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Abstract. CBS is a Calculus of Biochemical Systems intended to al-
low the modelling of metabolic, signalling and regulatory networks in a
natural and modular manner. In this paper we extend CBS with fea-
tures directed towards practical, large-scale applications, thus yielding
LBS: a Language for Biochemical Systems. The two main extensions are
expressions for modifying large complexes in a step-wise manner and pa-
rameterised modules with a notion of subtyping; LBS also has nested dec-
larations of species and compartments. The extensions are demonstrated
with examples from the yeast pheromone pathway. A formal specifica-
tion of LBS is then given through an abstract syntax, static semantics
and a translation to a variant of coloured Petri nets. Translation to other
formalisms such as ordinary differential equations and continuous time
Markov chains is also possible.

Keywords: The Calculus of Biochemical Systems, large-scale, parameterised
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1 Introduction

Recent years have seen a multitude of formal languages and systems applied to
biology, thus gaining insight into the biological systems under study through
analysis and simulation. Some of these languages have a history of applications
in computer science and engineering, e.g. the pi calculus [26], PEPA [2], Petri
nets [25] and P-systems [19], and some are designed from scratch, e.g. Kappa [4],
BioNetGen [5], BIOCHAM [3], Bioambients [27], Beta binders [7,24], Dynamical
Grammars [15] and the Continuous Pi Calculus [14].

The Calculus of Biochemical Systems (CBS) [23] is a new addition to the
latter category which allows metabolic, signalling and regulatory networks to be
modelled in a natural and modular manner. In essence, CBS describes reactions
between modified complexes, occurring concurrently inside a hierarchy of com-
partments and with possible cross-compartment interactions and transport. It
has a compositional semantics in terms of Petri nets, ordinary differential equa-
tions (ODEs) and continuous time Markov chains (CTMCs). Petri nets allow a
range of established analysis techniques to be used in the biological setting [8],
while ODEs and CTMCs enable respectively deterministic and stochastic simu-
lations to be carried out.

This paper proposes extensions of CBS in support of practical, large-scale ap-
plications, resulting in LBS: a Language for Biochemical Systems. The two main



extensions are pattern expressions and parameterised modules. Patterns repre-
sent complexes and pattern expressions provide a concise way of making small
changes to large complexes incrementally, a common scenario in signal transduc-
tion pathways. Parameterised modules allow general biological “gadgets”, such
as a MAPK cascade, to be modelled once and then reused in different contexts.
Modules may be parameterised on compartments, rates, patterns and species
types, the latter resulting in a notion of parametric type. A notion of subtyp-
ing of species types and patterns is also employed, allowing a module to specify
general reaction schemes and have a concrete context provided at the time of
module invocation. Modules may furthermore return pattern expressions, thus
providing a natural mechanism for connecting related modules.

Other improvements over CBS include species and compartment declarations
which involve scope and new name generation. While species modification sites
in CBS always have boolean type, LBS does not place any limitations of modifi-
cation site types, allowing, e.g., location (real number pairs) or DNA sequences
(strings) to be represented. LBS also allows general rate expressions to be as-
sociated with expressions, although mass-action kinetics may be assumed as in
CBS.

The syntax and semantics of CBS are outlined informally in Section 2 through
some basic examples, including a MAPK cascade module drawn from the yeast
pheromone pathway. In Section 3 we introduce LBS by further examples from the
yeast pheromone pathway and demonstrate how the features of LBS can be used
to overcome specific limitations of CBS. We then turn to a formal presentation
of the language. An abstract syntax of LBS is given in Section 4. An overview
of the semantics of LBS, including a static semantics, the general approach
to translation, and a specific translation to Petri nets, is given in Section 5.
Section 6 discusses related work and future directions. Due to space constraints,
only selected parts of the semantics are given in this paper. A full presentation,
together with the full LBS model of the yeast pheromone pathway, can be found
in [21].

A compiler from LBS to the Systems Biology Markup Language (SBML) [10]
has been implemented and supports the main features of the language presented
formally in this paper. We have validated the compiler on the yeast pheromone
pathway model by deriving ODEs from the target SBML using the Copasi
tool [9]. By manual inspection, the derived ODEs coincide, up to renaming of
species, with the ODEs published in [13], although there is some discrepancy
between the simulation results.

2 The Calculus of Biochemical Systems

Basic examples of CBS modules with no modifications or complexes are shown
in Program 1, with the last line informally indicating how the modules may be
used in some arbitrary context. Module M1 consists of two chemical reactions
taking place in parallel as indicated by the bar, |. The first is a condensation
reaction, and the second is a methane burning reaction. In M2 the second reaction



Program 1 Example of three modules in CBS.
module M1 { 2 H2 + O2 -> 2 H2O | CH4 + 2 O2 -> CO2 + 2 H2O };
module M2 { 2 H2 + O2 -> 2 H2O | c[CH4 + 2 O2 -> CO2 + 2 H2O] };
module M3 { c[O2] -> O2 };
... | M1 | ... | M2 | ... | M3 | ...

takes place inside a compartment c, and in M3 the species O2 is transported out of
compartment c to whatever compartment the module is later instantiated inside.
In contrast, a language such as BIOCHAM would represent the same model by
an unstructured list of five reactions and explicitly specifying the compartments
of each species.

