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Abstract. The general aim of this paper is to find a theory of concurrency combining the
approaches of Petri and Scott (and others).

In part I we introduce our formalisms. To connect the abstract ideas of events znd domains of
information, we show how causal nets induce ccrtain kinds of domains where the information
points are certain sets of events. This allows translations between the languages of net theory and
domain theory. Fuliowing the idea that events of causal nets are occurrences, we generalise causa!
nets to occurrence nets, by adding forwards conflict. Just as infinite flow charts unfold finite ones, so
transition nets can be unfoldzd into occurrence nets. Next we extend the above connections
between nets ard demains to these new nets. Event structures which are intermediate between nets
and domains play an important part in all our work. Finally, as an example of kow concepts
translate from one formalism to the other, we show how Petri’s notion of confusion ties up with
Kahn and Plotkin’s concrete domains.

In part II we shall continue the job of connecting up notions within net theory and the theory of
domains. In particular, we shall examine ** 'ea of states of computations.

1. Introduction

The motivation of the present work is the sear h for a theory ¢f concurrency which
incorporates, on the one hand, the insights of Petri and his school [9, 10] on events,
causality, etc. and on the other hand the insights of Scott [12, 14] and Stoy [15] on
how to give denotational semantics using domains, which are partial ordcrs of
information. The work is rather abstract in that it attempts to connect up the ideas of
events and (partial orders of) information. We hope that attending to the main
intuitive ideas first will lead naturally to more practical applications later.

This paper consists of two parts. Part [ which we present here has three sections.

In Section 2, we consider causal nets {9] and show how they giv:: domains whose
(information) points are sets of events of the nets, that have occurred by some stage
of the process (or computation) d=scribed by the net. This correspondence allows
comparison of lattice-theoretic :icas and ideas expressed in the language of net
theory; this is extended further in Section 3 where we introduce occurrence nets
which are ['ke causal nets but with forwards conflict added on. In both cases
"..termediate structures - called event structures — prove to be of use; they are like
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nets but with the conditions removed. We hope they are of some independent
interest.

In both causal and occurrence nets the events are thought 0. as occurrences and the
nets are acyclic and often infinite and describe, somehow, a process or computation.
This contrasts with the systems approach of considering transition nets [10] as the
main subject of study; indeed occurrence nets can be obtzined (see Proposition 4) by
unfolding transition nets forwards from an initial marking. 1t is in the same spirit as
considering infinite acyclic flow diagrams, [13], or infinite terms [2].

As an end to part I we give an example of the translation of concepts from one
formalism to the other: Petri’s notion of confusion (in transition nets) is tied up with
Kahn and Plotkin’s concrete domains.

In part II we shall continue the job of connecting up notions wiihin ret theory and
the theory of domains. In particular, we shall examine the idez of states of
computations.

There are clearly many gaps in the present treatment. For one thing e would like
a better understanding of what we mean when we say that a nei describes a
coinputation or process. Also the categorically minded will note that we have not
discussed morphisms; this is particularly important for domains where the continu-
cus functions play a major role in the denotations of programs. Fi..aily we note a
curious mismatch. We call our nets (descriptions of) processes or ¢ ymputations and
each such net gives rise to a whole domain; on the other hand, in so far as processes
are considered in the lattice-theoretic approach (as in [8]) they ars onl; elements of
domains. Resolution of this problem will no doubt involve separzting and relating
the differ=+t uses of the word ‘process’.

2. Causal ne's

We start off with an explanation of our computational i-terpretation of causal
nets - the process level of net theory. To define these rets, we follow the axiomatic
approach of Petri [9] and Best [1]:

Definition 1. A Petri net is a triple N = (B, E, F), where
- B is a set of conditions,
- E is a set of eveius,

- F<(B X E)u(E x B) is the causal dependency relation,

satisfying
Al BnE =0,
A2 F#,

A3 B U E =Field(F) (=4elxeB U E|3y: (xFy) v (yFx)}).
Forany x € P UE, 'x (x) denotes {y | yFx} ({y | xFy)).
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We call N a causal net iff further

A4
AS
A6
A7

VbeB:|bl<1,
Vbe B:|bl<1,
F* is irreflexive,

Vb, o€ B: (by="b:)A (b1 =b3)=> by = ba.

There is a well-known standard graphical representation of Petri nets, which we shall
use throughout this paper. Conditions are represented by circles: O, and events by
boxes: [J. The relation F is represented by oriented arcs between circles and boxes,
so that there is an arc from x to y iff xFy.

Example 1. The graph in Fig. 1 represents the (causal) net N = (B, E, F), where

B ={bl, b2’ h39 b4},
E= {eh €2, €3, e4}:

F= {(ela bl)s (el, b2)s (bh eZ), (b2’ 83), (629 b3)a (e3’ b4), (st 64), (b49 e4)}'
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In [9] Petri gives a deeply considered discussion of causal nets and how they
provide the foundation for general net theory. The notion of concurrency plays an
important role in this analysis, and, as noted by Petri himself, is easily -lefined in the
context of causal nets.

