PT.

Conditional Define Cond: Bool × PT -> PT by:

Cond(p,f)(R) = P+n f(R)

and since Cond(p,f)(R) = (P+n f(R)) ~ (p- NIpT(R))

Proposition 4.2.3 assures us it is in PT.

Iteration Define Do: Bool × PT -> PT by:

Do(p,f)(R) = Y(AQ ~ Pred.(P-1~ R) U (P+~ f(Q)))

What this means is that for p,f and any R if we define the function h R on

predicates by:

~(Q) = (p-~ R) U (p+~ f(Q))

we observe that ~ is continuous and so has a least fixed-point Y(~) : U ~(~),

which is what we take the value of Do(p,f) at R to be.

So if we define DOk(P,f): Prod -> Prod by

DOk(P,f)(R) = h~(~)

then De(p,f)(~) = U Dok(P,f)(~). ~ow by induction on k one easily sees that

each DOk(P,f) is in PT. This is clear for k=0 and for k+1 we observe:

DOk+l(p,f)(R) = ~(Dek(p,f)(R))

= (p-~ R) U (P+~ f(Dok(P,f)(R)))

and so, by the induction hypothesis and Proposition 4.2.3, DOk+1(p,f) is also in PT.

It now follows by Proposition 4.2.1 that Do(p,f) is also a predicate transformer

and so is well-defined.

Bs~r We introduce a function which will give semantic significance to Dijkstra~s

bar symbol, ~ . Define Bar: (Bool × PT) 2 -> (Bool × PT) by:

Bar(<p,f>,<q,g>) =

<PV q, ~ R c Pred.(p +~ [(q+n f(R)n g(R)) U (q-~ f(R))])

U (p- ~ q+~ g(R)>

The arrangement of this definition and Proposition 4 shows that the second

component is indeed a predicate transformer; it can also be written as:

539

ARE Pred. (P+U q+)~ (P-~ f(R)) ~ (q-U g(R))

Thus Bar is clearly commutative; one can also show that it is associative and

further, using an obvious notation that, for n>O:

i=4~n z l i=I ,n i=I ,n

On the other hand, Bar is not absorptive; indeed as Bar(<p,f>,<p~f>) =

<p,AR E Pred. P+h f(R)> ahso~gtlon holds at <p,f> i f f f(R)~ p+ for any R.
Similarly the natural zero Ms e States. ff,.~ pT > does not work as

Bar(<As.ff,-LpT>,<p,f>) = <p,~R.p+~ f(R)> too.

It is now straightforward to present a classical denotational semantics for

predicate transformers by defining two denotation functions.

~PT: Stmts -> PT

9 PT: GCom-> Bool × PT

The idea for statements is that where Dijkstra would write

wp(S,R) ~ ...

one writes instead

~pT[S~ = ARE P~d R ...

and so ~pT is just a Curried version of wp. The idea for guarded commands is

that if ~ pTEG~ = <p,f> then p is the meaning of an implicit guard of G and f is

a predicate transformer for an implicit command of G.

The denotation functions are defined by a mutual structural induction on statements

and guarded commands via the following clauses:

CI ~pT~A]] = Oonv(~EA~)
02 gpTEgCi~ = idpT
03 6 pT o t3 = I PT

C4 ~pTE(Sl;S2) ~ = Comp(g pT~SI~,~pT~S~)
05 4pT~if G fi]] : Oond(~pTEG3)
c6 od3 Do(p EG3)
GI ~pTEenwty3= <%s E States. ff,lpT>

G3 ~pT~(Sl ~ $2)'~ : Bar(~ pTESI~, ~ pTES~)

Just as in the case of the operational semantics it is not necessary to define a

semantics for guarded commands if we do not mind a certain clumsiness of expression.

For a~ is easi]y seen from the above remarks the following holds and could replace

C5:

540

08 &p~[~_~ -> s~ ~ ~ ~ -> ~ fi~ =
~R~ Pred.(i=~,n ~Bi~=~,n(~Bi~- ~ 4T~Si~))

and for C6 we have:

C9 ~ p~ empty o_~ = idpT

CI0 ~pT~dO B I -> S I ~ 0 B n -> Sn~=~R c Pred.~k~

(where Do(R) = ~ and

Dk+I(R) = [(i__~ n ~ N i_~1.n(~Bi~'U ~pT~Si~k(R)))] %)

[(~Oin ~ ~Bi~0 ~-RI)

Dijkstra's Hk+ I corresponds to our D k .