Graphical representations of the two individual reactions in module M1 are
shown in Figure 1a; the reader familiar with Petri nets (see [17] for an overview)
can think of the pictures as such. When considering two reactions together,
in parallel, the standard chemical interpretation is that the reactions share and
compete for species which have syntactically identical names in the two reactions,
in this case O2 and H2O. A graphical Petri net representation of M1 based on this
interpretation is shown in Figure 1b. In the case of module M2, the species O2
and H2O are not considered identical between the two reactions because they are
located in different compartments. Consequently, none of the species are merged
in the parallel composition that constitutes M2, see Figures 1c and 1d.
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Fig. 1: Petri net representations of reactions and their parallel composition. Places
(circles) represent species, transitions (squares) represent reactions, and arc weights
represent stoichiometry.



This example illustrates how reactions, or more generally, modules, are com-
posed in CBS, and hints at how a compositional semantics in terms of Petri nets
can be defined. Similar ideas can be used to define compositional semantics in
terms of ODEs and CTMCs, assuming that reactions are equipped with rates;
see [23] for the full details.

Fig. 2: Selected and reorganised parts of the informal model from [13] of the yeast
pheromone pathway. Copyright c© 2008 John Wiley & Sons Limited. Reproduced with
permission.

Let us turn to a more realistic example featuring modifications and com-
plexes, drawn from a model of the yeast pheromone pathway that will serve as a
case study throughout the paper. Figure 2, adapted from [13], shows a graphical
representation of the model divided into several interacting modules. We do not
discuss the biological details of the model but rather consider the general struc-
ture and how this can be represented formally, and we start by focusing on the
MAPKCascade module. The cascade relies on a scaffolding complex holding Ste11
(the MAPK3), Ste7 (the MAPK2) and Fus3 (the MAPK) into place. Ignoring
degradation, this module can be written in CBS as shown in Program 2.

The labels k20, k22 and k24 associated with reaction arrows represent the
mass-action rates given in [13]. Fus3, Ste7, Ste11, Ste5, Ste20 and Gbg are
the names of primitive species, i.e. non-complex species, and can exist in vari-
ous states of modification. In this case all primitive species except Ste20 and
Gbg have a single modification site, p, which can be either phosphorylated or
unphosphorylated, indicated by assigning boolean values (tt/ff) to the sites. For



Program 2 A CBS module of the yeast MAPK cascade.
module MAPKCascade {
Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg ->{k20}

Fus3{p=ff}-Ste7{p=ff}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg |
Fus3{p=ff}-Ste7{p=ff}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg ->{k22}

Fus3{p=ff}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg |
Fus3{p=ff}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg ->{k24}

Fus3{p=tt}-Ste7{p=tt}-Ste11{p=tt}-Ste5{p=ff}-Ste20-Gbg
};
... | MAPKCascade | ...

example, Fus3{p=ff} represents Fus3 in its unphosphorylated state. Complexes
are formed by composing modified primitive species using a hyphen, -.

Complexes such as the above will generally be referred to as patterns. As in
BIOCHAM, the term “pattern” reflects that modification sites in reactants can
be assigned variables rather than actual boolean values, hence “matching” mul-
tiple physical complexes and thereby ameliorating the combinatorial explosion
problem on the level of species modifications.

Two limitations of the CBS representation emerge from this example:

1. Redundancy. Many signalling pathways involve making small changes to
large complexes. Therefore, patterns are often identical except for small
changes in modification, but in CBS we are forced to write all patterns
out in full.

2. Reuse. The MAPK cascade is a typical example of a “biological gadget”
which is utilised in many different contexts but with different participating
species [6]. The CBS MAPK module in our example “hard codes” the species
and rates involved and hence cannot be used in another context.

The next section shows how LBS offers solutions to these limitations.

3 The Language for Biochemical Systems

We give three examples of LBS programs and informally explain their syntax.
The first shows how species declarations and pattern expressions can be used
to improve the yeast MAPK cascade module. The second shows how a gen-
eral, reusable MAPK cascade module can be written by taking advantage of
parameters and subtyping. The third shows how modules can communicate by
linking an output pattern of a receptor activation module to an input pattern
of a G-protein cycle module.

3.1 The Yeast MAPKCascade

Program 3 shows how the model in Program 2 can be re-written in LBS. The first
difference is that all primitive species featuring in a program must be declared by



specifying their modification site names and types, if any. For example, Fus3 has
a single modification site named p of type bool, and Ste20 has no modification
sites. In general, arbitrarily many modification sites may be declared.

Program 3 Species declarations and pattern expressions in the yeast MAP-
KCascade module.
module YeastMAPKCascade {

spec Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, Ste5{p:bool}, Ste20, Gbg;
pat e = Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg;

e ->{k20} e<Ste11{p=tt}> as f;
f ->{k22} f<Ste7{p=tt}> as g;
g ->{k24} g<Fus3{p=tt}> as h

};
... | YeastMAPKCascade; ...

The second difference is that we assign the first pattern to a pattern identifier
called e. This identifier, and the ones that follow, correspond directly to the
names given to complexes in Figure 2. We can then simply refer to e in the
first reaction instead of writing out the full pattern. The product of the first
reaction uses the pattern expression e<Ste11{p=tt}> to represent “everything
in e, except that site p in Ste11 is phosphorylated,” and subsequently assigns
the resulting pattern to a new identifier f which, in turn, is then used as a
reactant of the second reaction, and so on. When using such in-line pattern
declarations, reactions are separated by semi-colons (;) rather than the parallel
composition (|), indicating that the order in which reactions are written matters.

