
This is a preprint of a paper that has been submitted to
Information and Computation.

On Functors Expressible in the
Polymorphic Typed Lambda Calculus

John C. Reynolds∗

Carnegie Mellon University
and

Gordon D. Plotkin†

University of Edinburgh

January 22, 1991

Abstract

Given a model of the polymorphic typed lambda calculus based upon a Cartesian
closed category K, there will be functors from K to K whose action on objects can be
expressed by type expressions and whose action on morphisms can be expressed by
ordinary expressions. We show that if T is such a functor then there is a weak initial
T -algebra and if, in addition, K possesses equalizers of all subsets of its morphism sets,
then there is an initial T -algebra. These results are used to establish the impossibility
of certain models, including those in which types denote sets and S → S′ denotes the
set of all functions from S to S′.

∗Research supported by the Institut National de Recherche en Informatique et en Automatique, and
by NSF Grants MCS-8017577, CCR-8620191, and CCR-8922109. The research was also supported in part
by DARPA (DOD), monitored by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories,
Aeronautical Systems Division (AFSC), Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-
87-C-1499, ARPA Order No. 4976, Amendment 20. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of any agency of the US Government.

†Research supported by the British Petroleum Venture Research Group.

1

The polymorphic, or second-order, typed lambda calculus [11, 9, 30] is an extension of
the typed lambda calculus in which polymorphic functions can be defined by abstraction on
type variables, and such functions can be applied to type expressions. It is known that all
expressions of this language are normalizable [11, 9], indeed strongly normalizable [27]. It is
also known that the elements of any free many-sorted anarchic algebra are isomorphic to the
closed normal expressions of a type that is determined by the signature of the algebra [17, 5].
(This result was anticipated in [33, Proposition 3.15.18].) These facts led to the conjecture
in [31] that the polymorphic typed lambda calculus should possess a “set-theoretic” model
in which types denote sets and S → S′ denotes the set of all functions from S to S′.

However, Reynolds [28] later showed that no such model exists. Shortly thereafter, Plotkin
[26] generalized this proof by considering, for models based upon arbitrary Cartesian closed
categories, the behavior of functors that can be defined in the calculus. In this joint paper,
we give an exposition of this generalization, and show why it precludes the existence of
several kinds of model.

The authors wish to thank one of the referees for a suggestion that led us to generalize
the concept of a definable functor by permitting type variables to denote arbitrary objects.
(What in previous versions of this paper were called “expressible” functors are functors
definable from an empty list of objects.) This generalization has simplified our arguments
and allowed us to strengthen our impossibility results.

1. Mathematical Preliminaries

When f is a function, we write dom f for the domain of f , feS for the restriction of f to
S ⊆ dom f , and fx (often without parentheses) for the application of f to an argument x.
We assume that application is left-associative, so that fx y = (fx)y.

We write [f | x: x′] to denote the function with domain dom f ∪{x} such that [f | x: x′]y
= if y = x then x′ else fy, and also [x1: y1 | . . . | xn: yn] (where the xi’s are distinct) to
denote the function with domain {x1, . . . , xn} that maps each xi into yi. As a special case,
[] denotes the empty function. We also write 〈y1, y2〉 for the pair [1: y1 | 2: y2].

When K is a category, we write |K| for the collection of objects of K, k −−→K k′ for the set
of morphisms from k ∈ |K| to k′ ∈ |K|, α ;K α′ for the composition (in diagrammatic order)
of α ∈ k −−→K k′ with α′ ∈ k′ −−→K k′′, and IKk for the identity morphism in k −−→K k. (In these
and later notations, we will frequently elide subscripts or superscripts denoting categories
or other entities that are evident from context.) We also write Kop for the dual of K.

Let F be a function from some (finite) set domF to |K|. Then a (finite) product of F in K
consists of an object

∏KF and, for each v ∈ dom F , a morphism PK[F, v] ∈
∏KF → Fv, such

that, if k ∈ |K| and Γ is a function with the same domain as F that maps each v ∈ dom F into

a morphism in k → Fv, then there is a unique morphism, denoted by
〈

Γ
〉K

, in k → ∏K F

2

such that
k

∏K F Fv

HHHHHHHHHHHHHHj

Γv

-PK[F, v]?

〈

Γ
〉K (1)

commutes in K for all v ∈ dom F .

It is easily shown that, when Γv = PK[F, v] for all v ∈ dom F ,
〈

Γ
〉K

= IΠK F (2)

and, when β ∈ k0 → k,
β ;

〈

Γ
〉K

=
〈

Γ′
〉K

, (3)

where Γ′ is the function with the same domain as Γ such that Γ′v = β ; Γv for all v ∈ dom Γ.

We will frequently use the abbreviations
〈

Γ
∣

∣

∣ v: ϕ
〉K def=

〈

[Γ | v: ϕ]
〉K

and
〈

v1: ϕ1

∣

∣

∣ . . .
∣

∣

∣ vn: ϕn

〉K def=
〈

[v1: ϕ1 | . . . | vn: ϕn]
〉K

.

Thus Equation 3 implies

β ;
〈

v1: ϕ1

∣

∣

∣ . . .
∣

∣

∣ vn: ϕn

〉K
=

〈

v1: β ; ϕ1

∣

∣

∣ . . .
∣

∣

∣ vn: β ; ϕn

〉K
. (4)

An important special case of the product occurs when F is the empty function. Then its
product in K is an object

∏K[], called a terminal object , which we will denote more succinctly
by >K. It has the property that, for each k ∈ |K|, the set k → >K contains exactly one

member, namely
〈〉K

. (Note that k is determined by context.) The corresponding special
case of Equation 4 is that, for β ∈ k0 → k,

β ;
〈〉K

=
〈〉K

. (5)

Another important special case occurs when domF = {1, 2}. Here we write k1 ×K k2 for
∏K[1: k1 | 2: k2], pi,K

k1×k2
for PK

[

[1: k1 | 2: k2], i
]

, and, when α1 ∈ k → k1 and α2 ∈ k → k2,
〈

α1, α2

〉K
for

〈

1: α1

∣

∣

∣ 2: α2

〉K
. The corresponding special cases of Equations 1, 2, and 4 are

that, for α1 ∈ k → k1, α2 ∈ k → k2, and β ∈ k0 → k,
〈

α1, α2

〉

; pi
k1×k2

= αi , (6)

〈

p1
k1×k2

, p2
k1×k2

〉

= Ik1×k2 , (7)

3

β ;
〈

α1, α2

〉

=
〈

β ; α1, β ; α2

〉

. (8)

For γ1 ∈ k1 → k′1, and γ2 ∈ k2 → k′2, we define the morphism

γ1 ×K γ2
def=

〈

(p1,K
k1×k2

; γ1), (p
2,K
k1×k2

; γ2)
〉K

in k1 × k2 → k′1 × k′2. (The use of × as an operation on both objects and morphisms
reflects the fact that × is actually a bifunctor.) From Equations 8 and 6 it follows that, for
α1 ∈ k → k1, α2 ∈ k → k2, γ1 ∈ k1 → k′1, and γ2 ∈ k2 → k′2,

〈

α1, α2

〉

; (γ1 × γ2) =
〈

α1 ; γ1, α2 ; γ2

〉

. (9)

Let K be a category with finite products, and k′, k′′ ∈ |K|. Then an exponentiation of k′′

by k′ consists of an object k′ ==⇒K k′′ and a morphism apKk′k′′ ∈ (k′ ==⇒K k′′) × k′ → k′′ such
that, for each k ∈ |K| and ρ ∈ k× k′ → k′′, there is a unique morphism, denoted by abK ρ, in
k → (k′ ==⇒K k′′) such that

k × k′ (k′ ==⇒K k′′)× k′

k′′

HHHHHHHHHHHHHj

ρ

?

apKk′k′′

-abK ρ× Ik′

(10)

commutes in K.