Note the following equivalences which either follow from the above remarks or are

easily proved directly:

gp~rr i~ em~t~ j = ~p~[l abo~t~

pT~ do empty od~ = ~pT ~" ski~

Among other things these equivalences allow us to disregard brackets when

considering the semantics of statements and guarded commands. On the other hand

the following two equivalences fail:

as, for example, one could take G I to be x = 0 -> x:=1. It would be interesting

to see a semantics for guarded commands which does not suffer from these problems.

To further emphasize the secondary status of guarded commands, in the present

treatment, note that everything is all right if we consider statement contexts,

... G ... as we do always have:

~pl~...(G I I] GI).o. ~= ~pT ~ . . . G i . . .?

pT ~...(,empty~ G1)...~: ~pT E... g I ...~.

541

5. State Transformations

We now look for a state transformation sem~utics which reflects the operational

semantics more directly than do predicate transformers. Indeed we want a cpo, ST,

of stats transformation functions, which is isomorphic to PT. Because of the

possibilities of nontermination and nondeterminism, the simple set d-ST = States->

States will not do. To handle nontermination we introduce the so-called flat cpos.

Definition 5.1 Let X be a set. The flat cpo X I is X~IJ.I ordered by:

x ~ y iff x =~ or x = y.

Clearly X~is a cpo with least element .4 (used for nontermination) and with lubs

of any increasing sequences Xo~ x I ~ .. as all such sequences are eventually

constant~ having at most two different elements (hence the term "flat").

If it were not for nondeterminism we could take the collection of state trans-

formations to~_~be States -> StatesL;~__instead we use multi-valued functions

m: States -> $~s(States~) where ~s(States~) is a cpo of subsets of State~4,

Let X be a set. The Smzth ' powerdomain ~s(X|).. of X~. is the set Definition 5.2

{x~ XI~E = X.~or (x ~ ~ and x~ X and x is finite) l partially ordered by:

x ~y iff x~y.

Before discussing the lattice-theoretic properties Of~s(X) we examine the

motivations for what ist at first eight, a somewhat curious definition. Using

this definition we can define ST in such a way that state transformations m can

capture exactly enough of the operational meaning of programs to determine their

associated weakest preconditions

Definition 5.~ I. The partial order, ST~ of state transformations is the set

States -> ~s(States I) ordered (pointwise) by:
M

m~ m' iff ~ s ~ States. m(s) ~m(s')

2. The weakest preconditipn wp(m,R) of a state transformation, m,

relative to a predicate, R, is given by:

wp(m,R) = Is c States l.L # m(s) and m(s) ~_ R1

Now the first point is that if m is to be the denotation of a statement S then we

expect that m(s) is to say what the results of the possible computations of S

starting from s are, and also that ~. is to record nontermination so that'. E m(s)

iff S may not terminate from s. The K~nig's lemma argument in section 2 shows that

if ~. #re(s) then re(s) is finite and nonempty. So far, this would lead us to

taking those nonempty subsets which are finite or contain .Land then to the

Egli-Milner ordering on them; this is the approach used in [de R] and discussed

more generally in [Plo2]. However for the purposes of giving weakest preconditions,

we note that if ~_ ~ m(s) and ~.c m(s') then m(s) and m(s') are equivalent in that

both s c wp(m,R) and s' ¢ wp(m,R) are impossible for any R~ Hence we have simply

.identified such sets with each other in the definition of~s(Statesl), equating them

54~)

all, for convenience, with States~o This explains our choice of the elements of

the Smyth pewerdomain.

The choice of ordering follows the examples in section 3. Clearly States kshould

be the least element. For the other elements suppose m(s) ~m(s') and neither

contains ~ . Then, for any R, if s E wp(m,R) then s' c wp(m,R); thus m(s I) is

better than m(s) in that it makes s' satisfy more preconditions and so we put

m(s) ~m(s'), explaining the curious order reversal in the definition. For a

general account of the Smyth powerdomain, and other motivations for its choice, see

[Smy].
Proposition ~4 ~ The partial order ~s(X~) is a cpo: it has least element X I

and every increasing chain Xo~X I ~ ... is eventually constant with least upper

bound ~x =~x . Further any two elements x and y have greatest lower bound
1 l

x~y = x U Y and, considered as a function of two arguments, the greatest lower

bound is continuous in each argument.

2. The partial order, ST, is a cpo: it has least element

As c States. &~(States) and every increasing chain ZOOm I ~ .°. has least

uppe bound m, m(s = U i(s).