The module can be invoked in some parallel context as indicated informally
in the last line. Since, e.g., Fus3 is declared locally, inside the module, multiple
instances of the module would give rise to multiple, distinct instances of this
species. If we prefer species to be shared between multiple instances of a module,
they should either be declared globally or passed as parameters, as we see in the
next subsection.

3.2 A General MAPK Cascade Module

The model in the previous subsection still suffers from a lack of reusability.
From a more general perspective, a (scaffolded) MAPK cascade is a series of
reactions operating on some potentially very big complex but which contains
specific species serving the K3, K2 and K1 functions of the cascade. Each of
these species must have at least one phosphorylation site (i.e. of boolean type)
which in the general case could be be called ps. With this in mind, the K3, K2
and K1 become species parameters of the MAPK module. The scaffold complex
containing these species becomes a pattern parameter which we will call mk4,
indicating its role as an upstream initiator of the cascade. Reaction rates become



rate parameters. Program 4 shows how the resulting module can be written in
LBS. The species parameters follow the structure of species declarations. But

Program 4 Defining a general, scaffolded MAPKCascade module.
module MAPKCascade( spec K1{ps:bool}, K2{ps:bool}, K3{ps:bool};

pat mk4 : K1-K2-K3; rate r1, r2, r3 ){
mk4 ->{r1} mk4<K3{ps=tt}> as mk3;
mk3 ->{r2} mk3<K2{ps=tt}> as mk2;
mk2 ->{r3} mk2<K1{ps=tt}> as mk1

};

the pattern parameter is different: it provides a pattern identifier together with
the type of the pattern. A pattern type simply represents the names of primitive
species in the pattern: no more is needed to determine how the pattern may be
used, because the types of the primitive species are defined separately.

In the context of the yeast model, we can simply use the MAPK cascade
module by declaring the specific species of interest, defining the scaffold pattern,
and passing these together with the rates as arguments to the module. This
is shown in Program 5 which is semantically equivalent to Program 3, i.e. the
two translate to the same Petri net. A closer investigation of this program tells

Program 5 Using the general MAPKCascade module.
spec Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, Ste5{p:bool}, Ste20, Gbg;
pat e = Fus3{p=ff}-Ste7{p=ff}-Ste11{p=ff}-Ste5{p=ff}-Ste20-Gbg;

MAPKCascade(Fus3{p:bool}, Ste7{p:bool}, Ste11{p:bool}, e, k20, k22, k24);

us that the pattern e, which is passed as an actual parameter, has the type
Fus3-Ste7-Ste11-Ste5-Ste20-Gbg, namely the species contained in the pattern.
The corresponding formal parameter has type K1-K2-K3, which is instantiated to
Fus3-Ste7-Ste11 through the species parameters. This works because the actual
parameter type contains at least the species required by the formal parameter
type. This is all the module needs to know, since these are the only species it is
going to manipulate. We say that the type of the actual parameter is a subtype
of the type of the formal parameter, and hence the module invocation is legal. A
similar idea applies at the level of species parameters, although in this example
the corresponding formal and actual species parameters have the same number
of modification sites. Note that the names of corresponding modification sites
need not be the same for actual and formal parameters. In this example, the
formal parameters use ps while the actual parameters use p.



3.3 Receptor Activation and G-protein Cycle Modules

Our last example illustrates how modules can be linked together. If we look at the
general structure of the yeast pheromone picture in Figure 2, we notice that many
of the modules produce outputs which are passed on to subsequent modules: the
scaffold formation module produces a scaffold which is passed on to the MAPK
cascade module, and the receptor activation module produces a receptor-ligand
complex (consisting of Alpha and Ste2) which is used to activate the G-protein
cycle. The G-protein cycle in turn passes on a beta-gamma subunit.

In order to naturally represent these interconnections, LBS provides a mecha-
nism for modules to return patterns. Program 6 shows this mechanism involving
the receptor activation and G-protein cycle modules. The modules are named
as in Figure 2. They are commented and should be self-explanatory, except per-
haps for three points. Firstly, enzymatic reactions are represented using the tilde
operator (∼) with an enzyme (a pattern) on the left and a reaction on the right.
Secondly, reversible reactions are represented using a double-arrow (<->) fol-
lowed by rates for the forward and backward directions. Thirdly, the rate v46
in the G protein cycle module is defined explicitly because it does not follow
mass-action kinetics, and this is indicated by the use of square brackets around
the forward rate of the reaction.

Let us consider how the two modules interface to each other. The receptor
activation module takes parameters for the cytosol compartment and a pattern
which degrades the pheromone. The latter has empty type, indicating that the
module does not care about the contents of this pattern. The new feature is
the last parameter, rl (short for receptor-ligand complex). This is an output
pattern: it is defined in the body of the module and is made available when
the module is invoked. This happens towards the end of Program 6 by first
declaring the relevant species and the compartment cytosol with volume 1
inside the distinguished top level compartment T, which are then passed as actual
parameters to the module. Note that a species is a special, non-modified and non-
complex case of a pattern, and hence can be used as a pattern parameter. The
last actual parameter is the output parameter identifier, here called link. This
pattern identifier will be assigned the return pattern of the module (namely the
receptor-ligand complex) and is then passed as the “activating” parameter for
the G-protein cycle module. It follows that the ordering of module invocation
matters, which as above is indicated by a semicolon rather than the parallel
composition. In this particular example, output patterns have the empty type,
but they could have arbitrary types and are subject to a subtyping mechanism
similar to that of input patterns.