A category is said to be Cartesian closed if it possesses all finite products (including a ter-
minal object) and all exponentiations. (For a given category, there may be several definitions
of

∏

, ⇒, and their associated morphisms that meet the definitions given above. However,
when we speak of a category as Cartesian closed, we will assume that these entities have
unambiguous meanings, i.e. that a Cartesian closed category is a category with distinguished
finite products and exponentiations.)

For α ∈ k0 → (k′ ⇒ k′′) and α′ ∈ k0 → k′ we define

α >K α′ def=
〈

α, α′
〉K

; apKk′k′′ .

From Equation 8, it follows that, for β ∈ k1 → k0,

β ; (α > α′) = β ; α > β ; α′ . (11)

For ρ ∈ k×k′ → k′′, δ ∈ k0 → k, and θ ∈ k0 → k′, the definition of > and Equation 9 give

δ ; ab ρ > θ =
〈

δ, θ
〉

; (ab ρ× Ik′) ; apk′k′′ ,

4

so that Diagram 10 gives
δ ; ab ρ > θ =

〈

δ, θ
〉

; ρ . (12)

On the other hand, suppose 12 holds for all ρ ∈ k × k′ → k′′, δ ∈ k0 → k, and θ ∈ k0 → k′.
Taking k0 = k × k′, δ = p1

k×k′ , and θ = p2
k×k′ , the definition of > and Equation 9 give

〈

p1
k×k′ , p

2
k×k′

〉

; (ab ρ× Ik′) ; apk′k′′ =
〈

p1
k×k′ , p

2
k×k′

〉

; ρ ,

so that Equation 7 gives Diagram 10. Thus, for ρ ∈ k×k′ → k′′, ab ρ is the unique morphism
in k → (k′ ⇒ k′′) such that Equation 12 holds for all k0 ∈ |K|, δ ∈ k0 → k and θ ∈ k0 → k′.

In a category with a distinguished terminal object, a morphism in > → k is called a global
element of k. When the category is Cartesian closed, there is an isomorphism between the
global elements of k′ ⇒ k′′ and the morphisms in k′ → k′′. To see this, suppose α ∈ k′ → k′′

and take k = > and ρ = p2
>×k′ ; α in Diagram 10. Since

〈〈〉

, Ik′
〉

is an isomorphism from
k′ to > × k′, we may add it to the beginning of the paths in Diagram 10 and still have a
unique characterization of ab(p2

>×k′ ; α). Then, by Equations 9 and 6 and the definition of
>, ab(p2

>×k′ ; α) is the unique solution of
〈〉

; ab(p2
>×k′ ; α) > Ik′ = α .

Thus, if we define the functions φKk′k′′ from > → (k′ ⇒ k′′) to k′ → k′′ and ψKk′k′′ from k′ → k′′

to > → (k′ ⇒ k′′) by
φKk′k′′γ

def=
〈〉

; γ > Ik′ , (13)

and
ψKk′k′′α

def= ab(p2
>×k′ ; α) ,

then
φk′k′′(ψk′k′′α) = α , (14)

and
ψk′k′′(φk′k′′γ) = γ .

For any object c of a Cartesian closed categoryK, there is a functor QK
c fromK to Kop such

that QK
c (k) = k ==⇒K c for all k ∈ |K|. A characterization of the action of QK

c on morphisms
can be obtained from Equation 12 by replacing k by k′ ⇒ c, k′ by k, and k′′ by c, to find
that, for ρ ∈ (k′ ⇒ c)× k → c, ab ρ is the unique morphism in (k′ ⇒ c) → (k ⇒ c) such that
12 holds for all k0 ∈ |K|, δ ∈ k0 → (k′ ⇒ c), and θ ∈ k0 → k. Next, for any α ∈ k → k′, take
ρ = (Ik′⇒c × α) ; apk′c, so that

〈

δ, θ
〉

; ρ = δ > θ ; α by Equation 9 and the definition of >,
and define Qcα to be ab ρ. Then Qcα is the unique morphism in (k′ ⇒ c) → (k ⇒ c) such
that

δ ; Qcα > θ = δ > θ ; α (15)

holds for all k0 ∈ |K|, δ ∈ k0 → (k′ ⇒ c), and θ ∈ k0 → k.

It is immediately evident that QcIk = Ik⇒c. To see that Qc satisfies the composition
law for functors, suppose α ∈ k → k′, α′ ∈ k′ → k′′, δ′ ∈ k0 → (k′′ ⇒ c), and θ ∈ k0 → k.

5

Substituting δ′ ; Qcα′ for δ in Equation 15 and θ ; α for θ′ in the analogous equation with
primed variables gives

δ′ ; Qcα′ ; Qcα > θ = δ′ ; Qcα′ > θ ; α = δ′ > θ ; α ; α′ ,

which establishes that Qc(α ; α′) = Qcα′ ; Qcα.

2. The Polymorphic Typed Lambda Calculus

The following syntactic description is somewhat unusual, since we wish to avoid assumptions
that are stronger than necessary to obtain our results. In particular, we wish to encompass
extensions of the polymorphic typed lambda calculus involving, for example, additional type
and expression constructors.

We assume that the language is built from infinite sets T of type variables and V of
ordinary variables. For each finite set N of type variables, there is a set ΩN of type expressions
over the type variables in N . These sets must satisfy:

1. If τ ∈ N then τ ∈ ΩN ,

2. If ω, ω′ ∈ ΩN then ω → ω′ ∈ ΩN ,

3. If τ ∈ T and ω ∈ ΩN∪{τ} then ∆τ. ω ∈ ΩN ,

4. If N ⊆ N ′ then ΩN ⊆ ΩN ′ .

For example,
s ∈ Ω{s} ⊆ Ω{s,t} ,

s → t ∈ Ω{s,t} ,

∆s. s → t ∈ Ω{t} ⊆ Ω{s,t} .

We will not need to make any assumptions about equality of type expressions (although
it is usual to regard as equal type expressions that are alpha variants with respect to the
binding structure induced by ∆).

A type assignment π over N is a function from some finite set domπ of ordinary variables
to ΩN ; we write Ω∗

N for the set of type assignments over N . For example,

[x: s | f : s → t | p: ∆s. s → t] ∈ Ω∗
{s,t} .

From Condition 4, we have

5. If N ⊆ N ′ then Ω∗
N ⊆ Ω∗

N ′ .

6

Finally, we must define ordinary expressions. For each finite set N of type variables and
finite set V of ordinary variables, there is a set EN

V of ordinary expressions over the variables
in N and V . These sets must satisfy:

6. If v ∈ V then v ∈ EN
V ,

7. If e1, e2 ∈ EN
V then e1e2 ∈ EN

V ,

8. If v ∈ V , ω ∈ ΩN , and e ∈ EN
V ∪{v} then λvω. e ∈ EN

V ,

9. If e ∈ EN
V and ω ∈ ΩN then e[ω] ∈ EN

V ,

10. If τ ∈ T and e ∈ EN∪{τ}
V then Λτ. e ∈ EN

V ,

11. If N ⊆ N ′ and V ⊆ V ′ then EN
V ⊆ EN ′

V ′ .

The relationship between ordinary and type expressions is expressed by formulas called
typings . If π ∈ Ω∗

N , ω ∈ ΩN , and e is an ordinary expression then π `N e: ω is a typing that
asserts that e belongs to EN

dom π and takes on type ω when its free ordinary variables are
assigned types by π. We assume that the following inference rules for typings are valid:

12. For π ∈ Ω∗
N and v ∈ domπ:

π `N v: πv ,

13. For π ∈ Ω∗
N and ω, ω′ ∈ ΩN :

π `N e1: ω → ω′

π `N e2: ω

π `N e1e2: ω′ ,

14. For π ∈ Ω∗
N and ω, ω′ ∈ ΩN :

[π | v: ω] `N e: ω′

π `N λvω. e: ω → ω′ ,

15. For π ∈ Ω∗
N , ω ∈ ΩN , and τ ∈ N :

π `N e: ∆τ. ω

π `N e[τ]: ω ,

16. For π ∈ Ω∗
N−{τ} and ω ∈ ΩN∪{τ}:

π `N∪{τ} e: ω

π `N Λτ. e: ∆τ. ω ,

7

17. For N ⊆ N ′, π ∈ Ω∗
N , and ω ∈ ΩN :

π `N e: ω

π `N ′ e: ω ,

18. For π, π′ ∈ Ω∗
N such that π = π′e dom π, and ω ∈ ΩN :

π `N e: ω

π′ `N e: ω .