Proof 1. As Xlincludes any other element it is the least element. If

x 0 ~x I .~ ... is increasing and non-constant9 it is eventually a decreasing

sequence of finite sets, with respect to ~ , and so is eventually constant. It

follows at once that ~x i =~x i. It is easy to see that if x and Y are

elements Of~s(X j) then so is x U y and it follows at once from the definition of

that x~]~y = x U y; as for continuity it is clear that x U y is monotonic in x

and y and since every increasing sequence is eventually constant it must also be

continuous in x and y.

2. Immediate from the pointwise definition of the partial order on ST and

the fact, proved in part I, that ~s(States L) is a cpo.

There are two other useful basic functions aside from U; we restrict ourselves

to ~s(States~) although these functions exist in general~

Singleton The function ~. ~: States -> @s(state~ l) is defined by:
(d f l)

As ~ .~ is monotonic and States, is flat it is continuous; generally we omit the

vertical bars when writing ~-~--

Appl%cation The binary function App: (ST × ~s(States[)) -~ ~s(States I) is

defined by:

543

mp)Is ~ ~I (if ~l and for any s in
m(s)¢±)

App(m, x) =

(other~Tise)

Lemma 5.5 The function App is continuous in each argument. It is strict and

multiplicative in its second argument and for any s in States, App(m, Isl) = m(s).

Proof It is a straightforward calculation, which we leave to the reader, that App

is monotonic in its second argument (and therefore continuous in its second

all increasing sequences in ~s(Statesl) are eventually constant) and argument as

that it is strict and multiplicative in its second argument and that App(m, Isl) =

m(s).

To see that App is continuous in its first argument, we begin with monotonicity and

assume m ~m t and show App(m,x) ~ App(m' ,x) for any x. If x =.L this follows as

App is strict in its second argument and otherwise x is finite and we proceed by

induction on the size of x. If x is a singleton, {el, then App(m,x) = m(s) ~ m'(s) =

App(m' ,x). Otherwise x = x 0 U x~ where x 0 and x I are strictly smaller than x and

so we can calculate:

App(m,x 0 U x I) = App(m, x0)U App(m,xl) ~ App(m',x0) ~) App(m~,xl)

= App(m,x o U x I).

For continuity one just proceeds in the same way to show that for any increasing

chain m 0 ~ m I ~ ... and any x we have: App(~mi,x) = ~App(mi,x)-

Now we can give the state transformation semantics, starting with the definition of

operators similar to those in section 4 and with the same names. First, however,

note the useful conditional function, defined for every cpo D,

(if. the_n, else.): T × D × D -> D where

if t then d else d' = ~ d (t = tt)

[d' (t = ff)

It is easily seen to be continuous in its second and third arguments.

Conversion Define Cony: d-ST -> ST by:

Cony(m) (s) = {m(s) 1

C Qm~osition Define Comp: ST 2 -> ST by:

Comp(m,m') (s) = App(m' ,m(s))

From Proposition 5.4 2. and Lemma 5.5 we see that Comp(m,m') is continuous in m

and m I .

Conditional Define Cond: Bool × ST -> ST by:

Cond(p,m)(s) = i__ff p(s) then m(s) else J.

544

• Iteration Define Do: Bool x ST -> ST by:

Do(p,m) = Y~m' e ST.~s e States. i_~f p(s) then Comp(m,m')(s) else {s})

What this means is that for any p and m we can define a continuous function, h, of

state transformations by:

h(m')(s) = i_ff p(s) then Comp(m,m')(s) else {s}

and Do(p,m) is the least fixed-point, U hk~sT) , of h.

So if we define DOk(P,m)" ST by:

DOk(P,m) = hk~sT)

then Do(p,m) = U DOk(P,m) and the Do k have the recursive definition, Do 0 = ~ST

and"

DOk+1(P,m)(s) = i.~_f p(s) then Comp(m,DOk(P,m))(s) else {s}.

Ba_._Er Define Bar: (Bool × ST) 2 -> (Bool x ST) by:

Bar(<p,m>, (q,m'>) =

<pYq, As ~ States.

i_f_f p(s) then (if q(s) then m(s)%J m'(s) else m(s))

else (if q(s) then m'(s) else l)>

Now we can define the denotational semantics as usual via two functions:

~ST: Stmts -> ST
~ ST: GCom -> Bool x ST.