Definition 2. For a causal net N=(B, E, F) the concurrency reiation con <
(BuUE)x(BuZE)isdefined by

con =(BUE)X(BUEWF U(F)™).

1t follows that con is symmetrical and reflexive (from A6). It also fcllows that in
causal nets any two elements of B U E are either causally dependent or concurrent.
We shall not go into Petri’s careful arguments for the axioms for causal nets (based on
the ideas behind general net theory), but only briefly outlire our intuition behind
causal nets as representing computations.

The events of causal nets represent occurrences of certain ‘atomic events’, and a
s'ate of a computation is represented by holdings of certain conditions. An oceur-
rence of an event e is associated with a state in which all its preconditions {'~) hold,
and the effect of its occurrence is that all its preconditions cease to hold, and all its
postconditions {¢’) begin to hold. Furthermore, each event e is ‘caused *y’ a unique
subprocess {{xe BUE|xF e}), and ‘causes’ a unique subprocess ({xeBu
E |eF " x}). (Causality is probably not ihe right English word in this context~necessity
may be better.) This is not necessarily true in higher level nets, in wkich events (and
conditions) may be repeatable, and (forwards or backwards) conflict may be present.

As an illustration of the ideas behind these different levels, suppose we have a
program which runs on various possibie input data d, and which contains a definition
of a procedure, P. Then we have the following possibie events at process or system
levels:

- Process level: The third call of P in the run with input data d.
- System level: Any call of P in the run with input data d.

Any call of a procedure in the run with input data 4.

Any call of a procedure in any run of the program.
We now focus on the pattern of occusiences of events of causal nets. The relation F
specifies a certain dependency, in the sense that if eF"¢’, for e,e’ € E, then in the
process described by the net, e’ cannot occur without e having already occurred. This
lea:ls to the following definition of 2 ‘causality’ structure on events:

Definition 3. An elementary event structure is just a partial order § = (E, <), where
- E is a set of events, and

- < the partial order over E is called the causality relation.

The relationship between causal nets and elementary event structures is obvious.
It is made precise by the next two theorems.
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Theorem 1. Let N =(B, E.F) be a causal net. Then ¢[N]= ao(E, F* | E?) is an
elementary event structure.

Proof. Only asymmetry is non-trivial, and that follows from A6.

Theorem 2. LetS ={E, <) be an elementary event structure (with E # ). Then there is
a causal net n[S] such that & = ¢[n[S]].

Proof. We construct y[S]as N =(B, E, F), where
B={(e,e'y]le,e'cE,e#e',e<e'}u{{0,e), (e, 1) e £},
F={{e,e'), e').(e,{e,e"))|e, e'c E,(e,e'yeB} -

u{({0, e), e), (e, (e, 1)) | e c E}.

Axioms A1, A3, A4, AS and A7 are trivial; A2 follows fror (e assumption E # @,
and A6 follows from the fact that < is a partial order. It is also e¢asy to see that

S = ¢£[n[S]]

What these two trivial theorems say is that nets have ‘‘as much” structure as
elementary event structures (ignoring the empty event structure); nothing is lost in
the passage S - n[S]. However, this does not work in the opposite direction, as in
general N and n[¢[N]] are not isomorphic. Take the set N from Fig. 1. The
elementary event structure £[N] and the causal net n[¢[N1]] are pictured in Fig. 2.

It should be ciear from this example, that Theorem 2 holds for other definiticins of
n - the particular one we have chosen is somehow maximal - a point we shall return
to later.

This raises the natural question, whether or not it is reasonable to identify causal
nets using the equivalence relation:

Ny =N, ift §{N1] = €[N>).

From our point of view, it seems that = is an acceptable equivalence relation,
although from a net theory point of view, it might have undesirable properties.

However, we press on for the moinent with the connection between elementary
event structures and Scott [12, 14] domains of information. Given an elementary
even! structure, S = (E, <), we want some idea of information about a certain set, x,
of events having occurred (in the process n[§]). This information can be represented
by ihe set itself, and the intuition behind the causality relation tells us that x must be
left-closed, where

efinition 4. Let § = (E, <) be an elementary event structure, and suppose x < E.
Then x is ieft-closed ift

VeexVe'eE:e'se=>e'ex.
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€4

nlg[N]]

Fig. 2.

So, as information pointe we choose the left-closed subsets of £. Whai about the
ordering? From the above it follows that x' contains more information than x
precisely when x is a subset of x'.

Detinition 5. Let S = (E, <) be ar elementary event structure. Then £[S] is the
parual order of left-closed subsets of E ordered by inclusion.

It is quite easy to characterise the structures £[S]. The only new concept we need
is that of prime algebraicity.

Definition 6. Let P = (D, =) be a paruial order. An element p € D is a complete prime
(prime) ift for every X < D (every finite X < D), if | | X exists and p .= ] X, tlun
there exists an x € X such that p = x. The set of complete primes of P is denoted €p.