4 The Abstract Syntax of LBS

Having given an informal introduction to the main features of LBS and its con-
crete syntax, we now present its abstract syntax. This is shown in Table 1; each
of the three main syntactic categories is explained further in the following sub-
sections.



Program 6 Receptor activation and G-protein cycle modules
spec Fus3{p:bool};
module ReceptorAct(comp cyto, pat degrador, patout rl) {

spec Alpha, Ste2{p: bool};
(* pheromone and receptor degradation: *)
degrador ∼ Alpha ->{k1} | cyto[Ste2{p=ff}] ->{k5} |
(* Receptor-ligand binding and degradation: *)
Alpha + cyto[Ste2{p=ff}] <->{k2,k3} cyto[Alpha-Ste2{p=tt}] as rl;
cyto[rl] ->{k4}

};
module GProtCycle(pat act, patout gbg) {

spec Ga, Gbg, Sst2{p:bool};
pat Gbga = Gbg-Ga-GDP;
(* disassociation of G-protein complex: *)
act ∼ Gbga ->{k6} Gbg + Ga-GTP |
(* ... and the G-protein cycle: *)
Ga-GTP ->{k7} Ga-GDP |
Sst2{p=tt} ∼ Ga-GTP ->{k8} Ga-GDP |
rate v46 = k46 * (Fus3{p=tt}ˆ2 / (4ˆ2 + Fus3{p=tt}ˆ2));
Fus3{p=tt} ∼ Sst2{p=ff} <->[v46]{k47} Sst2{p=tt} |
Ga-GDP + Gbg ->{k9} Gbga |
pat gbg = Gbg; Nil

};
spec Bar1;
comp cytosol inside T vol 1.0;
ReceptorAct(cytosol, Bar1, pat link);
GProtCycle(link, pat link2);
(* rest of model ... *)

Table 1: The core abstract syntax of LBS: Pattern expressions and their types (top),
programs (middle) and declarations (bottom).

PE ::=β | p | PE − PE′ | PE〈PE〉 | PE.s | PE\s
β ::={si 7→ αi} α ::= {li 7→ Ei} τ ::= {si 7→ ni} σ ::= {li 7→ ρi}

P ::={LPEi 7→ ni}
RE−→ {LPE′

j 7→ n′
j} if Ebool

|0 | P1|P2 | c[P ] | Decl;P | m(APars; pat p);P

LPE ::=PE | c[LPE] APars ::= s : σ; c;PE;RE

RE ::=k | LPE | c | r(APars) | log(RE) | RE aop RE

Decl ::=comp c : c′, v | spec s : σ | pat p = PE | rate r(FPars) = RE

|module m(FPars; patout p : τ){P}
FPars ::=spec s : l : ρ; comp c : c′; pat p : τ ; rate r



4.1 Notation

Tuples (x1, . . . , xk) are written x when the specific elements are unimportant.
The set of finite multisets over a set S is denoted by FMS(S), the total functions
from S to the natural numbers which take value 0 for all but finite many elements
of S. The power set of a set S is written 2S . Partial finite functions f are denoted
by finite indexed sets of pairs {xi 7→ yi}i∈I where f(xi) = yi, and I is omitted if
it is understood from the context. When the ith element of a list or an indexed
set is referred to without explicit quantification in a premise or condition of a
rule, the index is understood to be universally quantified over the index set I.
The domain of definition of a function f is denoted by dom(f); the empty partial
function is denoted by ∅. We write f [g] for the update of f by a partial finite
function g; for the sake of readability, we often abbreviate e.g. f [{xi 7→ yi}] by
f [xi 7→ yi].

4.2 Pattern Expressions

In the abstract syntax for pattern expressions, s ranges over a given set Namess

of species names, l ranges over a given set Namesmo of modification site names,
and p ranges over a given set Identp of pattern identifiers. The simplest possible
pattern expression, a pattern β, maps species names to lists of modifications, thus
allowing homomers be be represented.

Modifications in turn map modification site names to expressions E, which
range over the set Exp

∆=
⋃
ρ∈Typesmo

Expρ; here, Typesmo is a given set of
modification site types, ranged over by ρ, and Expρ is a given set of expressions
of type ρ. We assume that Typesmo contains the boolean type bool with values
{tt,ff}. Expressions may contain match variables from a given set X and we
assume a function FV ∆= Exp→ 2X giving the variables of an expression.

Pattern composition, PE − PE′, intuitively results in a pattern where the
lists of modifications from the first pattern have been appended to the cor-
responding lists of modifications from the second pattern. This operation is
therefore not generally commutative, e.g. s{l=tt}-s{l=ff} is not the same
as s{l=ff}-s{l=tt}. This is not entirely satisfying and will be a topic of future
work. We have already encountered the pattern update expression PE〈PE〉 in
the MAPK cascade module in Program 3. The expression PE.s restricts the
pattern to the species s and throws everything else away, while the expression
PE\s keeps everything except for s. So a dissociation reaction of s from PE
can be written (in the concrete syntax) as PE ->{r} PE\s + PE.s. If there are
multiple instances of s in PE, only the first in the list of modifications will be
affected.

Finally, α and β represent the types of species and patterns, respectively; in
the grammar, n ranges over N>0. Henceforth we let Typesp and Typess be the
sets generated by these productions.