The semantic clauses CI, C4, C5, C6, G2 and G5 are just as before (except with

~pT, ~pT replaced bY ~ST, ~2 of course) and the others are:

02 ~s~E ski~ -- A s ~ states. {s}

c3 ~,abort~ = ls~
o, ~ s~E em~ = <~s ~ states f f , ± s~>

We are now in a position to show first that ST and PT are isomorphic and second

that the two semantics based on state transformations and predicate transformers

are also isomorphic. Definition 5.3 2. will enable us to go from ST to PT and

for the converse direction the key lemma is:

Lemma ~.6 Stability Let f: Pred -> Pred be any map of predicates. Then f is in

PT if and only if whenever s ~ f(States) there is a finite non-empty set, min(f,s),

satisfying the following condition:

~R C Pred. s ~ f(R) ~ min(f,s) ~ R.

Proof Suppose f is in PT and s ~ f(States). Since States is denumerable there

is an increasing sequence Xo~ x I ~ ... of finite sets of states such that

States = ~ x.. Then we have:
i

s ~ f(States) = f(~x i) = ~f(x i)

545

by the continuity of f. Hence there is a finite set, x, such that s ¢ f(x).

Let min(f,s) be such a fini~te set of the smallest possible cardinality; it is

non-empty as f is strict and furthermore we claim it satisfies the condition. For

on the one hand if min(f,s) ~ R then s e f(min(f,s)) _~ f(R), by the monotonicity

of f; on the other hand if s e f(R) then, by the multiplicativity of f,

s ~ f(R)~ f(min(f,s)) = f(R~ min(fts)) and so by the choice of min(f,s) we

must have R ~ min(f,s) = min(f,s) and so min(f,s) ~ R.

Conversely suppose f: PT -> PT satisfies the proposed criterion. To see it is

continuous, suppose R O ~ R I ~ .,. is an increasing sequence. Then:

s ~ f(~R i) ~ min(f,s)_~ UR i (by the criterion)

min(f,s) C. Ri, for, some i (as min(f,s) is finite and the

sequence is increasing)

s c f(Ri) , for some i (by the criterion)

--_-s ~ U'~(~i).

For strictness if we had s e f(6), for some s, then by the criterion min(f,s)__~

which would contradict the fact that min(f,s) is nonempty, For multiplicativity,

we have:

s E f(Q~R) ~ min(f,s) C- Q~R~ min(f,s)_~C Q and min(f,s) C. R

--- s ~ f(Q) ~ f(R). ;~

Berry has investigated a very general idea of stable continuous functions; our

predicate transformers are stable in his sense and Lemma 5.6 is a straightforward

consequence of the work in [Ber].

Note that for any predicate transformer, f, the lemma shm~ that rain(f ,s) exists and

is detel-mined uniquely by the criterion; we now extend the notation when

s ~ f(States) by putting min(f,s) = States~. in that case. This makes

~s c States. min(f,s) an element of ST, showing how we obtain state transformations

from predicate transformers.

Lemma 5,,7 I. Let m be in ST. Then f = ~R. wp(m,R) is in PT and, indeed, for any

state, s, min(f,s)= m(s).

2. Let f be in PT. Then wp~s.min(f,s),R) = f(R).

Proof I. We apply the test of lemma 5.6 to show f is in PT. First suppose

s ~ f(States) = wp(m,States). Then m(s) ~ l, by]]efinit~on 5-3 2. and so m(s)

is finite and nonempty. Therefore we show min(f,s) = m(s) by calculating, for

any R:

s ¢ f(R) ~ s ¢ wp(m,R) ~'~ (re(s) ~ J_) and m(s) .C R

m(s) __~ R (since m(s) % ~_)

2~ We just calculate, using lemma 5.6:

846

w ~ (~ s . = i n (f , s) , t {) - - { s ~ States I rain(f , s) / l a n d min(f , s)~_ ~}
= {s c Statesl s c f(States) and s ¢ f(R)}

f(R) []

Definition ~-8 The functions 6J = ST -> PT and 64-I: PT -> ST are defined by:

(m)(R) = ~(m,R)

&J-1(f)(s) = min(f,s).

It follows from the above remarks on min(f,s) and lemma 5.71. that these are good

definitions

Theorem 5,R (Isomorphism. ~art I) The function 64 : ST ~'PT is an isomorphism of

cpos with two-sided inverse gO-1.