For example, the following are valid typings:

[f : t → t | x: t] `{t} f : t → t by 12

[f : t → t | x: t] `{t} x: t by 12

[f : t → t | x: t] `{t} f x: t by 13

[f : t → t | x: t] `{t} f(f x): t by 13

[f : t → t] `{t} λxt. f(f x): t → t by 14

[] `{t} λft→t. λxt. f(f x): (t → t) → (t → t) by 14

[] `{} Λt. λft→t. λxt. f(f x): ∆t. (t → t) → (t → t) by 16

[] `{t} Λt. λft→t. λxt. f(f x): ∆t. (t → t) → (t → t) by 17

[] `{t}
(

Λt. λft→t. λxt. f(f x)
)

[t]: (t → t) → (t → t) by 15

[g: t → t] `{t}
(

Λt. λft→t. λxt. f(f x)
)

[t]: (t → t) → (t → t) . by 18

Actually, for the ordinary polymorphic typed lambda calculus, Inference Rule 15 is sub-
sumed by the more general rule

15′. For π ∈ Ω∗
N , ω ∈ ΩN∪{τ}, and ω′ ∈ ΩN :

π `N e: ∆τ. ω

π `N e[ω′]: (ω/τ → ω′) ,

where (ω/τ → ω′) denotes the result of substituting ω′ for τ in ω. However, Rule 15 is
sufficient for our needs, and we wish to avoid the difficulty of defining substitution (with
renaming) in a way that would not circumscribe possible extensions of the language.

The notion of typing is prerequisite to any semantics of the polymorphic typed lambda
calculus; ordinary expressions will possess meanings only when they satisfy typings, which
will determine the kind of meanings they will possess. Specifically, for each π ∈ Ω∗

N and
ω ∈ ΩN , the set

EN
πω

def= { e | e ∈ EN
dom π and π `N e: ω } ,

of expressions that take on type ω under the type assignment π, must be mapped into
meanings appropriate to π and ω.

8

3. K-Models

It is well known that Cartesian closed categories provide models of the ordinary typed lambda
calculus. In this section, we formalize the idea of extending such models to the polymorphic
case. As with syntax, the properties that we postulate for such extensions are weaker than
those one would normally require of a model; our intent is to assume only those properties
needed to obtain the results of this paper.

(We believe that these properties hold for any general category-theoretic definition of the
concept of a model. For example, given a PL category (G,S) in the sense of Seely [32], one
can take K to be the Cartesian closed category G(1), where 1 is the terminal object of S.)

Given a category K, a function from a finite set of type variables to |K| is called an object
assignment. Then, a K-model of the polymorphic typed lambda calculus consists of:

1. A Cartesian closed category K.

2. For each object assignment O with domain N , a semantic function MO from ΩN to
|K|. These functions must satisfy:

(a) If τ ∈ N then
MOτ = Oτ , (16)

(b) If ω, ω′ ∈ ΩN then

MO(ω → ω′) = MOω ==⇒K MOω′ , (17)

(c) If O = O′eN and ω ∈ ΩN then

MO′ω = MOω . (18)

3. For each object assignment O with domain N , π ∈ Ω∗
N , and ω ∈ ΩN , a semantic

function µO
πω from EN

πω to
∏K(MO · π) −−→K MOω, where MO · π denotes the function

from dom π to |K| such that (MO · π)v = MO(πv) for all v ∈ dom π. These functions
must satisfy:

(a) If π ∈ Ω∗
N and v ∈ dom π then

µO
π,πv[[v]] = P[MO · π, v] ∈

∏

(MO · π) −−→K MO(πv) ,

(b) If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , π `N e1: ω → ω′, and π `N e2: ω then

µO
πω′ [[e1e2]] = µO

π,ω→ω′ [[e1]] > µO
πω[[e2]] ∈

∏

(MO · π) −−→K MOω′ ,

9

(c) If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , and [π | v: ω] `N e: ω′ then

µO
π,ω→ω′ [[λvω. e]] = ab

(〈

Ξ
∣

∣

∣ v: p2
Π(MO·π)×MOω

〉

; µO
[π|v:ω],ω′ [[e]]

)

,

where Ξ is the function with the same domain as π such that

Ξv′ = p1
Π(MO·π)×MOω ; P[MO · π, v′]

for all v′ ∈ dom π; in other words, µO
π,ω→ω′ [[λvω. e]] is the unique morphism in

∏

(MO · π) −−→K (MOω ⇒MOω′) such that

∏

(MO · π)×MOω (MOω ⇒MOω′)×MOω

∏

(MO · [π | v: ω]) MOω′-µO[[e]]?

〈

Ξ
∣

∣

∣ v: p2
Π(MO·π)×MOω

〉

?

apMOω,MOω′

-µO[[λvω. e]]× IMOω

commutes in K, where
∏

(MO · π)×MOω

∏

(MO · π) MO(πv′)

PPPPPPPPPPPPPPPPPq

Ξv′

-P[MO · π, v′]?

p1
Π(MO·π)×MOω

commutes for all v′ ∈ dom π.

(d) If O = O′eN , π ∈ Ω∗
N , ω ∈ ΩN , and π `N e: ω then

µO′
πω[[e]] = µO

πω[[e]] , (19)

(e) If π, π′ ∈ Ω∗
N , π = π′e dom π, ω ∈ ΩN , and π `N e: ω then

µO
π′ω[[e]] =

〈

Υe dom π
〉

; µO
πω[[e]] ,

where Υ is the function with the same domain as π′ such that

Υv′ = P[MO · π′, v′]

for all v′ ∈ dom π′,

(f) If π ∈ Ω∗
N−{τ}, ω ∈ ΩN , τ ∈ N , and π `N e: ω then

µO
πω[[(λv∆τ. ω. v[τ])(Λτ. e)]] = µO

πω[[e]] . (20)

10

Conditions 2a, 2b, 3a, 3b, and 3c stipulate that the semantics of the ordinary typed
lambda calculus, which is a sublanguage of the polymorphic typed lambda calculus, is the
standard semantics given by the Cartesian closed category K. Conditions 2c and 3d stipu-
late that the meanings of type and ordinary expressions are independent of irrelevant type
variables, while Condition 3e stipulates that the meanings of ordinary expressions are in-
dependent of irrelevant ordinary variables. Condition 3f stipulates the soundness of the
following combination of an ordinary and type beta-reduction:

(λv∆τ. ω. v[τ])(Λτ. e) =⇒ (Λτ. e)[τ] =⇒ e .

Conditions 3a, 3b, 3c, and 3e can be recast in forms more suitable for analyzing the
meanings of specific expressions. In the following, suppose Γ is a function with the same
domain as π such that Γv ∈ k0 →MO(πv) for all v ∈ dom π, Γ′ bears a similar relation to
π′, and ϕ ∈ k0 →MOω. If π ∈ Ω∗

N and v ∈ dom π then Condition 3a and Equation 1 give
〈

Γ
〉

; µO
π,πv[[v]] = Γv . (21)

If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , π `N e1: ω → ω′, and π `N e2: ω then 3b and 11 give

〈

Γ
〉

; µO
πω′ [[e1e2]] =

〈

Γ
〉

; µO
π,ω→ω′ [[e1]] >

〈

Γ
〉

; µO
πω[[e2]] . (22)

If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , and [π | v: ω] `N e: ω′ then 3c, 12, 3, 6, and 1 give

〈

Γ
〉

; µO
π,ω→ω′ [[λvω. e]] > ϕ =

〈

Γ
∣

∣

∣ v: ϕ
〉

; µO
[π|v:ω],ω′ [[e]] . (23)

If π, π′ ∈ Ω∗
N , π = π′e domπ, ω ∈ ΩN , and π `N e: ω then 3e, 3, and 1 give

〈

Γ′
〉

; µO
π′ω[[e]] =

〈

Γ′e dom π
〉

; µO
πω[[e]] . (24)

4. SET-Models

An important special case of a K-model arises when K is the Cartesian closed category SET,
for which:

1. |SET| is the class of sets, and

(a) k −−−−→SET k′ is the set of all functions from k to k′,

(b) Composition is functional composition,

(c) ISET
k is the identity function on k.