Definition 7. A partial order P =(D, ) is said to be prime algebraic iff for every
element deD, | | P, exists (where Py=gdp = d|p is a complete ~rime)), zad
d= U P de
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in the graphical representation of partial orders in Fig. 3 the (complete) primes are
circled, and it is easy to see that none of these partial srders are prime algebraic.

The next proposition relates the concept of prime algebraicity to more standaid
lattice-theoretic concepts.

Proposition 1. A complete lattice is prime algebraic iff it is algebraic and every finite
e.ement is a lub of complete primes. Further, such a lattice is completely distributive,
every complete prime is finite, and an element is a complete prime iff it is completely
irreducible.

We now present results leading to the characterisation of the structurcs £[S).

Theorem 3. Let § = (E, <) be an elementary evert structure. Then ¥[S] is a prime
algebraic complete iaitice. Its complete primes are those elements of the form
[e]=dcele’ e E|e'<e} (e E).

Proof. The structure Z[S]is a complete lattice with| | X ={_ X (and| ] X =) X).
Each [e] is clearly left-closed, and is a completc prime asif [e] = | | X =\ X, then
eclejc|UX and so for soms x in X, ecx, ard so [e]=x. As we have 1 =
(U{[e]]e € x} for any x in Z[S], each element is a lub of the complete primes below it,
and so Z[S] is prime algebraic.
Finally, if x is a complete >rime, then as we have x = {[¢]|e € x} we must have
x &[e] for some e in x. But then we must have x =[e], which completes the proof.

This theorem indicates how to map our lattices to elemeiitary event structures.

Definition 8. Let P = ("D, =) be a prime algebraic complete lattice. The elcmentary
event structure P[P] is defined as (€p, = | €7).

Before stating the characterisation of the structures #[S] we shaii need the
following general lemma.

Lemma 1. Let P = (D), <) be a prime algebraic partial order. Then the map :P—
Ll(%p, = 1 €3)] defined by

7(d) = serlp € Gp|p = d}
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is an order monic (i.c. w(d) © m(d") iffd = d"), it preserves and reflects complete primes,
and preserves those lubs that exist in P.

Proof. Clearly 7 is monotonic. If, on the other hand, #(d)= w(d’), thun from prime
algebraicity of »

d=|Hpelpsdi=Irid)=lln@d)=4d"

Let p be a complese prime of P, then #(p) is a complete prime in ¥[(€p, = | €%)]
from Theorem 3. On the other hand, it also follows from the theorem that if (d)isa
complete prime, then d is a complete prime, too. So, 7 preserves and reflects
complete primes. Finally, if | |» X exists, then

fr(l_le) ={pe €rlp= UPX}

= L}’({ p € %p|p = x} (bythe definition of complete primeness)

=J =(x).

xeX

We shall often make use of the well-known fact that any mapping between partial
orders which is onto and an order monic is an isomorphism. This happens in the proof
of the next theorem, which states the very close relationship which exists between our
lattices and event structures.

Theoremn 4. Let S =(E, <) be an elementary event structure; then S=P[L[S]].
Similarly, let P = (D, =) be a prime algebraic complete lattice ; ther. P = [ P[P]).

Proof. Define ¥:S - P[¥|S]]by ¥(e) =[e]. Then ¥ is well-defincd and onto from
Theorem 3. Furthermore, ¥ is easily proved to be an order monic, and hence it is an
isomorphism, which proves thz first part of the theorem. As for the second part— 7 18
known from Lemma 1 to be ar: order monic; = is also onto, since oz any element X of
ZLIP[P]), LirX exists (P is » complete lattice) and

w(L_IpX) =J 7(x) (byLemma 1)

xeX
={{[x1]xe X} (by the definition of =)
= X.

So, 7 is indeed an isomorphism.

Take S to be the elementary event structure associated with the causal net from
Fig. 1, § and Z[S] are pictured in Fig. 4. The primes of £[§] are circled, and it is easy
to see that § = P[{Z[S]].

Theorem 4 shows that eleini -ntary event structures and prime algebraic complete
lattices are equivalent structures, in the sense that one does not lose any structural
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information going from one to the other via th= % and 2 mappings — in contrast to
the earlier result about the relationship between causal nets and elementary event
structures. A special case of Theorem 4 where § is finite is given in [3].

The framework we have set up so far, can be pictured as follows:

' 3 £
~ausal Elementary .___J—

nets event

structur
tures r?-

We are concerned with the translation of concepts and ideas from one side of this
diagram to the other. From right to left we get an explanation in the framework of net
theory of the Scott idea of information. From left to right w:: see how net concepts
(like events and causality) translate into the idea of partial order of information. In
the rest of this section we shall elaborate a little on this latter translation, but before
that a few general remarks.

First, elementary event structures have beer introduced here oniy as an inter-
mediary technical device, but we do believ: that they (and their genesralisations
introduced in the next section) are interesting in their own right, and as we shall see,
they should be a more appropriate framework for a number of Guestions than their
equivalent but more detailed lattice structures.

Second, we have deliberately established the links between net throry and the
theory of partial nrders at the process level. We strongly believe that an enderste nd-
ing of this low leve! is necessary for an understanding of similar links between higher
level concepts within the two theories.