-I
proof Lemma 5.8 shows that &J and ~ are mutual inverses as we can calculate:

(&~-1 6)(m))(s) = min~R.wp(m,R),s) = m(s) and also: (~4 -~ ~!(~)) QR) =

wp~s.min(f, s) ,R) = f(R).

It remains to show they are monotonic. For ~ , suppose m ~ m' and s c wp(m,R).

Thenm(s) ~ ~. andm(s) ~ R. So m'(s) ~j_ andm'(s)_~ m(s)~ R (as m~ m':)

and so s e wp(m',R). For 64 -I suppose f~-f' and min(f,s) ~ Statesj. Then

using lemma 5.8 we see that s e f(min(f,s)) ~_. f'(min(f,s)) and so min(f',s).~ min(f,s)

showing that min(f,s) _~ min(f' ,s) (order reversal, again')

Wand considered a very slight variant of ST in [Wan]; using our terminology he

showed that ~ was a bijection. Back independently saw the connection with Smyth's

powerdomains in [Bacl] and it is a trivial corollary of his work ~at 64 is mono-

tonic and reflects the partial order on ST; that is for any m, m' in ST,

m ~ m' iff ~(m) ~ 64(m').

Taken together this gives another proof that ~ is an isomorphism of cpos.
i

Lemma 5.10 I. For any p in Bool, m, m' in ST and R in Pred, wp(~s, if p(s) then

re(s) else m'(s),R) : (p÷~ wp(m ,R)) U (p-~ wp(m',R))

2. For any m, m' in ST and R in Pred: wp~s.m(s) U m'(s),R) : wp(m;R)n

wp(m' ,R).

3. For any r{ in Pred, w ~ S T , ~) = ¢ and ~ (A s . {s},R) : R.

Prqof An easy calculation and left to the reader.

Lemma 5.~ (Homomorphism) I. Conversion Vm ~ d-ST. ~(Conv(m)) = Cony(m).

2. Comoosition Vm,m' c ST. ¢~(Comp(m,m')) = Comp~4(m),~(m'))

3. ~Conditional VP c Bool,m c ST. ~(Cond(p,m)) = Cond(p,~(m))

4. Iteration ~p ~ Boo!,m ~ ST. ~(Do(p,m)) = Do(p,~(m))

5. Bar VP,q c Bool,m,m' c ST. ~(Bar(<p,m>,<q,m'>) I) = Bar(<p,~(m)>,<q,~(m')>)1

(where for any p,m,<p,m> I = m).

Proof We will often use ismma 5.S0 without explicit comment. For any R we

547

calculate:

1. ~(Conv(m))(R) = ~(As. {m(s) },~)
{s }I~ {~(s)} ~d {m(s)}~_ R}

= Con~(m) (R),

2. ~(Comp(m,~'))(~)
= wp~s.App(m' ,m(s)),R)
= {slm(s) ~ . and, for a l l s'!in m(s), m'(s) % S.

~d U {m'(s') I s' ~ m(s)}£ R}
: {s~m(s) % &and, for a l l s' in re(s), m'(s) ~ . a n d m'(s')C~ R}
= {slm(s) ~.~ and m(s)& wp(m',R)}

= wp(m,wp(m' ,R))
= Comp(~) ~ m ')) (~),

3. L4(Oond(p,m))(R) = wp(~s.if p(s) then m(s) else ~ ,R)

= (P+8 wp(m,R))U (p-1~ WP~sT,R)) (by lemma 5.10.1.)

= eond(p,m(m))(~) (by lemma 5.10.3.),

5. m(Bar(<p,m>,<q,m'>)1(R) =

(P+ n [(q+(] wp~s.m(s) U m ' (s) ,R))U(q-~ wp(m,R))])U

(p- n [(q+n ~(m',R)) u (q -n wP(±ST,R))])
= Bar(<p,~4(m)>,<q,~(m')>) 1. (using lemma 5.10).

4. It is enough to show by induction on k that for all R:

wp(DOk(p,m) ,R) = DOk(P, &~(m)) (R)

For k = 0 both sides are equal to ~; for k+1 we calculate:

wp(DOk+ I (p,m),R) = (p+ n wp(Comp(m, DOk(P,m)),R)) U

(p-~ ~s. {s},~))

= (p+(~ wp(m,wp(Dok(P,m),R))) U
(p" t} R) (by part 2)

= (p+ ~W(m)(DOk(p, ~(m))(R))) U

(p - ~ R) (by induction hypothesis)

Theorem 5.12 (Isomorphism, part II) The isomorphism A) : ST -> PT is also an
-I isomorphism of the semantics, with inverse ~ , in the sense that the following

diagrams all commute:

Stmts ~ GCom

ST" g~ ~ PT BoolXST id~ool x ~ BoolMPT

548

Stmts gCom

_%

PT, -I)ST BoolxPT - idBoolX~;-1 I BoolXST

where (idBool x~)(<p,m>) =def <p,~(m)> and (idBool x~-1)(<p,f>) =def ~p, -1(f)>.