11

2.
∏SET is the general Cartesian product, and

(a) If v ∈ dom F then P[F, v] ∈
∏

F → Fv is the function such that

P[F, v]η = ηv

for all η ∈
∏

F ,

(b) If, for all v ∈ dom F , Γv ∈ k → Fv, then
〈

Γ
〉

∈ k → ∏

F is the function such that

〈

Γ
〉

x v = Γvx

for all x ∈ k and v ∈ dom F .

3. ×SET is the binary Cartesian product, and

(a) pi
k1×k2

∈ k1 × k2 → ki is the function such that

pi
k1×k2

〈x1, x2〉 = xi

for all x1 ∈ k1 and x2 ∈ k2,

(b) If α1 ∈ k → k1 and α2 ∈ k → k2 then
〈

α1, α2

〉SET
∈ k → k1 × k2 is the function

such that
〈

α1, α2

〉SET
x = 〈α1x, α2x〉

for all x ∈ k.

4. k′ ====⇒
SET

k′′ is the set k′ → k′′, and

(a) apk′k′′ ∈ (k′ → k′′)× k′ → k′′ is the function such that

apk′k′′〈f ′, x′〉 = f ′x′

for all f ′ ∈ k′ → k′′ and x′ ∈ k′,

(b) If ρ ∈ k × k′ → k′′ then ab ρ ∈ k → (k′ → k′′) is the function such that

ab ρ x x′ = ρ〈x, x′〉

for all x ∈ k and x′ ∈ k′.

5. QSET
c is the functor from SET to SETop such that

(a) If k is a set then
Qck = k ⇒ c = k → c ,

(b) If α ∈ k → k′ and β ∈ k′ → c then

(Qcα)β = α ; β .

12

By substituting these equations into the general definition of a K-model, we find that a
SET-model consists of:

1. The Cartesian closed category SET.

2. For each set assignment O with domain N , a semantic functionMO from ΩN to |SET|,
such that:

(a) If τ ∈ N then
MOτ = Oτ ,

(b) If ω, ω′ ∈ ΩN then
MO(ω → ω′) = MOω →MOω′ ,

(c) If O = O′eN and ω ∈ ΩN then

MO′ω = MOω .

3. For each set assignment O with domain N , π ∈ Ω∗
N , and ω ∈ ΩN , a semantic function

µO
πω from EN

πω to
∏SET(MO · π) →MOω, such that

(a) If π ∈ Ω∗
N and v ∈ dom π then, for all η ∈

∏

(MO · π),

µO
π,πv[[v]]η = ηv ,

(b) If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , π `N e1: ω → ω′, and π `N e2: ω then, for all η ∈

∏

(MO · π),
µO

πω′ [[e1e2]]η = (µO
π,ω→ω′ [[e1]]η)(µO

πω[[e2]]η) ,

(c) If π ∈ Ω∗
N , ω, ω′ ∈ ΩN , and [π | v: ω] `N e: ω′ then, for all η ∈

∏

(MO · π) and
a ∈MOω,

µO
π,ω→ω′ [[λvω. e]]ηa = µO

[π|v:ω],ω′ [[e]][η | v: a] ,

(d) If O = O′eN , π ∈ Ω∗
N , ω ∈ ΩN , and π `N e: ω then

µO′
πω[[e]] = µO

πω[[e]] ,

(e) If π, π′ ∈ Ω∗
N , π = π′e dom π, ω ∈ ΩN , and π `N e: ω then, for all η′ ∈

∏

(MO ·π′),

µO
π′ω[[e]]η′ = µO

πω[[e]](η′e dom π) ,

(f) If π ∈ Ω∗
N−{τ}, ω ∈ ΩN , τ ∈ N , and π `N e: ω then

µO
πω[[(λv∆τ. ω. v[τ])(Λτ. e)]] = µO

πω[[e]] .

Note that 2a, 2b, 3a, 3b, and 3c stipulate the “classical” set-theoretic semantics of the
ordinary typed lambda calculus.

13

5. POS- and DCPO-Models

We will also be interested in K-models where K is either POS, the category of posets and
monotone functions, or DCPO, the category of directed-complete posets and continuous
functions, or various full sub-ccc’s of these categories. (A sub-ccc of a Cartesian closed
category is a Cartesian closed subcategory with the same finite product and exponentiation
operations.)

A directed-complete poset (called a predomain in [29]) is a poset with least upper bounds
of all directed subsets, and a continuous function is one that preserves all such least upper
bounds. (Our results will also hold for the weaker definition of these concepts in which
“directed subsets” is replaced by “ω-chains”.) Note that a directed-complete poset need not
contain a least element. Indeed, if we regard a set as a discretely ordered poset, then every
set is a directed-complete poset, every function between sets is continuous, and SET is a full
sub-ccc of DCPO, as well as of POS.

Only slight modifications of the previous section are needed to describe models based
on POS (DCPO) or a full sub-ccc thereof. The morphism sets k → k′ become the sets
of monotone (continuous) functions, and products and exponentiations are equipped with
pointwise orderings. Thus k ⇒ k′, Qck, and MO(ω → ω′) all denote pointwise ordered
posets of monotone (continuous) functions.

For any of these categories, the functor Qc has several significant properties. If c is
discretely ordered then Qck is discretely ordered for any object k. If c has a least element
then Qck has a least element for any k and Qcα is strict (least-element preserving) for any
α ∈ k → k′.

6. Definable Functors

Let T be a functor from K to K, and c1, . . . , cn be objects of K. Roughly speaking, we say
that T is definable from c1, . . . , cn in a K-model when its action on objects can be expressed
by type expressions and its action on morphisms can be expressed by ordinary expressions,
using type variables to denote the objects c1, . . . , cn. To define this concept precisely, suppose
c1, . . . , cn is an arbitrary but fixed list of n distinct type variables. Then T is definable from
c1, . . . , cn in a K-model if and only if both:

1. For any type expression ω there is a type expression T[ω] such that, whenever N is a
finite set of type variables satisfying c1, . . . , cn ∈ N and ω ∈ ΩN ,

(a) T[ω] ∈ ΩN ,

(b) For all object assignments O with domain N satisfying Oci = ci whenever 1 ≤
i ≤ n,

MO(T[ω]) = T (MOω) . (25)

14

2. For any type expressions ω, ω′ and ordinary expression e there is an ordinary expression
Tωω′ [e] such that, whenever N is a finite set of type variables and π is a type assignment
satisfying c1, . . . , cn ∈ N , ω, ω′ ∈ ΩN , π ∈ Ω∗

N , and π `N e: ω → ω′,

(a) π `N Tωω′ [e]: T[ω] → T[ω′] ,

(b) For all object assignments O with domain N satisfying Oci = ci whenever 1 ≤
i ≤ n, and all global elements η of

∏

(MO · π),

φ(η ; µO[[Tωω′ [e]]]) = T
(

φ(η ; µO[[e]])
)

, (26)

where φ is the isomorphism defined by Equation 13.

Trivially, the identity functor can be defined from the empty list of objects by T[ω] = ω
and Tωω′ [e] = e. A family of less trivial definable functors is provided by the following
proposition:

Proposition 1 For any K-model and any object c ∈ |K|, the functor Qc ; Qc is definable
from c.

Proof : Our main task is to show that, roughly speaking (since it is a functor from K to Kop

rather than K to K), Qc is definable from c. Using the type variable c to denote the object
c, let

Q[ω] def= ω → c .

If c ∈ N and ω ∈ ΩN then Q[ω] ∈ ΩN and, for any object assignment O with domain N
satisfying Oc = c,

MO(Q[ω]) = MOω ⇒MOc = MOω ⇒ c = Qc(MOω) . (27)

Next, let
Qωω′ [e]

def=
(

λfω→ω′ . λgω′→c. λxω. g(f x)
)

e .