Prime zlgebraic
compliete lattices
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And now, let us see how some of the basic concepts of net theory iranslate using
the mappings £ and %. Not surprisingly, since we specifically focussed ~ur attention
on event occurrences of nets, the concapt ¢f an event translates very well. From our
construction of Z[P), where P is a prime algebraic complete lattice, it seems that the
notion of events transiates into the complete primes of P. To see the intuition behind
these primes, we shali need the notion of prime intervals of partial orders.

Definition 9. Let (D, =) be a partial order. Define the interval from d to d’, [d, d'],
ford, d'eD as

[d,d'1=usdd"eD|d=d"=d".

Aninterval [d, d'] is said to be prime iff d # d' and [d, d']={d, d'}, in which case d' is
said to cover d, which we write as d —<d'.

With our computational interpretation in mind, prime intervalc corrcspond to
steps of computations or more specifically, occurrences at particular states of the

computations. To see how this works formally, define the relatior: < between prime
intervals by

[di, di1<[da, d5]iffd;=diUdsand d; =d' M do.

Next we define the equivalence relation =~ between prime intervals as the
equivalence generated by <. This relation represents the intuition behind ‘occur-
rences of the same event’. How does this intuition tie up with the notion of complete

primes? As a first step the following (easy to prove) proposition gives the relation
between prime intervals and complete primes.

Proposition 2. Let P = (D, =) be a prime algebraic complete lattice. Then for any
prime interval &, d'], w(d")\n(d) is a singleton. Hence if we put

prld, d') e w(d)\m(d),

then pr is a well-defined mapping from the prime intervals of P to €p.

And the following theorem states the relation between the equivalence and the
mapping pr.

Theorem 5. Let P = (D, <) be a prime algebraic complete lattice; then the following
conditions are equivalent for prime intervals [d., d1) and [d., d5]:

(1) [dy, d1]=[d, d3],

(2) pr{dy, d1]) =pr{da, d3]),

(3) There exists a prime interval [ds, d5] such that

lr.dls d;_]?{d}, ds]s[d27 d’2]°
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Further, if p is a complete prime of P, then

p =pr([LJ{p’e €elp#p' Ap' = pl, p]).

Proof. (1)=>(2). It follows easily from the definition of < that [d,, 4} ]=<[d>, d3]
implies pr({dy, d1]) = pr((d2, d2}). "
(2)=(3). Defineds=d,MNd,and d3 =d} N d>.
(3) = (1). Trivial.
The last part of the theorem is obvious.

Theorem § proves a one-to-one correspondence between the complete primes and
the more intuitive equivalence classes of prime intervals. This justifies our translation
of events into complete primes.

Now, it is easy to see that the events of a causal net N are in one-to-one
correspondence with the evenis of £[N], and the events of an elementary event
structure S are in one-to-one correspondence with those of n[S]. On the other hand,
the events of S are also in one-to-one correspondence with those cf #[S], and the
ev. uts of a prime algebraic complete lattice are in one-to-one correspondence with
thos.: of #[P].

The situation for translation of conditions is a good deal less pleasant. Our main
tool for handling conditions is the extensionality axiom A7, which allows us to
identify any condition & with its pre- and postevent (‘b and ¥°). For simplicity, we shall
only demonstrate how conditions translate intc elementary event structures.

A condition of an elementary event structure S is taken to be any condition of
n[S]. By definition this gives a nice one-to-one relationship between conditions of §
and n[S), but, obviously, it is more interesting to see how conditions of a causal net N
correspond to certain conditions of £[N']. Define the map, bed, Lietween these two
sets of conditions as follows:

((0,e", if'b=@andb ={e'},
VbeB:bed(b)={(e,1), if'b={e}andb =,
(e, e"), if'b={e}and b ={e'}.

It follows from the axioms of causal nets that bed is well defined, and that it is
one-to-one. However, in general bed will not be onto, obviousiy because of our
construction of n[$], which in general generates a lot of redundant cenditions. One
could try to remedy this by a characterisation of the ‘essential’ conditions of S. The
following lemma is such an attempt.

Lemma 2. LetS = (E, <) be an elementary event siructure, and b one of its conditions.
Then the following two conditions are equivalent:

(1) for every causal net N = (B, E, F) for which S = ¢[N], b € bed(B),

(2) b=(e, e'), where e' covers e (with respect to the relation <).
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Proof. Assume & of the required form, then clearly for every causal net N =
(B, E, ¥) for which S = £[N], there must exist a con?;sn b'e B such that eFb'Fe’,
and hence b = bed(d’). On the other hand, if b is no. of this form, corstruct a slightly
modified form, N, of n[§] leaving out the condition corresponding o b, such that
8§ =¢[N]and b bed(B).

This lemma shows that the only essential conditions are the ‘points of non-density’.
However, the net consisting of the events of S and all essential conditions will not in
general be mapped onto § by £ Indeed, considering, for instance, the elementary
event structure associated with the rationals shows that it is even possible for no
condition to be essential.