Proof It follows at once from lemmas 5.10, 5.11, using mutual structural induction

on statements and guarded commauds that the top two diagrams commute. For

example, a typical case is:

= Oomp(g4(~sT~S1~),4;(~S#S~)) (by lemma 5,12)

= Comp(~pT~, SpTffS~)(by induction hypothesis)

= gp~[[(s 1 ~s2)~.
It then follows immediately that the second two diagrams commute as, for example:

(6p~sD = ~ - 1 (~,(~s~Es]])) = ~s~Es]l. II 1,4

Another way to state the theorem is to say that

<idstmts,idgcom, Al,idBool x ~>: <Stmts,GOom,ST,Bool x ST> =~<Stmts,gOom,PT,Bool x PT>

is an isomorphism of heterogeneous algebras, with inverse,
~-I -I

<idstmts,idgcom, ,idBool ×&O >. The corresponding part of the work in

de Bakker corresponds to showing that /,a is a homomorphism: that is that

g~. ST -> PT is continuous and the top two diagrams commute.

549

6. Operational - Denotational

In this final section we tie-up the operational semantit?~ state transformation

function semantics, proving the following theorem.

Theorem 6.1 I. For any statement S and state s, S must terminate from s iff

bsT~S~ (s) l.L.

2. If S must terminate from state s then ~s~S~) = Is' I <S,s>

->* Sl.

The first part of the next corollary shows Dijkstra's direct definition of the

predicate transformer semantics is in accord with the operational definition.

The second part shows ~at all the available quasi±orders are the same.

Corollary 6.2 I. For any statement S and predicate R,

2. For any statements S and S',

s E s iff @sTEs~_~ 6s~ iff ~pT~S~_Z ~pTE~
Proof I. Let s be a state. Then,

s c wp(S,R) iff S must terminate from s and for a~y s' in States if

<S,s> ->* s' then s' is in R

iff ~s~S~(s) i.~and ~s~S~(s).~ R (by Theorem 6.1)

iff s e wP(~sT~S~,R) (by Definition 5.3. 2.)

and i t fo l lows from Theorem 5.12 that wP(~sT~S]] ,R) = ~pT~S~(R).

2. We have,

S ~ S' iff ~ R c Pred. wp(S,R) C wp(S',R) (by definition)

iff ~R ¢ Pred. @pTES]](R)~pTES'~(R) (by part I)

iff @ sT~S~ g ~ ~ (by ~eorem 5.12)

To prove Theorem 6.1 we begin with some useful formulae.

L emma 6. 3 I. For any state s, ~ST~if empty fi~) = .~ and

~ S T ~ em__~Z od~(s) = Is/.

2. Let G be B I -> S I ~ ... ~ B n -> S n and let s be a state.

(a) If ~Bi~(s) = ff for every i with 1<i<n then ~ ST~if G fiN(s) = I and

(b) I f ~.~Bi~(s) = t t f o r some i with l~ i<n then

~ST~if G fi~) = UI~sT~si~(s)I~EBi~) = ttl

and ~s~d~ G od~(s) U I~s~Si;do G o~(s)I~ ~Bi~s) = ttl.

3. Let S be do B I -> S I ~ ... ~ B n _> Sn od. Then

~o~S~ ~I~S~ ~ is an increasing sequence with least upper bound ~ ST~S ~ where

550

the ~k[S~ are d e f i n e d inductively by putting ~OES~ = ~ a n d for any state S,

=({s}4 (i f dEBit&) = ff for eve= i wit~ l<~n)

(otherwise)

PT:pof An easy ca l cu l a t i on .

Now we see that ~ ST satisfies a kind of operational fixed-point equation. (The

reader may care to improve this to show ~ST is event]~ least such function of

statements.)

L emma 6.4 If S is not blocked at s then,

s, luU <s,s>-> <s',o'>l

Proof The proof is by structural induction on S and cases according to its form.