When c ∈ N , ω, ω′ ∈ ΩN , π ∈ Ω∗
N , and π `N e: ω → ω′, we have π `N Qωω′ [e]: Q[ω′] → Q[ω].

Moreover, suppose O is an object assignment with domain N satisfying Oc = c, and η
is a global element of

∏

(MO · π). Then, for all k0 ∈ |K|, δ ∈ k0 → (MOω′ ⇒ c), and
θ ∈ k0 →MOω,

δ ; φ(η ; µO[[Qωω′ [e]]]) > θ

=
(〈〉

; η ; µO[[Qωω′ [e]]] > δ
)

> θ by 13, 11, 5

=
((〈〉

; µO[[λfω→ω′ . λgω′→c. λxω. g(f x)]] >
〈〉

; η ; µO[[e]]
)

> δ
)

> θ by 22, 24

=
〈

f :
〈〉

; η ; µO[[e]]
∣

∣

∣ g: δ
∣

∣

∣ x: θ
〉

; µO[[g(f x)]] by 23

= δ >
(〈〉

; η ; µO[[e]] > θ
)

by 22, 21

= δ > θ ; φ(η ; µO[[e]]) . by 5, 11, 13

15

Thus, by the uniqueness property of Equation 15,

φ(η ; µO[[Qωω′ [e]]]) = Qc

(

φ(η ; µO[[e]])
)

. (28)

Finally, let
T[ω] def= Q

[

Q[ω]
]

,

and
Tωω′ [e]

def= QQ[ω′],Q[ω]

[

Qωω′ [e]
]

.

Using Equations 27 and 28, it is easily seen that Qc ; Qc is defined from c by T[ω] and
Tωω′ [e]. (End of Proof)

We can now establish our main result about definable functors:

Proposition 2 Suppose T is a functor from K to K that is definable from c1, . . . , cn in a
K-model. Then there is an object P ∈ |K| and a morphism H ∈ TP → P such that, for all
k ∈ |K| and α ∈ Tk → k, there is a morphism M ∈ P → k making the diagram

TP Tk

P k

-TM

-M?

H

?

α

commute in K.

Proof : Let c1, . . . , cn, and k be distinct type variables, N = {c1, . . . , cn}, and O = [c1: c1 |
. . . | cn: cn]. Then let

P def= ∆k. (T[k] → k) → k ,

M def= λpP. p[k]f ,

H def= λqT[P]. Λk. λfT[k]→k. f(TPk[M]q) ,

so that
P ∈ ΩN ,

[f :T[k] → k] `N∪{k} M: P → k ,

[] `N H: T[P] → P .

Intuitively, our proof is based on the fact that the diagram

T[P] T[k]

P k

-TPk[M]

-M
?

H

?

f

16

commutes syntactically, i.e. by expressing composition as usual in the lambda calculus, and
using beta reduction and type beta reduction. To formalize this intuition, we must work
through the semantics of the expressions in this diagram.

Let P def= MOP. Since µO[[H]] is a global element of MO(T[P] → P) and, by Equations
17 and 25, MO(T[P] → P) = TP ⇒ P , we may define

H def= φ(µO[[H]]) ∈ TP → P . (29)

Then, for any k ∈ |K| and α ∈ Tk → k, by Equations 17, 25, and 16,

ψα ∈ > → (Tk ⇒ k) = > →M[O | k: k](T[k] → k) ,

so that
〈

f : ψα
〉

; µ[O|k:k][[M]] ∈ > →M[O | k: k](P → k) ,

and by Equations 17, 18, and 16, M[O | k: k](P → k) = P ⇒ k, so that we may define

M def= φ
(〈

f : ψα
〉

; µ[O|k:k][[M]]
)

∈ P → k . (30)

Finally, we must show that the diagram given in the proposition commutes, i.e. that
H ; M = TM ; α. We have

H ; M

= H ;
(〈〉

;
〈

f : ψα
〉

; µ[O|k:k][[M]] > IP

)

by 30, 13

=
〈

f :
〈〉

; ψα
〉

; µ[O|k:k][[M]] > H by 11, 5, 4

=
〈

f :
〈〉

; ψα
∣

∣

∣ p: H
〉

; µ[O|k:k][[p[k]f]] by 23

=
〈

p: H
〉

; µ[O|k:k][[p[k]]] >
〈〉

; ψα by 22, 24, 21

=
(〈〉

; µ[O|k:k][[λpP. p[k]]] > H
)

>
〈〉

; ψα by 23

=
(〈〉

; µ[O|k:k][[λpP. p[k]]] >
〈

q: ITP

〉

; µO[[Λk. λfT[k]→k. f(TPk[M]q)]]
)

>
〈〉

; ψα

by 29, 13, 23

=
〈

q: ITP

〉

; µ[O|k:k][[(λpP. p[k])
(

Λk. λfT[k]→k. f(TPk[M]q)
)

]] >
〈〉

; ψα by 24, 19, 22

=
〈

q: ITP

〉

; µ[O|k:k][[λfT[k]→k. f(TPk[M]q)]] >
〈〉

; ψα by 20

=
〈〉

; ψα >
〈

q: ITP

∣

∣

∣ f :
〈〉

; ψα
〉

; µ[O|k:k][[TPk[M]q]] by 23, 22, 21

=
〈

q: ITP

∣

∣

∣ f :
〈〉

; ψα
〉

; µ[O|k:k][[TPk[M]q]] ;
(〈〉

; ψα > ITk

)

by 11, 5

=
〈

q: ITP

∣

∣

∣ f :
〈〉

; ψα
〉

; µ[O|k:k][[TPk[M]q]] ; α by 13, 14

17

=
(〈

f :
〈〉

; ψα
〉

; µ[O|k:k][[TPk[M]]] > ITP

)

; α by 22, 24, 21

= φ
(〈

f : ψα
〉

; µ[O|k:k][[TPk[M]]]
)

; α by 4, 13

= T
(

φ
(〈

f : ψα
〉

; µ[O|k:k][[M]]
))

; α by 26

= TM ; α . by 30

(End of Proof)

7. T -algebras

Our result about definable functors can be stated more succinctly by introducing the concepts
of T -algebras and weak initiality.

If K is a category and T is a functor from K to K, then Talg is the category such that

|Talg| def= { 〈k, α〉 | k ∈ |K| and α ∈ Tk −−→K k } ,

〈k, α〉 −−−−→Talg 〈k′, α′〉 def= { β | β ∈ k −−→K k′ and Tβ ;K α′ = α ;K β } ,

β ;Talg β′ def= β ;K β′ ,

ITalg
〈k,α〉

def= IKk .

The objects of Talg are called T -algebras, and the morphisms in 〈k, α〉 −−−−→Talg 〈k′, α′〉 are
called homomorphisms from 〈k, α〉 to 〈k′, α′〉.

An initial (weak initial) object of a category K is an object v ∈ |K| such that, for all
k ∈ |K|, the set v → k contains exactly one (at least one) morphism.

Then Proposition 2 can be restated as:

Proposition 3 If a functor T from K to K is definable from c1, . . . , cn in a K-model then
there is a weak initial T -algebra.

A further property of T -algebras is given by:

Proposition 4 Suppose T is a functor from K to K that maps the objects and morphisms
of K into objects and morphisms of some subcategory K′ of K. Let T ′ be the restriction of
T to a functor from K′ to K′. If there is a weak initial T -algebra then there is a weak initial
T ′-algebra.

18

Proof : Suppose 〈u, θ〉 is a weak initial T -algebra and 〈k, α〉 is any T ′-algebra. Then 〈k, α〉
is also a T -algebra, so that there is a morphism β from 〈u, θ〉 to 〈k, α〉. By applying T to the
commuting diagram satisfied by β, and adding a trivially commuting diagram on the right,
we find that

T (Tu) T (Tk) Tk

Tu Tk k

-T (Tβ) -Tα

-Tβ -α?