We Jeave it, for the moment, to the reader to see how the causal de pendency and
the concuriciny relation of causal nets translate nicely into our event and lattice
structures. We shall look closer into this in the next section.

3. Qccurrence nets

From a computational point of view, all the structures introduced in Section 2 lack
the important notion of conflict, branching or non-determinisn. This is 1ot inherent
in either of our th2ories, and in this section we shall sce a nice partial cor-espondence
between their different ways of treating conflict.

Within net theory higher level nets may have (forward or backward) conflicts.
Essentiaily this means that the subprocess ‘caused by’ or ‘causing’ an event or a
condition is no longer unique. Net theory includes a thorough treatment of conflicts,
mainly at the system level of transition nets. The process level semantics of a
transition net is the class of causal pets it unfolds into, where all the choices
associated with such an unfclding are ‘made by the environment’ [11]. However,
from a computational point of view, we would prefer to deal with conflicts at the
semantical level, and to express the meaning of a systera with conflicis in one
semantical object. We deliberately want to stay as close to causal nets as possible,
looking for a class of nets with conflicts on a slightly higher level than causal rets.
Graphically, this means that we may want to allow nets with the structures pictured in
Fig. 5.

The intuition behind these structures is as follows:

- forwards conflicts:  from the holding of b, either ¢; or ) (but not both!) may
occur, in either case with tt = same effect as in causal nets;

- hackwards conflicts: the holding of b, may have begun from an occurrence of e» or
e5 (but not from both!).

We reject backwards conflict as we wish to axiomatise a nction of condition

occurrence which determines the event occurrence that causedq it. So we keep A5

which rules out backwards conflict, a:1d look for a replacement for A4 as that rules
out forwards conflict.
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Definition 10. Let N = (B, E, F) be a Petrinet satisfying A5-A7.Foranyac BUE,
let a” denote the subset of E defined by

a =gef {8 e EICF*G}
Two events e, and e, are said to be in direct conflict,
e ¥ ne; iff ey # e, and ey n ey #0.
Two elements of B U E, a, and a,, are said to be in conflict,
ay ¥ nas iffael, e,eE; (ey Ea;)/‘\ (ezeai)/\ (e1 #* 1Nez).
Definition 11. A Petri net N is a (forwards conflict) occurrence net iff it satisfies
AS5-A7 and
A4 # n is irreflexive.
Occurrence nets will be our new class of semantical nets. Elements of E and B still
represent unique occurrences and holdings, respectively, and A4’ guarantees that no
event (or condition) is in conflict with itself (can occur on iwo different branches of

the computation, so to speak). More importantly, the concept of concurrency carries
over nicely:

Definition 12. For an occurrence net N = (B, E, F), the concurrency relation coy €
{BUE)X(B UE) is defined by

con =aef((BUE)X(BUEWF " U(F) U #n).

The following proposition is an immediate consequence of our definitions.
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Propasition 3. Let N = (B, E, F) be an occurrence net. Then coy is symmetrical and
reflexive. Furthermore, any two elements of B UE are related in one of the three
mutually exclusive ways: causally dependent, concurrent or in conflict.

It should be noted that our occurrence nets have very little to do with the
occurrence structures defined by Holt [4]. Any causal net is an occurrence net
according to our definition.

Before introducing branching in our other theories, let us briefly illustrate how
occurrence nets dc describe the semantics of transition nets the way we wanted. We
shall only give a brief introduction to transition nets - those readers not familiar with
the theory are referred to [10].

A transition net N in the following is a finite Petri net with a dynam:. behaviour.
The conditions of N are called places, and the events transitions. The behaviour of N
is defined in terms of its markings and the firing rule. A marking is a subsset of places,
usuaily represented by a token disiribution (one token on ewery place in the
marking). Markings of N may change dynamically via firings of transitions. A
transition ¢ may fire in a partici-lar marking M iff 't < M and ' ~ #f =@. A firing of ¢
will lead to a new marking M' ={(M\'t)ut.

In the following we shall assuine that N has associated with it an initial marking M,
and tiie behaviour we are interested in is the “token game” you can play from M, as
defined above. The set of marki~gs you can get into playing thls game ‘ron: M is
called the set of reachable markings.

Furthermore, we shall assume that .V is contact-free (1-safe), that is fcr any
reachable marking M and transition ¢, 't < M implies £ " M =0.

The idea behind our semantics of transitior nets is that the behaviour of N wili be
described by an occurrence net with precisely one condition for each residence of a
toker: on a place, and preciselv one event for each firing possible for N. A particular
finite (sequential) behaviour of N is given by a sequence

o =MotoMty - - - t,M, 4, (%)
where the M;’s are markings, M is the initial marking, the #'s transitions, and
Visn: (s M)r (M =M\t)ot).
Notice that we have assumed contact freeness. A particular firing of a trensition, f,,,
may now be identified with a certain equivalence class of seqquences of this form. The
equivalence wili abstract away from the ordering of concurrent firings of transitions.