When S is an atomic command, skip or abort, the result is trivial. For S = (S I ;$2)

calculate:

6STE(S I ;s 2) 3(s) = App~sTE%~ 4STES 13(s))
= {gS~E%~)l<s I s> > s }U

(by induction hypotheses and Lemma 5.5)

= {~STES2~')i<SI,S> -> s'}U

U{~ST[(S~;S 2) ~ ~)[<s~ s> -> <s~ s>)
=U~ST[~'))<(S I ;S2),s> -> <S~s'>} (consider rule III)

l~or S = i__~f empty f__~i blocking occurs; for S = i_~f B I -> S I ~ ... ~ a n -> S n f._~i

if bloo~ing does not occur then Z E~(s) = tt for some i wit~ 1<_i<_n and:

~STITS]](s) = U {~s~Si]](s)I "~ ~Bi]](s) = tt} (by Lemma 6.3.2.)

= ~STE~)I<S,S>-> <S',s>} (consider rule IX)

Por S = tic empty o_~d the result is trivial from Lemma 6.3 .I. For

S = dO B I -> S I ~ "''8 B n -> S n o_~d we divide into cases on whether ~ ~Bi~(s) = tt

for some i and use Lemma 6.3 and consider rule X.

The proof of tl~e next lemma uses Noetherian induction (see[Coh],[H~ze]). It is

also possible to use ordinary induction on the integers by using KSnig's lemma

and the finitary nature of the transition relation.

L emma 6,~ If S must terminate from s then

Proof Since S must terminate from s we can define a partial order which satisfies

the minimum condition (see [Coh]) on the set {CI<S,s> ->* C} by putting C<__C' iff

C' ->* C. (That is, _>-I is well-founded on this set.) Then we use Noetherian

induction:

551

4STaSh(s) = Is'I<S,s> -> s' 1U U sTES" ')I <S,s> -> <S',s'>l
(by Lemma 6.4)

= Is ' l <s, s> -> s'IuU Is"] s,s.<s,s>->

(by induction hypothesis)

= {s'l<s,s> ->* s'l.

Now we only need one more ismma to prove Theorem 6. I.

Lemma 6.6 Let S be a statement. Then for any state s if ~sT[S~(s) ~l then S

must terminate from s.

Proof We use structural induction on S and divide into cases according to the

form of S. When S is an atomic command, ski p or abort, the result is trivial.

For S = (S I;$2) assume s is a state with ~s~S~) ~l. Then x = ~S 1~(s) ~.

and for every s' in x, 4 ~(s') ~l- Then by induction hypothesis S I must

terminate from s and, by lemma 6.5 for every s' with <St,s> ->* s~,~ ~(s') ~j.

and so, applying the induction hypothesis again to each such s', S 2 must

terminate from s'. Therefore using rule III to consider the possible transition

sequences <(S];S2),s> = C O -> C I -> we see that S must terminate from s.

For S = if G f i, assume s is a state with ~sT~S~) ~ l- Then, by lemma 6.3,

G cannot be empty but must be of the form B I -> S I ~ "'" 0 B n -> S n with

~Bi~(s) = tt for some i. Then applying Lemma 6.3 again, we must have

~ST~ ~ (g) % I whenever ~ ~_~) = tt and applying the induction hypothesis we

see that for each such S that S must terminate from s. And so, considering rule l l
IX for the possible transition sequences we see that S must terminate from s.

For S = do God assume s is a state with ~ s~S~(s) ~ I. It follows by lemma

6.3.3. that ~ ~S] (s) ~ I for some k. We finish the proof by showing by

induction on k that for any state s if ~ k~S~(s) ~ ~ then S must terminate from

s. This is trivial for k = O; for k+1 assume that s is a state such that

%+I~S~) ~ l- The case where G is empty is trivial and we can assume G is

BI -> S I ~ -'.D B n -> S n. If ~Bi~(s) = ff for every i with 1<i<n then the

result is trivial; otherwise by lemma 6.3.3, we have ComP~sTESi~,~S~)(s) ~ J.

for every i such that ~ EBi~(s) = tt. Then using the induction hypothesis and

applying the same argument as in the case where S had the form (S I ;$2) we see that

(Si;S) must terminate from s and it follows at once that S too must terminate from

s, concluding the proof by induction.

Proof of Theorem ' 6.1 Part 2 is just Lemma 6.5. For part I the necessity half is

immediate from part 2 and sufficiency is just Lemma 6.6.

552

'References

[A]II] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. (1977) Initial
Algebra Semantics and Continuous Algebras. #ACM, Vol. 24, No. I, 68-95.