4.3 Programs

In the abstract syntax for programs, c ranges over a given set Namesc of com-
partment names, m ranges over a given set Identm of module identifiers, r
ranges over a given set Identr of rate identifiers, n ∈ N>0 and k ∈ R. The
first line in the grammar for programs is a reaction. Products and reactants are
represented as functions mapping located patterns to stoichiometry. A reaction
may furthermore be conditioned on a boolean expression. We encountered lo-
cated patterns in Programs 1 and 6: they are just patterns inside a hierarchy of
compartments. Rate expressions associated with reactions can employ the usual
arithmetic expressions composed from operators aop ∈ {+, -,*,/,̂ }. But they
can also include located patterns (which refer to either a population or a concen-
tration, depending on the semantics), compartments (which refer to a volume)
and rate function invocations.

In the second line, 0 represents the null process, and we have encountered
parallel composition and compartmentalised programs in the examples. Decla-
rations are defined separately in the next subsection. Module invocations are
followed sequentially by a program since a new scope will be created if patterns
are returned from modules as in Program 6.

Enzymatic reactions, reversible reactions, mass-action kinetics and inline pat-
tern declarations (using the as keyword) which we encountered in the examples
are not represented in the abstract syntax. They can all be defined, in a straight-
forward manner, from existing constructs. Take for example the following defi-
nitions of reactions from Programs 3 and 6:

– e ->{k10} e<Ste11{p=tt}> as f
∆=

pat f = e<Ste11{p=tt}>; e ->[k10 * e] f.
– Fus3{act=tt} ∼ Sst2{act=ff} <->[v46]{k47} Sst2{act=tt} ∆=

Fus3{act=tt} + Sst2{act=ff} ->[v46] Fus3{act=tt} + Sst2{act=tt}
| Sst2{act=tt} ->[k47 * Sst2{act=tt}] Sst2{act=ff}

4.4 Declarations

Compartment declarations specify the volume v ∈ R>0 and parent of the de-
clared compartment. Compartments which conceptually have no parent com-
partment should declare the “top level” compartment, >, as their parent, so we
assume that > ∈ Namesc. Modules and rate functions may be parameterised
on species with their associated type, compartments with their declared parents,
patterns with their associated type, and finally on rate expressions. Henceforth
we let FormalPars be the set of formal parameter expressions, as generated
by the FPars production.

5 The Semantics of LBS

Having introduced the syntactic structure of LBS programs, we now turn to
their meaning.



5.1 Static Semantics

The static semantics tells us which of the LBS programs that are well-formed ac-
cording to the abstract syntax are also semantically meaningful. This is specified
formally by a type system of which the central parts are given in Appendix A,
and full details can be found in [21]. In this subsection we informally discuss the
main conditions for LBS programs to be well-typed.

The type system for pattern expressions checks that pattern identifiers and
species are declared and used according to their declared type. For pattern up-
dates, selections and removals, only species which are present in the target pat-
tern expression are allowed. If a pattern expression is well-typed, its type τ is
deduced in a compositional manner. Suptyping for patterns is given by multiset
inclusion, and subtyping for species is given by record subtyping as in standard
programming languages [22].

For reactions, the type system requires that any match variables which oc-
cur in the products also occur in the reactants. This is because variables in the
product patterns must be instantiated based on matches in the reactant pat-
terns during execution of the resulting model. It also requires that the reactant
and product located patterns agree on parent compartments; for example, the
reaction c1[s] -> c2[s] is not well-typed if the compartments c1 and c2 are
declared with different parent compartments. A similar consideration applies
for parallel composition. For a compartment program c[P] we require that all
top-level compartments occurring in P are declared with parent c. In order for
these conditions on compartments to be checked statically, i.e. at time of mod-
ule declaration rather than invocation, the type system must associate parent
compartments with programs in a bottom-up manner as detailed in Appendix A.

For module invocations, the type system first of all ensures that the num-
ber of formal and actual parameters match. It also ensures that the type of
actual species and pattern parameters are subtypes of the corresponding formal
parameter types, both for standard “input” parameters but also for output pat-
tern parameters. Finally, all formal output patterns identifiers must be defined
in the body of the module.

5.2 The General Translation Framework

A key advantage of formal modelling languages for biology is that they facil-
itate different kinds of analysis on the same model. This is also the case for
CBS which is endowed with compositional semantics in terms of Petri nets,
ODEs and CTMCs. The semantics of LBS is complicated by the addition of
high-level constructs such as pattern expressions, modules and declarations, but
this is ameliorated by the fact that the definition of its semantics is to some
extent independent of the specific choice of target semantical objects. The gen-
eral translation framework defines these independent parts of the translation,
and concrete translations then tie into this framework by defining the semantic
objects associated with the following:



1. Normal form reactions, where pattern expressions have been evaluated to
patterns, together with the types of species featuring in the reaction.

2. The 0 program.
3. The parallel composition of semantic objects.
4. Semantic objects inside compartments.

Here we only outline the central mechanisms involved; a complete account can
be found in [21].

The framework evaluates pattern expressions PE to patterns β according
to the intuitions set forth in Section 4.2 and by replacing pattern identifiers
with their defined patterns. Located pattern expressions are evaluated to pairs
of (immediate) parent compartments and the resulting patterns. Reactions are
then evaluated to normal form reactions of the form:

{(cini , βin
i ) 7→ nin

i }
RE−→ {(cout

j , βout
j ) 7→ nout

j } if Ebool

where pattern expressions and rate function invocations in RE have been evalu-
ated, and compartment identifiers have been replaced by their declared volumes.
A species type environment Γs : Namess ↪→fin Typess recording the type of
species in reactions is also maintained by the framework.