Take a sequence of the form (*), and assume there exists an i <n—1 such that

t=M;_, (and hence ‘t;nt;_; =0). Then ‘o represents th~ same firing as o"”
=", where

o'=Mpty- - M; (tMiti My - - .M, 4,

and M; is the unique marking guaranteeing that o' is of the form {x). If 1, c M, _;
{and hence ‘4, N't,_, =), then also ‘o represents the same firing as o™ (o =%¢"),
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where
a" =Mty -+ Mp_1t,M 511,

and M, ., is the unique marking guaranteeing that ¢" is of the form ().

Now, let = denote the reflexive, symmectrical and transitive ciosure of ="y Em),
and let, for any o of the form (*}, [o'] denote the equivalence class of o with respect to
=. Basically, equivalence under = is the same kind of abstraction from orderings of
concurrent firings as introduced in [7] for a different purpose.

It is easy to see that each element of an equivalence class has a unique final
transition, and hence we may identify these equivalence classes with firings of the
transition net. So, a firing is represented by ‘the token game histcry that caused it’,
and the events of our semantical occurrence net, E, will be this set of equivalence
classes. Residences of tokens on places are then represented by the set

B ={(e, p)|e € E is a firing of transition ¢, and the place p belongs to ¢}
w{(0, p)|p € Mo}.

And finally, the F relation of our semzntical net will be

- (e, b) e F iff there exists a place p of N such that b = (e, p);

- (b, e)eF it either b =([Moto M t,,_an], p), € =[Motg e tn—antnMn+l] and
pe't, orelse b=(0,p), e =[MotoM,] and p € t,.

Definition 13. Let N be a finite, contact-free transition net with initial marking M.
Then O[N, M;] denotes the Petri net defined by the construction given above.

Proposition 4. For any finite contact-free transitic:i net N with initial marking M,
OI[N, M,] satisfies the axioms for occurrence nets. The map f, def..ied below, from
B U E to places and transitions of N is a folding [9]:

fCO,p) =fle.oN=p,  f((Moto" - - tu;Mn1]) = 1.

In Fig 6 a transition net N with initial marking is pictured with the occurrcnce net
constructed from N.

Let us now see how branching is handled in our other theories. Since elementary
event structures were our ‘poorest’ structures, it is not surprising that the only way of
introducing branching is by adding structure.

Definition 14. An event structure is a triple § = (E, <, #), where

E1l (E, <) is an elementary event structure,

E2 # is a symmetrical and irreflexive relation in E, called the conflict relation;
it satisfies
Ve, ex,es€E:e1=e, # e3=> ¢, # es.
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Coourrance net Lonstusies from

Fig. 6.

Wi*h these generalisations of causal nets and elementary =vent structures, the next
two fi..orems provide straightforward generalisatiors of the mappings ¢ and n and
the results of Theorems 1 and 2.

Theorem 6. Let N = (B, E, F) be an occurrence ne'. Then

EINT=at (E, F* | E%, % n | E?) 15 an evort sivacture.

Proof. The irreficxivity of #, follows from A4’. Then E2 follows from the
definition of # .

Theorem 7. Let S =(E, <, #) be an event structure (wiiri E #0). Then there is an
occurrence net n[S] such that § = ¢[q[F1].

Proof. Define the set CE as foliows:

CE =4 {x cE|Ve,e'cx:e#e' =>e # e'}.
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The events of n[S] are obviously those of E, and the set of conditions is definca by
B={e x)|lecE,xeCE,andVe'cx:e<e'}

w{{0, x)| x € CE, x nonempty}.
Finally, the F relation is defined as
F={({e, x),e")|{e,x)e B, e' e x}
u{({0,x),e")[{0,x)e B, e’ € x}
U{(e, (e, x))|{e, x)e B}.

It foilows that n[S] is a well-defined occurrence net for which # ;= # = #, and
hence £[n[S]]=S.

This construction of n[S] may seem more unnecessarily complicated than the ¢ie
from the proof of Theorem 2. Obviously, many simpler ones would do; however, we
have again chosen a ‘maximal’ construction, in the sense that any condition in any
occurrence net N for which £[N]=§ has a representative in n[S] (which means that
our treatment of conditions in elementary event structures discussed in Section 2
carries over to event structures).

Things get a bit more interesting when we move on to our lattice structures and
generalisations of the mappings £ and 2. Intuitively, an event structure rcpresents a
class of processes, where e # e’ means that e and e’ never occur in the same process.
So, not all left-closed subsets of an event structure make sense as information points.
Only the conflict f:¢e left-closed subsets can be the sets of occurrences at some stage
of an associated process.

Definition 1%, Let § = (E, <, #) be . evant structure, and let x be 2 subset of E.
Then x is conflict free iff

Ve, c'ex: (e # ¢€').
Our idea aboux the ordering of informaticn points is still the same, though.

Definition 16. Let S = (E, <, #) be an event structure. Then £[S] is the pariial
order of left-closed (w.r.t. <) and conflict free subsets of E, ordered by inclusicn.