[Bacl] Back, R-J. (1979) On the notion of correct refinement of programs.
Department of Computer Science, University of Helsinki.

[Bac2] Back, R-J. (1979) Proving Total Correctness of Nondeterministic Programs in
Infinitary Logic. Department of Computer Science, University of Helsinki.

[Ber] Berry, G. (1978) Stable Models of Typed A-ealculi. Proc. of 5th IOALP.
Lecture Notes in Computer Science, Vol. 62 (eds. G. Ausiello and C. B~hm)
Berlin: Springer-Verlag.

[Coh] Cohn, P.M. (1965) Universal Algebra. New York: Harper and Row.

[de B] de Bakker, J.W. (1978) Recursive Programs as Predicate Transformers.
Formal Description of Programming Concepts (ed. E.$. Neuhold) Amsterdam: North
Holland.

[de R] de Rover, W.Po (1976) Dijkstra's Predicate Transformer, Non-Determinism
Recursion and Termination. proc. 5th S.zm~osiumMathemat~cal Foundations of
Computer Sci~npe (ed. A. Mazurkiewicz) pp. 472-481. Lecture Notes in Com~uter
Science, Vol. 45p Be~Xin; Springer-Verlag.

[Dij] Dijkstra, E.W. (1976) A DjscipliAeof P r0gramming. New Jersey: Prentice-Hall.

IGor] Gordon, M.E.C. (1979) The Denotational Description of PrQgrammin~ Languages.
An Introduction. Berlin: Springer-Verlag.

[Har] Harel, D. and Pratt, V.R. (1978) Nondeterminism in Logics of Programs.
Proc. of the ~th A nn. ACM S.vm~osjum. on Principles of Pro~rammin~ Lmna~a~es,
Tucson, Arizona, pp. 203-213.

[Hen] Hennessy, M.C.B. and Plotkin, G.D. (1979) Full Abstraction for a Simple
Parallel Programming Language. Proc. pf the 8th Symposium on Mathematical
Foundations of Comput#r Scienqe. Lecture Notes in Computer Science, No.~4
(ed. J. Becvar) pp. i08-120, Berlin: Springer-Verlag.

[Hue] Huet, G. (1977) Confluent Reductions: Abstract Properties and Applications
to Term Re~-2iting Systems. Proc. of th e 18th IEEE S.ymposium on Foundations of
Computer Science, pp. 30-45.

[Jen] Jensen, K. (1978) Connection between Dijkstra's Predicate Transformers and
Denotational Continuation Semantics. DAIMI PB-86, Dept. of Computer Science,
University of Aarhus.

[Kel] Keller, R.M. (1976) Formal Verification of Parallel Programs. Comm. ACM19,
~, 371-384.

[Mill] Milne, R.E. and Strachey, C. (1976) A Theory of Pro~rammin~ L~a~e
Semantics. New York: Wiley.

[Mil2] Milne, R.E. (1978) Transforming Predicate Transformers. Formal
Description of Programming Concepts (ed. E.J. Neuhold) Amsterdam: North
Holland.

[Mil3] Milner, R. (1976) Program Semantics and Mechanised Proof. Foundation of
Co~puter Science II (eds. K.R, Apt and J.W. de Bakker) Mathematical Centre
Tracts 82, Mathematisch Centrum, Amsterdam.

[Plol] Plotkin, G.D. (I£75) Call-by-Name, Call-by-Value and the ~ -Calculus.
TCS, Vol. I, 125-159.

[Plo2] Plo%kin, G.D. (1976) A Powerdomain Construction. SIAM Journal on
Computation. Vol. 5, No. 3. 452-487.

[Smy] Smyth, M. (1978) Powerdomains. JCSS , V ol. 16, No. I.

[Sto] Stoy, E.E. (1977)Denotational Semantics: the Scott-StracheyApproac ~ t 9
ProRrammim4~ Lan~-aa~e Theory. MIT Press.

553

[Str] Strachey, C. and Wadsworth, C.P. (1974) Continuations. A ~athematical
semantics for handling i~uli jumps. Technical Mpnograph PRG-I I, Oxford
University Computing Laboratory.

[Wad] Wadwworth, C.P. (1980) Semantic Domains for Programming Languages. Prentice-
Hal1. To appear.

[Wan] Wand, M. (1977) A Characterisation of Weakest Preconditions. ZCSS, Vol. 15.
No. 2, 209-212.