Modules are evaluated to semantic functions which, given the relevant actual
parameters at time of invocation, return the semantic objects of the module
body together with the output patterns. The definition of these functions is
complicated by the need to handle species parameters and pattern subtyping:
the former requires renaming to be carried out, and the latter entails handling
type environments for species that are not necessarily within the scope of their
declaration.

As an example, using the general translation framework on the module in
Program 4 results in a function which, when invoked with the parameters given
in Program 5 , computes the (almost) normal form reactions in Program 2, uses
the first concrete semantics function to obtain concrete semantic objects for each
reaction, and finally applies the third concrete semantic function to obtain the
final result of the parallel compositions.

5.3 Translating LBS to Petri nets

This subsection demonstrates the translation framework by giving the definitions
needed for a concrete translation to Petri nets. Translations to ODEs or CTMCs
are also possible, see [23] or [8] for the general approach.

Petri nets When modelling biological systems with Petri nets, the standard
approach is to represent species by places, reactions by transitions and stoichiom-
etry by arc multiplicities as in Figure 1. Complex species with modification sites
can be represented compactly using a variant of coloured Petri nets where places
are assigned colour types [11]. In our case, the colour types of places are given



by pairs (c, τ) of compartments and pattern types together with a global primi-
tive species type environment Γs. Then a pair (c, τ) uniquely identifies a located
species, so there is no need to distinguish places and colour types. Arcs are
equipped with multisets of patterns rather than plain stoichiometry, allowing a
transition to restrict the colour of tokens (e.g. modification of a species) that it
accepts or produces. Transitions are strings over the binary alphabet. This en-
ables us to ensure that the transitions from two parallel nets are disjoint simply
by prefixing 0 and 1 to all transitions in the respective nets.

In the following formal definition of bio-Petri nets, we shall need the sets of
patterns conforming to specific types (here a type system E : ρ on expressions
is assumed):

Patternsτ,Γs

∆= {β ∈ Patterns |
type(β) = τ ∧ ∀s ∈ dom(β).type(β(s)) = Γs(s)}

type({si 7→ αi})
∆= {si 7→ |αi|}

type({li 7→ Ei})
∆= {li 7→ ρi} where Ei : ρi

We use a standard notation
∏
i∈I Xi for dependent sets.

Definition 1. A bio-Petri net P is a tuple (S, T, Fin, Fout, B, Γs) where

– S ⊂ Namesc ×Typesp is a finite set of places (located pattern types).
– T ⊂ {0, 1}∗ is a finite set of transitions (reactions).
– Fin :

∏
t,(c,τ)∈T×S FMS(Patternsτ,Γs) is the flow-in function (reactants).

– Fout :
∏
t,(c,τ)∈T×S FMS(Patternsτ,Γs) is the flow-out function (products).

– B : T → Expbool is the transition guard function.
– Γs :

⋃
{dom(τ) | (c, τ) ∈ S} → Typess is the species type function.

We use the superscript notation SP to refer to the places S of Petri net P, and
similarly for the other Petri net elements. For a formal definition of behaviour
(qualitative semantics) of bio-Petri nets, please refer to [21].

The Concrete Translation of LBS to Bio-Petri nets Following [23], the
concrete translation to bio-Petri nets is given by the following four definitions.

1. Let P = {(cini , βin
i ) 7→ nin

i }
RE−→ {(cout

j , βout
j ) 7→ nout

j } if Ebool be an LBS
reaction in normal form and let Γs be a species type environment. Then
define P(P, Γs) as follows, where ε denotes the empty string:

– SP
∆= {(cini , type(βin

i ))} ∪ {(cout
j , type(βout

j ))}
– TP

∆= {ε}
– FPio (ε, (c, τ)) ∆= {(βio

h 7→ nio
h ) | cioh = c∧type(βio

h ) = τ) for io ∈ {in, out}
– BP(ε) ∆= Ebool

– ΓPs
∆= Γs



2. Define P(0) ∆= (∅, ∅, ∅, ∅, ∅, ∅)
3. Let P1 and P2 be Petri nets with ΓP1

s (s) = ΓP2
s (s) for all s ∈ dom(ΓP1

s ) ∩ dom(ΓP2
s ).

Define parallel composition P = P1|P2 as follows, where b ∈ {0, 1}:
– SP

∆= SP1 ∪ SP2

– TP
∆= {0t | t ∈ TP1} ∪ {1t | t ∈ TP2}

– FPio (bt, p) ∆=


FP1

io (t, p) if t ∈ TP1 ∧ p ∈ SP1

FP2
io (t, p) if t ∈ TP2 ∧ p ∈ SP2

∅ otherwise
for io ∈ {in, out}

– B(bt) ∆=

{
BP1(t) if t ∈ TP1

BP2(t) if t ∈ TP2

– ΓPs
∆= ΓP1

s ∪ ΓP2
s

4. First define c[(c′, τ)] ∆=

{
(c, τ) if c′ = >
(c′, τ) otherwise

Let P ′ be a Petri net. Then define the compartmentalisation P = c[P ′] as
follows:
– SP

∆= {c[p] | p ∈ SP′}
– TP

∆= TP
′

– FPio (t, c[p]) ∆= FP
′

io (t, p) for io ∈ {in, out}
– BP(t) ∆= BP

′
(t)

– ΓPs
∆= ΓP

′

s

Observe that for programs where species have no modification sites and do not
form complexes, the above definitions collapse to the simple cases of composition
illustrated in Program 1 and Figure 1 for standard Petri nets.