What about our charactrisation of the structures Z£[§]? Obviously, we do not any
longer get complete lattices. Two points will be inconsistent (have no upper bound)
iff their union (as sets of events) contains conflict. But any consistent set of points will
have a lub (their union), so the structures will be consistently complete. For a
characterisation we need the even stronger conclition of coherence (introduced in

[6]).
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Trefimition 17. Let (D, =) be a partial order. A subset x of D is pairwise consistent iff
any two of its elements have an upper bound in D; (D, &) is said to be coherent iff
every pairwise cornsistent subset of D has a lub. The consistency relation is denoted {;
4 denotes inconsistency.

Theorem 8. Let S = (E, <, #) be an event structure. Then £[S] is a prime algcbraic
coherent partial order. Its complete primes are those elements of the form [e] =g l€'€
Ele'<e}.

Proof. Let X < #[S] be pairwise consistent. Then | X is conflict free, and so
| | X = X, showing that #[S] is coherent.

The rest of the proof proceeds as in the proof of Theorem 3, noting that all
elements of the form [e | are conflict free from E2, and that for any x in £[S] the set
{le]|e € x} is pairwise consistent.

From this theorem we see how to generalise the mapping 2.

Definition 18. Lct P = (D, =) be a prime algebraic coherent partial order. Then (P[P]
_is defined as the event structure (€p. <, #), where <: is = restricted to €p, and for all
e,e'€6p.e # e'iff e and e’ are inconsistent in P.

It is easy to see rhat P[P]is indeed an event structure, and we 11€ now ready to
prove the equivi:lence between event structures and prime algebraic coherent partial
orders ccrresponding tc Theorem 4. An isomorphism between two event struciures

is naturally any one to one and onto mapping, which respects :nd reflects both
causality and conflict.

Theorem 9. Let S = (E, <, #) be an event structure, then 8§ == P[L[S]]. Similarly let
P=(D, ) be uny prime aigebratc coherent partial order, then P = ¥[{P[P]].

Proof. Define : 8-> P[£[S]]by vr(e) =[e]. It follows along the lines of the proof of
Theorem 4 that ¢ is 2n isomorphism with respect to = and the correspording relation
in 9"[Z[S]]. Furthermore, ¢ is easily seen to respect and reflect the con lict relation.
The mapping o as defined in Lemmr - 1 is known to be an order moric from P to
PG, . | 63 E @1 (from Lemma 1). By definition #[P[P]] is a subordering of
ZL[(€p, = | €%, 0)], so all we have to prove is that the range of  is equal to the set of
elements of £[P[P]]}, i.e. for every left-closed set, X, of crmplete primes of P:

ddeD: w(d)=Xiff Vp, p'e X: p and p' are consistent.

The ‘only if’ part is trivial. Assume X satisfies the right-hand side assumption.

Cohevence of P implies the existence of |_|pX, and it follows that #(|_|rX) =X (just
like in the proof of Theorem 4).
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In Fig. 7 an occurrence net N is piciured with its associated event structure ¢[N]
and the coherent prime algebraic partial order £L£[N |].
So, we have now established a complete generalisation of the picture from the

previous section:

£ Z [
Occurrence "‘{' Event B Prime algebraic

nets structures coherent posets
e b =

Our considerations about translation of events and conditions work just like in
Section 2. Formally, Proposition 2 and Theorem 5 hold for prime algebraic coherent

partial orders.

Restricting ourselves to these relations on events, the correspondences, as shown
in Table 1, now be obvious to the reader.

Finally, let us see what these relations look like in terms of prime intervals of
partial orders.

® (eye5.0,)

{e',ea} ?\\ [93} /4 [ezves}

{31] {‘z}

@
sfg[N]]

Fig. 7.
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Table 1
Occurrence nets Event structures Prime algebraic
N=(B,E,F) S=(E =, #) Coherent posets
P=(D,c
Causality F*E* < = ‘62i
Conflict #n | E? # | 115
Concurrency EXF U(FY U #y) EA\((Wyu #) Ea\lzu aud

Definition 19. Let P=(D, <) be a prime algebraic coherent partial order. The
relation - (‘may occur before’) on €p is defined as follows: p; - p, iff there exist
orime intervals of P, [x1, x} }. [x2, x2 ], such thai pr({x1, x1]) = p1, pr({xs, x2]) = p>and
%1 = x3. The complement of »- is denoted -+

Proposition 5. Let P = (D, =) be a prime algebraic coherent partial order, and let p,,
D2€ [gp, D1 #pz. Then

Pz p2iff (pr=>—p2) A (P25~ P1),
p1 % p2iff (pr # p2) A (P2 p1).

and hence p, and p, are concurrent iff (p. = p2) A (p2 > p1).