Tθ

?

Tα

?

α

commutes in K. But in fact this diagram lies entirely within K′. Thus 〈Tu, Tθ〉 is a weak
initial T ′-algebra. (End of Proof)

8. Equalizers and Initiality

Our next goal is to find circumstances in which definable functors will lead to initial, rather
than just weak initial, T -algebras. We will find that a sufficient condition is the existence of
enough equalizers.

Suppose K is any category, k, k′ ∈ |K|, and S ⊆ k → k′. If u ∈ |K| and ε ∈ u → k are
such that

u k k′-ε -β1
-

β2

commutes for all β1, β2 ∈ S, then ε is said to be an equalizing cone of S. If ε ∈ u → k is
an equalizing cone of S and, for all equalizing cones ε′ ∈ u′ → k of S, there is exactly one
morphism θ ∈ u′ → u such that

u′

u k

@
@

@
@

@
@@R

ε′

-ε?

θ

commutes, then ε is said to be an equalizer of S.

In the particular case where K is SET, it is easily seen that an equalizer of S is obtained
by taking ε to be the identity injection from u to k, where

u =
{

x
∣

∣

∣ x ∈ k and (∀β1, β2 ∈ S) β1x = β2x
}

.

Thus SET possesses equalizers of all subsets of its morphism sets.

19

For any category K, suppose ε ∈ u → k is an equalizer of some S ⊆ k → k′, and
φ, ψ ∈ u′ → u. Then φ ; ε and ψ ; ε are both equalizing cones of S. Thus, if φ ; ε = ψ ; ε then
the commutativity of

u′

u k

@
@

@
@

@
@@R

φ ; ε = ψ ; ε

-ε?

φ

?

ψ

implies φ = ψ. In other words, equalizers are right-cancellable or monic.

The connection between equalizers and initiality is established by the following proposi-
tion, which is a slight variation of Theorem V.6.1 in [19]:

Proposition 5 In a category with a weak initial object w, there is an initial object v if and
only if both:

1. w → w has an equalizer,

2. Every pair of morphisms with the same domain and the same codomain has an equal-
izing cone.

Proof : Suppose Conditions (1) and (2) hold, and let ε ∈ v → w be the equalizer of w → w.
For every object k, since w is weakly initial, there is a morphism φ ∈ w → k, so that
ε ; φ ∈ v → k; thus v is also weakly initial. To see that it is actually initial, suppose
β1, β2 ∈ v → k. Let ε′ ∈ u → v be an equalizing cone of {β1, β2}, and let ρ be some
morphism in w → u, whose existence is insured by the weak initiality of w. Then

v w u v k-ε -ρ -ε′ -β1
-

β2

commutes, since ε′ is an equalizing cone. But

v w w-ε -ρ ; ε′ ; ε
-

Iw

also commutes, since ε equalizes w → w. Moreover, since ε is monic, ε ; ρ ; ε′ ; ε = ε implies
ε ; ρ ; ε′ = Iv. Thus

β1 = ε ; ρ ; ε′ ; β1 = ε ; ρ ; ε′ ; β2 = β2 .

20

On the other hand, suppose v is initial, with unique morphisms εk ∈ v → k for each
object k. Then, for any β1, β2 ∈ k → k′, εk is an equalizing cone of {β1, β2}, since initiality
gives εk ; β1 = εk′ = εk ; β2.

Moreover, if w is weakly initial then εw is an equalizer of w → w. To see this, suppose
ε′ ∈ v′ → w is an equalizing cone of w → w, and let ρ be some morphism in w → v,
whose existence is guaranteed by the weak initiality of w. Then ρ ; εw ∈ w → w, so that
ε′ ; ρ ; εw = ε′ ; Iw since ε′ is an equalizing cone. Thus taking θ = ε′ ; ρ makes

v′

v w

@
@

@
@

@
@@R

ε′

-εw?

θ

commute. On the other hand, the initiality of v gives Iv = εw ;ρ. Thus, if θ is any morphism
making the above diagram commute, then θ = θ ; εw ; ρ = ε′ ; ρ. (End of Proof)

Next, to apply the above proposition to the existence of initial T -algebras, we must relate
equalizers in Talg to equalizers in the underlying category K. The following proposition is
a special case of Theorem 3.4.1 in [4]:

Proposition 6 Suppose T is a functor from K to K and, for some T -algebras 〈k, α〉 and
〈k′, α′〉,

S ⊆ 〈k, α〉 −−−−→Talg 〈k′, α′〉 ⊆ k −−→K k′ .

If S has an equalizer in K then S has an equalizer in Talg.

Proof : Let ε ∈ u → k be the equalizer of S in K. For any β1, β2 ∈ S, consider the diagram

Tu Tk Tk′

u k k′

-Tε

-ε

-Tβ1
-

Tβ2

-β1
-

β2

?

α

?

α′

in K. Since ε is an equalizer, ε ; β1 = ε ; β2, and since T is a functor, Tε ; Tβ1 = Tε ; Tβ2.
Then, since β1 and β2 are morphisms of T -algebras,

Tε ; α ; β1 = Tε ; Tβ1 ; α′ = Tε ; Tβ2 ; α′ = Tε ; α ; β2 .

21

Thus Tε ; α is an equalizing cone of S in K, so that there is a unique θ ∈ Tu → u such that

Tu Tk

u k

-Tε

-ε?

θ

?

α

commutes. This implies that ε ∈ 〈u, θ〉 −−−−→Talg 〈k, α〉. Moreover, for any β1, β2 ∈ S, since
composition is the same in Talg as in K, we have ε;Talgβ1 = ε;Talgβ2. Thus ε is an equalizing
cone of S in Talg.

Now suppose ε′ ∈ 〈u′, θ′〉 −−−−→Talg 〈k, α〉 is any equalizing cone of S in Talg. Since composi-
tion is the same in Talg as in K, ε′ is also an equalizing cone of S in K, so that there is a
unique σ such that

u′

u k

PPPPPPPPPPq

ε′@
@@R

σ
-ε

commutes in K. Then σ will also be the unique morphism such that

〈u′, θ′〉

〈u, θ〉 〈k, α〉

PPPPPPPPq

ε′@
@Rσ

-ε

commutes in Talg, providing it is a morphism of T -algebras.

To see that σ ∈ 〈u′, θ′〉 −−−−→Talg 〈u, θ〉, consider the diagram

Tu′

Tu Tk

u′

u k

PPPPPPPPPq

Tε′@
@@RTσ -

Tε

PPPPPPPPPPq

ε′@
@@R

σ
-ε

?

θ′

?

θ

?

α

in K. The lower triangle commutes since ε is an equalizer and ε′ is an equalizing cone,
and the upper triangle then commutes since T is a functor. The square commutes since
ε ∈ 〈u, θ〉 −−−−→Talg 〈k, α〉, and the rear parallelogram commutes since ε′ ∈ 〈u′, θ′〉 −−−−→Talg 〈k, α〉.
Thus

Tσ ; θ ; ε = Tσ ; Tε ; α = Tε′ ; α = θ′ ; ε′ = θ′ ; σ ; ε ,

and since ε is monic, Tσ ; θ = θ′ ; σ. Thus σ ∈ 〈u′, θ′〉 −−−−→Talg 〈u, θ〉. (End of Proof)

22

From Propositions 5 and 6, it follows that:

Proposition 7 If T is a functor from K to K, all subsets of the morphism sets of K have
equalizers, and there is a weak initial T -algebra, then there is an initial T -algebra.

9. Initial T -algebras and Isomorphisms

To complete our development, we use the fact that the morphism parts of initial T -algebras
are isomorphisms. The following proposition is given in [3], where it is attributed to J. Lam-
bek:

Proposition 8 If 〈u, θ〉 is an initial T -algebra, then θ is an isomorphism from Tu to u in
K.

Proof : From the obviously commuting diagram

T (Tu) Tu

Tu u

-Tθ

-θ?

Tθ

?