6 Related Work and Future Directions

Compared to the other languages for biochemical modelling mentioned in the
introduction, CBS is unique in its combination of two features: it explicitly
models reactions rather than individual agents as in process calculi, and it does
so in a compositional manner. BIOCHAM, for example, also models reactions
explicitly using a very similar syntax to that of CBS, but it does not have a
modular structure.

Whether the explicit modelling of reactions is desirable or not depends on the
particular application. Systems which are characterised by high combinatorial
complexity arising from complex formations are difficult or even impossible to
model in CBS and LBS; an example is a model of scaffold formation which
considers all possible orders of subunit assembly, where one may prefer to use
Kappa or BioNetGen. But for systems in which this is not an issue, or where the
combinatorial complexity arises from modifications of simple species (which CBS
and LBS deal with in terms of match variables), the simplicity of a reaction-based
approach is attractive. It also corresponds well to graphical representations of
biological systems, as we have seen with the yeast pheromone pathway example.



To our knowledge, no other languages have abstractions corresponding to
the pattern expressions and nested declarations of species and compartments of
LBS. The notion of parameterised modules is however featured in the Human-
Readable Model Definition Language [1], a draft textual language intended as a
front-end to the Systems Biology Markup Language (SBML) [10]. The modules
in this language follow an object-oriented approach rather than our functional
approach, but there is no notion of subtyping or formal semantics.

Tools for visualising LBS programs and, conversely, for generating LBS pro-
grams from visual diagrams, are planned and will follow the notation of [12,16] or
the emerging Systems Biology Graphical Notation (SBGN). We also plan to use
LBS for modelling large scale systems such as the EGFR signalling pathway [18],
although problems with interpretation of the graphical diagrams are anticipated.
While some parts of the EGFR map are well characterised by modules, others
appear rather monolithic and this is likely to be a general problem with modular
approaches to modelling in systems biology. In the setting of synthetic biology,
however, systems are programmed rather than modelled, so it should be possible
to fully exploit modularity there.

With respect to language development, it is important to achieve a better
understanding of homomers, enabling a commutative pattern composition op-
eration. We also anticipate the addition of descriptive features for annotating
species with e.g. Gene Ontology (GO) or Enzyme Commission (EC) numbers.
One may also consider whether model analyses can exploit modularity, e.g. for
Petri net invariants. Results for a subset of CBS without complexes and modifi-
cations, corresponding to plain place/transition nets, can be found in [20], and
extensions to LBS and coloured Petri nets would be of interest.
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A The Type System for LBS

This section presents the central parts of the type system for LBS.

A.1 Type Environments

The type system relies on the following type environments corresponding to each
of the possible declarations in the abstract syntax.

– Γs : Namess ↪→fin Typess for species declarations.
– Γc : Namesc ↪→fin Namesc for compartment declarations.
– Γp : Identp ↪→fin Typesp for pattern declarations.
– Γr : Identr ↪→fin FormalPars for rate function declarations.
– Γm : Identm ↪→fin FormalPars × Types∗p × 2Namess for module declara-

tions.

The Γm environment stores the type of defined modules which includes a set of
compartments in which the module may be legally instantiated according to the
compartment hierarchy specified through compartment declarations. For a well-
typed module this set will either be a singleton compartment, indicating that
the module can only be instantiated in a particular compartment, or the entire
set of compartment names indicating that the module can be instantiated inside
any compartment. The type system also needs to check that output patterns are
used appropriately. For this purpose, two additional environments are required.

– Γ out
p : Identp ↪→fin Typesp. This stores the declared types of module

output patterns.
– Rp ∈ 2Identp . This records pattern identifiers which have an entry in the
Γ out

p environment and are defined inside a module.

The Rp environment is necessary to ensure that a module does in fact define the
pattern identifiers which it has declared as outputs.

The type systems to be given in the following use and modify the above type
environments. In general, type judgements for a given type system may have the
form Γs, Γc, Γp, Γr, Γm ` . . . but for the sake of readability we may rather write,
e.g., Γ, Γp ` . . . where Γ represents all environments to the left of the turnstile
except Γp.



Table 2: The type system for patterns.

STSpec
dom(σ′) ⊆ dom(σ) ∧ ∀l ∈ dom(σ′).σ(l) = σ′(l)

σ <: σ′

STPat
∀s ∈ Namess.τ(s) ≥ τ ′(s)

τ <: τ ′

TPat
Eij : ρij and ρij = Γs(s)(lij )

Γ, Γs ` {si 7→ {li 7→ Ei}} : {s 7→ |{li 7→ Ei}|}

TPatComp
Γ ` PE : τ and Γ ` PE′ : τ ′

Γ ` PE − PE′ : τ + τ ′

TPatUpd
Γ ` PE : τ and Γ ` PE′ : τ ′

Γ ` PE〈PE′〉 : τ
τ <: τ ′

TPatSel
Γ ` PE : τ

Γ ` PE.s : {s 7→ 1} s ∈ dom(τ)

TPatRem
Γ ` PE : τ + {s 7→ 1}

Γ ` PE\s : τ
TPatIden

Γ, Γp ` p : Γp(p)

A.2 Pattern Expressions

Subtyping is formalised by the first two rules in Table 2. The remaining rules
use the environments for primitive species and patterns, so judgements are of
the form Γs, Γp ` PE : τ . The first rule furthermore relies on a type system
(not given here) for basic expressions with judgements of the form E : ρ. We
use pattern types as multisets with the obvious extension to N and the standard
multiset operation +.