4. Confusion

So far we have provided techniques to show hot, for instance, the notion of an
event translates into domains. In part I1 we shall develop these further dealing with
more sophisticated concepts such as state. of a computation and confusion in detail.
However, now we have enough machinery to connect confusion freeness in finite
contact-free transition nets with concrete domains. Indee” an equivalent of con-
fusion freeness was rediscovered in the work of Kahn and Plotkin on concrete
domains [5] without their knowing it at the time. We set down some basic facts ir

Proposition 6. Let N be a finite contact-free tran:ition net with initial marking, M.
Each finite behavinur determines a finite element of £ o ¢ o O[N, My} under

MOtO ct tnMn+l :—V) {[M[)tOM]], ey [MOt') e tnlwn-i-l]}.

Moreover there is a 1--1 correspondence between finite sequential behaviours and finite

chains of coverings from @ in £ o £ © O[N, Mo] namely Moto - + - t,M, .., corresponding
to

B-< eV(Mo!()Ml).“< <o —<eviMpty - - - 1ML 10).

(Thus ev is onto finite elements and |[e]| < o for all occurrences e.)
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We now give the definition of confusion for finite contact-free transition nets { 1¢].

Definition 20. Let N be a finite contact-free transition net with initial marking, M.
Then (N, M) is symmetrically confused iff there are a reachable marking M and
transitions ¢, ¢, t" such that (&, ¢, "SM)A(CtA T ZDA(E A ZDACin " =0).

Further, (N, M,) is asymmetrically confused iff there are a reachable marking M
and transitions f, ', " such that (f,"t"sM)A(I'EM)ACY s (MVH)UE)A
Cent"=0)ACt ~ " #0).

Finally, (iV, M) is confused iff N is symmetrically or asymmetrically confused;
otherwise (N, M) is said to be confusion-free.

In N, of Fig. 8 the conflict between ¢ and ¢’ may be resolved by the occurrence of ¢”.
In N, t' and ¢" may be brought into conflict by the occurrznce of .

s

N‘ - symmetric confusion N2 - asymmetcic confusion

Fig. 8.

We remind the reader that axiom Q of concrete domaias :akes the following form
(the elements are understood to be in a c.p.o.):

Q z—xCyArzfy=2>Nx<tsyazlt

Thus axiom Q has two parts, an existence part saying ‘3¢ - - +’, and a uniguen«:ss part
saying there is only one such ¢. The following proof demonstrates that these two parts
correspond to banning asymmetric and symmetric confusion respectively.

Theorem 18. Let N be a finite contact-free transition net with initial marking, M.
Then

(N, M) is confusion free <> £ o £ o O[N, My] satisfies axiom Q.
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Proof. Suppose (N, M) is confused. Then it is either symmetrically or asymmetric-
ally confused. In the first case

LU SM At T EOANE AT EDA A =0

for soms transitions ¢, t', " and some reachable marking M. We use the above
proposition to translate this set-up into the domain. Take x to be the finite element of
& o &0 O[N, M) associated with the finite behaviour up to M ard e, e, ¢" the
occurrences of the transitions ¢, t', t" from it. Using Proposition 6 we get the picture of
Fig. 9(a) in & &0 O[N, M,), whick contradicts the uniqueness part of axiom
Q -take

y=xule e}, z=xule'}l.

In a similar way the second case yields the picture of Fig. 9(b) in & - £ - O[N, M),
which contradicts the existence part of axiom Q - take

y=xufe e'l, z=xule"l

Tuus, (N, M) confused implies a violation oi axiom Q.

x U {e, e} xU {e,e"} xU {e,e'}
= U {e} O/e}xu{e} xU {e"} <>; U (e}
X *
a b
Fig. v,

For the converse suppose axiom Q fails to hold. This can happen in two ways;
either tie unig aeness part fails, or the existence part fails. In the second case

Ax,y.2€ Lo OIN, Mol z—xcyazfyaVt:x <tcy=>t12

We therefore have z = x U{e} and e # e’ for some occurrences e’ € y and e. We may

suppose e’ is =t-minimal in y such that ¢ # ¢'. Our hypothesis is maintained if we
redefine

x=[elMe}, z=le], y=[e'l.[e]Me}]

Now we take » .overing chain x = xo -<x; —<+ - + —<x, = y. We must have n =2 and
Xs\xa-1={¢'}. Thus we get the picture Fig. 10 in £ ¢ - O[N, M)
Using Preposition 6 we ran translate this to asymmetric confusion in N, Similarly,

but more directly, the first case yields a picture which translates to symmetric
confusion in N,
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x _y U le} *n = Xpoq U {eh}
/ ’
Xn-g U {€] L
-2
Fig. 10.

Corory 1. Let N be a finite contact-free transition net with initial marking My. Then
(N, M .s confusion-free & & o £ e O[N, My) is a distributive concrete doma:n.

Proof. The theorem settles axiom Q. We know £ o £ ¢ O[N, M,] is distributive by
the work of Section 3. Axioms C and R follow from distributivity and axiom F from
[e] being finite for all occurrences e. The fact that ¥ o £ e O N, M.] is w-algebraic
follows from N being finite.

Axiom Q evolved from the intuitions of Kahn and Plotkin in their work on
concrete datatypes. There an event is imagined s occur at a fixed point in space and
time; conflict between events is localised in that two conflicting events are enabled at
the same time and are competing for the same point in space and time.
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