θ

it is evident that 〈Tu, Tθ〉 is a T -algebra and θ ∈ 〈Tu, Tθ〉 −−−−→Talg 〈u, θ〉. Let η be the unique
morphism in 〈u, θ〉 −−−−→Talg 〈Tu, Tθ〉. Then η ; θ and Iu are both morphisms belonging to
〈u, θ〉 −−−−→Talg 〈u, θ〉, so that the initiality of 〈u, θ〉 gives η ; θ = Iu. Moreover, since η ∈

〈u, θ〉 −−−−→Talg 〈Tu, Tθ〉 and T is a functor,

θ ; η = Tη ; Tθ = T (η ; θ) = T (Iu) = ITu .

(End of Proof)

10. Impossible Models

We can now combine our results to show the impossibility of models based on certain Carte-
sian closed categories.

Proposition 9 Suppose K and K′ are Cartesian closed categories such that K′ is a sub-ccc
of both K and SET, there is an object c of K′ that contains more than one member, all
objects and morphisms in the range of the functor QK

c belong to K′, and all subsets of the
morphism sets of K′ have equalizers. Then there is no K-model.

23

Proof : Assume that there is a K-model and let T = QK
c ;QK

c . By Proposition 1, T is definable
from c, so that by Proposition 3 there is a weak initial T -algebra. Since the objects and
morphisms in the range of T are in the range of QK

c , they belong to K′, so that by Proposition
4 there is a weak initial T ′-algebra, where T ′ is the restriction of T to K′.

Since K′ possesses the necessary equalizers, Proposition 7 gives that there is an initial
T ′-algebra, and Proposition 8 gives that there is an object u in K′ such that T ′u is isomorphic
to u. Moreover, since u and c belong to K′, which is a sub-ccc of both K and SET,

T ′u = (u ==⇒K c) ==⇒K c = (u ===⇒K′ c) ===⇒K′ c = (u → c) → c .

But it is well known that, when c has more than one member, (u → c) → c has higher
cardinality than u, and thus cannot be isomorphic to u in any subcategory of SET.

(End of Proof)

Simply taking K and K′ to be SET gives the result of [28] that there is no SET-model.
(Of course, the cardinality argument is particular to classical logic; as shown in [24] and
[18], “set-theoretic” models can be found in a constructive metatheory. On the other hand,
as shown in [23], there is still a sense in which the above proposition carries over to the
constructive case.) Moreover, since POS and DCPO both contain SET as a full sub-ccc
(endowing sets with the discrete partial order) and, when c is a (so ordered) set, the objects
in the range of QPOS

c and QDCPO
c are all sets, one can take K to be POS or DCPO and K′

to be SET, to show that there is no POS- or DCPO-model.

One can also rule out various full sub-ccc’s of DCPO. For example, Achim Jung has
characterized the four maximal Cartesian closed categories that are full sub-ccc’s of the
category of algebraic directed-complete posets [16]. These are the category of all disjoint
unions of bifinite domains (the SFP objects in [25]), the category of all disjoint unions of
L-domains [14, 6], the category of profinite domains [13], and the category of the so-called
FL domains. To see that these cannot give K-models, one applies Proposition 9, taking K′
to be SET or the category of finite sets, as appropriate.

The proposition can also be used to rule out some Cartesian closed categories of metric
spaces used for the semantics of programming languages, such as the category of bounded
ultrametric spaces and non-distance-increasing functions, or the full subcategory of the com-
plete spaces [2]. In both cases one takes K′ to be SET (endowing sets with the discrete
metric).

These results give some indication that it is necessary to require a least element to get
a model over a category of posets. We can also obtain a result that indicates the need to
require functions to be continuous. Let PPOS be the full sub-ccc of POS in which the objects
are required to possess least elements, and (henceforth) let c be the poset

⊥

>

Then

24

Proposition 10 There is no solution in PPOS to the isomorphism (u ⇒ c) ⇒ c ' u.

Proof : Assume for the sake of contradiction that there is a poset P and an isomorphism φ
from (P ⇒ c) ⇒ c to P . Using ordinal recursion, for each ordinal δ, we define δ ∈ P by

δ = φ
(

λf : P ⇒ c.
⊔

c
{ fµ | µ < δ }

)

.

We show by induction on δ′ that if δ v δ′ then δ ≤ δ′. So suppose that δ v δ′. Since φ is
an isomorphism, it follows that

⊔

c
{ fµ | µ < δ } v

⊔

c
{ fµ′ | µ′ < δ′ }

holds for any f ∈ P ⇒ c. Now choose any ordinal µ satisfying µ < δ, and evaluate this
inequality at the monotone function

fx =
{

> if µ v x
⊥ otherwise .

Since > occurs in the set on the left, it must occur in the set on the right, so that there is
an ordinal µ′ < δ′ such that µ v µ′. Then the induction hypothesis gives µ ≤ µ′, so that
µ < δ′. Then since µ is an arbitrary ordinal satisfying µ < δ, we obtain δ ≤ δ′, as desired.

As a consequence, if δ = δ′ then δ = δ′, and so we have different elements of P for different
ordinals. This is a contradiction, since the collection of elements of P is a set while that of
the ordinals is a proper class. (End of Proof)

To use this result to show that there is no PPOS-model, we must get around the difficulty
that PPOS has a paucity of equalizers. For example, if β1, β2 ∈ c → c are the constant
functions yielding ⊥ and >, then {β1, β2} has no equalizer.

However, let PPOS⊥ be the subcategory of PPOS in which all morphisms are strict
functions. Although it is not Cartesian closed, PPOS⊥ possesses equalizers of all subsets of
its morphism sets. Specifically, the equalizer of S ⊆ k −−−−−−→PPOS⊥

k′ is the identity injection
from

u = { x | x ∈ k and (∀β1, β2 ∈ S) β1x = β2x }

to k.

Thus, by using Proposition 4 to move from PPOS to PPOS⊥, we can prove:

Proposition 11 There is no PPOS-model.

Proof : Assume that there is a PPOS-model, and let T = QPPOS
c ; QPPOS

c . By Propositions
1 and 3 there is a weak initial T -algebra. Since every object of PPOS is also an object
of PPOS⊥, and the morphisms in the range of T , being also in the range of QPPOS

c , are

25

strict, by Proposition 4 there is a weak initial T ′-algebra, where T ′ is the restriction of T to
PPOS⊥. Then Proposition 7 gives the existence of an initial T ′-algebra, and Proposition 8
gives the existence of an object u that is isomorphic to T ′u in PPOS⊥. But T ′u = Tu =
(u ======⇒

PPOS
c) ======⇒

PPOS
c, and an isomorphism in PPOS⊥ is an isomorphism in PPOS, which

gives a contradiction with the previous proposition. (End of Proof)

Beyond these results, it would be particularly interesting to know whether a model is
possible when K is the category CPO of complete posets (directed-complete posets with
a least element) and continuous functions, or various full sub-ccc’s, particularly that of
the bifinite domains. Currently, such “domain” models (e.g. [21], [20], [1], [10], and [7]) are
known only for very special subcategories of CPO. However, this question cannot be resolved
by the techniques developed in this paper, since CPO contains solutions to isomorphisms
such as (u ⇒ c) ⇒ c ' u.

11. Application to Known Models

In several models of the polymorphic typed lambda calculus, the meaning of a type is
(the set of equivalence classes of) a partial equivalence relation on a model of the untyped
lambda calculus [9, 34, 22, 8, 15]. The underlying Cartesian closed categories of such models
possess the equalizers needed to apply Proposition 7, so that there is an initial T -algebra for
every definable T . An important open question for these models, however, is whether the
equalizer construction is necessary, or whether 〈P,H〉, as defined in the proof of Proposition
2, is already an initial (rather than just weakly initial) T -algebra.

Underlying other models, such as [21], [20], [1], [10], and [7], are Cartesian closed subcat-
egories of CPO. Unfortunately, these subcategories, like PPOS, have few equalizers. Indeed,
there are few initial T -algebras for these subcategories; the usual notion of a continuous
algebra [12] is equivalent to that of a T -algebra for the category CPO⊥ of complete par-
tial orders and strict continuous functions, which possesses equalizers of all subsets of its
morphism sets, but is not Cartesian closed.