A.3 Programs

The type system for programs in Table 3 tells us if a program is well-typed and,
if so, gives the compartments where a program can legally reside according to
the compartment hierarchy specified in compartment declarations. Judgements
are of the form Γs, Γc, Γp, Γr, Γm, Γ

out
p ` P : γ a Rp where γ ∈ 2Namesc , and thus

rely on all available environments. Rules for rate expressions, located patterns
and declarations are omitted.

The conditions on compartment hierarchies are enforced in the TReac rule
by using standard set theoretic notation, and the condition on free match vari-
ables uses the obvious extension of FV to located pattern expressions. The TPar
rule imposes similar conditions on compartments, and also ensures that parallel
compartments do not define the same return pattern identifiers. The declara-
tion rule, TDec, relies on the declaration type system which is omitted. If the
declaration is a pattern flagged for return, the pattern identifier will be in Rp.

Module invocation is checked by the final rule, TModInv which relies on a
separate rule for checking that actual and formal parameters match. The first



Table 3: The type system for programs.

TReac
Γs, Γc, Γp ` LPEi : τi, γi and Γs, Γc, Γp, Γr ` RE and Γs, Γc, Γp ` LPE′

j : τ ′
j , γ

′
j

Γ, Γs, Γc, Γp, Γr ` {LPEi 7→ ni}
RE−→ {LPE′

j 7→ n′
j} if Ebool : γ′′ a ∅

if 1) γ′′ 6= ∅ and 2)
[

FV(LPE′
j) ⊆

[
FV(LPEi) and

3) FV(Ebool) ⊆
[

FV(LPE′
j) ∪

[
FV(LPEi) where γ′′ =

\
{γi} ∩

\
{γ′
j}

TPar
Γ ` P1 : γ a Rp and Γ ` P2 : γ′ a R′

p

Γ ` P1 | P2 : γ ∩ γ′ a Rp ∪R′
p

γ ∩ γ′ 6= ∅ and Rp ∩R′
p = ∅

TNil
Γ ` 0 : Namesc a ∅

TComp
Γ, Γc ` P : γ′ a Rp

Γ, Γc ` c[P ] : {Γc(c)} a Rp
c ∈ γ′

TDec
Γ ` Decl a Γ ′, Rp and Γ ′ ` P : γ a R′

p

Γ ` Decl;P : γ a Rp ∪R′
p

Rp ∩R′
p = ∅

TModInv
Γ, Γc, Γp, Γm, Γ

out
p ` APars <: FPars and Γ, Γc, Γ

′
p, Γm, Γ

out
p ` P : γ′′ a R′′

p

Γ, Γc, Γp, Γm, Γ out
p ` m(APars; pat po′);P : γ′ ∩ γ′′ a R′

p ∪R′′
p

if 1) γ′ ∩ γ′′ 6= ∅ and 2) R′
p ∩R′′

p = ∅ and 3) |po| = |po′| and

4) if po′
i ∈ dom(Γ out

p ) then τo′
i <: Γ out

p (po′
i ) where

Γ ′
p

∆
= Γp[po′

i 7→ τo′
i ]

τo′
i

∆
= τo

i Θ where Θ
∆
= {si 7→ s′

i}

γ′ ∆
= γΘ where Θ

∆
= {ci 7→ c′i, c

′′
i 7→ Γc(ci)}

R′
p = {po′

i | po′
i ∈ dom(Γ out

p )}

(FPars, τo, γ)
∆
= Γm(m)

spec s : l : ρ; comp c : c′′; pat p : τ ; rate r
∆
= FPars

s′ : l′ : ρ′; c′;PE;RE
∆
= APars

TAFPar
Γs, Γp ` PEl : τ ′

l and Γs, Γc, Γp, Γr ` REm
Γs, Γc, Γp, Γr ` APars <: FPars

if 1) |x| = |x′| for x ∈ {s, li, c, p, r} and 2) s′
i ∈ dom(Γs), c

′
k ∈ dom(Γc) and

3) ρij = ρ′
ij , Γs(s

′
i) <: {l′ij 7→ ρ′

ij} and 4) τ ′
i <: τ ′′

i where

τ ′′
i

∆
= τiΘ where Θ

∆
= {si 7→ s′

i}

spec s : l : ρ; comp c : c′′; pat p : τ ; rate r
∆
= FPars

s′ : l′ : ρ′; c′;PE;RE
∆
= APars



two conditions are similar to the TPar rule, and the third checks that actual and
formal output parameters have matching length. The fourth condition requires
that any of the actual output patterns which are also declared as outputs at a
higher level are subtypes of the declared outputs at that higher level. The pro-
gram following module invocation is evaluated in a pattern environment updated
with entries for the actual output patterns. There is however one catch: pattern
types may contain the names of formal species parameters, and these must be
substituted for the corresponding actuals using a substitution Θ. Similar ideas
apply to the set of legal parent compartments.