There seems to be a connection between the weak initial T -algebras obtained for these
models and continuous algebras based on CPO⊥. However, it must be more complex than
the connection used in the proof of Proposition 4, since the range of an arbitrary definable
functor (most obviously, of the identity functor) is not limited to strict functions. Moreover,
CPO⊥ is not a subcategory of the categories underlying the “domain” models, while the
restriction of these categories to strict functions gives subcategories that do not possess
equalizers of all subsets of their morphism sets.

26

References

[1] Amadio, R., Bruce, K. B., and Longo, G. The Finitary Projection Model for Second
Order Lambda Calculus and Solutions to Higher Order Domain Equations. in: Pro-
ceedings Symposium on Logic in Computer Science, Cambridge, Massachusetts,
June 16–18. 1986, pp. 122–130.

[2] America, P., de Bakker, J. W., Kok, J. N., and Rutten, J. Denotational Semantics of a
Parallel Object-Oriented Language. Information and Computation, vol. 83 (1989),
pp. 152–205.

[3] Barr, M. Coequalizers and Free Triples. Mathematische Zeitschrift, vol. 116 (1970),
pp. 307–322.

[4] Barr, M. and Wells, C. Toposes, Triples, and Theories. Grundlehren der math-
ematischen Wissenschaften, vol. 278, Springer-Verlag, New York, 1985, xiii+345
pp.

[5] Böhm, C. and Berarducci, A. Automatic Synthesis of Typed Λ-Programs on Term
Algebras. Theoretical Computer Science, vol. 39 (1985), pp. 135–154.

[6] Coquand, T. Categories of Embeddings. in: Proceedings Third Annual Sym-
posium on Logic in Computer Science, Edinburgh, Scotland, July 5–8. 1988,
pp. 256–263.

[7] Coquand, T., Gunter, C. A., and Winskel, G. Domain Theoretic Models of Polymor-
phism. Information and Computation, vol. 81 (1989), pp. 123–167.

[8] Freyd, P. J. and Scedrov, A. Some Semantic Aspects of Polymorphic Lambda Calculus.
in: Proceedings Symposium on Logic in Computer Science, Ithaca, New York,
June 22–25. 1987, pp. 315–319.

[9] Girard, J.-Y. Interprétation Fonctionnelle et Élimination des Coupures de l’Arith-
métique d’Ordre Supérieur, Thèse de doctorat d’état. Université Paris VII, June 1972.

[10] Girard, J.-Y. The System F of Variable Types, Fifteen Years Later. Theoretical
Computer Science, vol. 45 (1986), pp. 159–192.

[11] Girard, J.-Y. Une Extension de l’Interprétation de Gödel à l’Analyse, et son Application
à l’Élimination des Coupures dans l’Analyse et la Théorie des Types. in: Proceedings
of the Second Scandinavian Logic Symposium, University of Oslo, June 18–
20, 1970, edited by J. E. Fenstad. Studies in Logic and the Foundations of
Mathematics, vol. 63, North-Holland, Amsterdam, 1971, pp. 63–92.

[12] Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright, J. B. Initial Algebra
Semantics and Continuous Algebras. Journal of the ACM, vol. 24 (1977), pp. 68–95.

[13] Gunter, C. A. Universal Profinite Domains. Information and Computation, vol.
72 (1987), pp. 1–30.

27

[14] Gunter, C. A. and Jung, A. Coherence and Consistency in Domains (Extended Outline).
in: Proceedings Third Annual Symposium on Logic in Computer Science,
Edinburgh, Scotland, July 5–8. 1988, pp. 309–317.

[15] Hyland, J. M. E. A Small Complete Category. Annals of Pure and Applied Logic,
vol. 40 (1988), pp. 135–165.

[16] Jung, A. Cartesian Closed Categories of Domains. CWI Tracts, vol. 66, Cen-
trum voor Wiskunde en Informatica, Amsterdam, 1989.

[17] Leivant, D. Reasoning About Functional Programs and Complexity Classes Associated
with Type Disciplines. in: 24th Annual Symposium on Foundations of Computer
Science, IEEE, Tucson, Arizona, November 7–9. 1983, pp. 460–469.

[18] Longo, G. and Moggi, E. Constructive Natural Deduction and its ‘ω-set’ Interpretation.
Mathematical Structures in Computer Science, vol. 1 (1991), pp. 215–254.

[19] Mac Lane, S. Categories for the Working Mathematician. Graduate Texts in
Mathematics, vol. 5, Springer-Verlag, New York, 1971, ix+262 pp.

[20] McCracken, N. J. A Finitary Retract Model for the Polymorphic Lambda-Calculus.
Unpublished, Syracuse University, 1982.

[21] McCracken, N. J. An Investigation of a Programming Language with a Polymorphic
Type Structure, Ph. D. Dissertation. Syracuse University, June 1979, iv+126 pp.

[22] Mitchell, J. C. A Type-Inference Approach to Reduction Properties and Semantics of
Polymorphic Expressions (Summary). in: Proceedings of the 1986 ACM Confer-
ence on Lisp and Functional Programming, Cambridge, Massachusetts, August
4–6. 1986, pp. 308–319.

[23] Pitts, A. M. Non-trivial Power Types can’t be Subtypes of Polymorphic Types. in: Pro-
ceedings Fourth Annual Symposium on Logic in Computer Science, Pacific
Grove, California, June 5–8. 1989, pp. 6–13.

[24] Pitts, A. M. Polymorphism is Set Theoretic, Constructively. in: Category Theory
and Computer Science, Edinburgh, Scotland, September 7–9, edited by D. H. Pitt,
A. Poigné, and D. E. Rydeheard. Lecture Notes in Computer Science, vol. 283,
Springer-Verlag, Berlin, 1987.

[25] Plotkin, G. D. A Powerdomain Construction. SIAM Journal on Computing, vol.
5 (1976), pp. 452–487.

[26] Plotkin, G. D. Private communication. July 16, 1984.

[27] Prawitz, D. Ideas and Results in Proof Theory. in: Proceedings of the Second
Scandinavian Logic Symposium, University of Oslo, June 18–20, 1970, edited by
J. E. Fenstad. Studies in Logic and the Foundations of Mathematics, vol. 63,
North-Holland, Amsterdam, 1971, pp. 235–307.

28

[28] Reynolds, J. C. Polymorphism is not Set-Theoretic. in: Semantics of Data Types,
International Symposium, Sophia-Antipolis, France, June 27–29, edited by G. Kahn,
D. B. MacQueen, and G. D. Plotkin. Lecture Notes in Computer Science, vol.
173, Springer-Verlag, Berlin, 1984, pp. 145–156.

[29] Reynolds, J. C. Semantics of the Domain of Flow Diagrams. Journal of the ACM,
vol. 24 (1977), pp. 484–503.

[30] Reynolds, J. C. Towards a Theory of Type Structure. in: Programming Symposium,
Proceedings, Colloque sur la Programmation, Paris, April 9–11, edited by B. Robinet.
Lecture Notes in Computer Science, vol. 19, Springer-Verlag, Berlin, 1974, pp. 408–
425.

[31] Reynolds, J. C. Types, Abstraction and Parametric Polymorphism. in: Informa-
tion Processing 83, Proceedings of the IFIP 9th World Computer Congress, Paris,
September 19–23, 1983, edited by R. E. A. Mason. Elsevier Science Publishers B. V.
(North-Holland), Amsterdam, 1983, pp. 513–523.

[32] Seely, R. A. G. Categorical Semantics for Higher Order Polymorphic Lambda Calculus.
Journal of Symbolic Logic, vol. 52 (1987), pp. 969–989.

[33] Takeuti, G. Proof Theory. Studies in Logic and the Foundations of Mathe-
matics, vol. 81, North-Holland, Amsterdam, 1975, viii+372 pp.

[34] Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
edited by A. S. Troelstra. Lecture Notes in Mathematics, vol. 344, Springer-Verlag,
Berlin, 1973, xvii+485 pp.

29

