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ON PROVING LIMITING COMPLETENESS*

PETER D. MOSSESt AND GORDON D. PLOTKIN

Abstract. We give two proofs of Wadsworth’s classic approximation theorem for the pure A-calculus.
One of these illustrates a new method utilising a certain kind of intermediate semantics for proving
correspondences between denotational and operational semantics. The other illustrates a direct technique
of Milne, employing recursively-specified inclusive relations.
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1. Introduction. Suppose that we have both a (standard) denotational semantics
and an operational semantics for some programming language. (For examples see
[Stol], [Mil2], [deB].) We would like to prove that they are equivalent, in that the
output given by the operational semantics, for each program and input, corresponds
exactly to the output specified by the denotational semantics. Thus not only is the
former to be consistent with the latter, but also it is to be complete. For diverging
computations, completeness is only required "in the limit": the (perhaps partial)
outputs given by finite computations of the operational semantics are to converge to
the full output specified by the denotational semantics. Following [Wad], we shall
refer to this property as limiting completeness.

In [Wad], Wadsworth studied the A-calculus, considering arbitrary A-terms as
programs. (including their "input"). The "approximate normal forms" of terms,
obtained by finite sequences of//-reductions (followed by the replacement of remaining
fl-redexes by a special constant symbol [l that denoted _L), were regarded as outputs.
The classic Approximation Theorem [Wad, Thm. 5.2] shows that the denotations of
the approximate normal forms of a term do indeed converge to the denotation of the
term itself. Thus the theory ofr-conversion, although too weak for proving all equations
between terms whose denotations are equal, is complete in this limiting sense, and
adequate for the evaluation of A-terms.

I.n general, it is quite easy to prove consistency, using structural induction. See
[Stol], [deB] for some examples. We shall not consider consistency proofs any further
in this paper. Sometimes, it is also possible to prove limiting completeness quite directly
using structural induction with subsidiary appeal to fixpoint induction for recursive
constructs such as loops (where structural induction fails). However, when the program-
ming languages concerned allow self-applicationmeither explicitly as with Algol 60
procedures, or implicitly as with dynamic bindings in LISPnthen the direct method
seems to be precluded, for structural induction fails but there is no obvious recursive
construct in the language where fixed-point methods could be applied. In such cases,
the domains of denotations are defined reflexively (that is, recursively), and what one
wants is to use induction on the level of the projective approximations of the domains.

Wadsworth solved this problem in his study of the A-calculus [Wad] by labelling
expressions M (and their subexpressions) with integers n, so that Mn) denoted the
nth projection of the denotation of M. Having introduced some extra syntax to make
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the levels visible, he then studied the operational properties of the M" induced by
this semantics and also their relation to the operational properties of the original M.
Thus one parameter--the labellingmwas used both for inductions relating to the
denotational semantics (the projection levels) and for inductions relating to the
operational semantics. It seems fair. to say that as a result a somewhat heavy apparatus
was obtained.

We present two other approaches to the proof of (the difficult part of) the
Approximation Theorem. In one the two inductions are separated and the M") avoided
by means of an intermediate semantics. In the other, using ideas of Milne [Mill],
[Mil2], [Stol], [Sto2], the second induction is avoided entirely. In both approaches
recursively-specified inclusive relations are used [Mill]; these play only a technical
role in the first one but lie at the heart of the second.

Our intermediate semantics is defined just like the standard denotational semantics,
except that intermediate denotations take an argument k in 9 (the chain cpo of the
extended natural numbers 0___1=_..._k=__...__oo). The operational idea is that at
finite values of k, an intermediate denotation is to correspond to (perhaps partial)
output produced by the operational semantics after at most k steps. In particular, at
k 0 it is the least element 2.. At k oo it is by continuity the limit of the intermediate
denotations.

The denotational idea is (roughly) that the intermediate denotation at oo of any
phrase is just a function of the intermediate denotations at oo of its sub-phrases. This
makes it possible to see the relation between the intermediate and standard denotations.
To relate them formally, one defines a recursively-specified inclusive relation between
the standard and the intermediate domains. The existence and properties ofthis relation
are established by induction on the projective levels, and in fact the techniques are,
for the most part, well known (see [Stol], [Mul] for example). Then a simple structural
induction establishes the relation between the standard and intermediate semantics.

The idea of the second approach is to strengthen the hypothesis so that structural
induction succeeds. To do this, one defines (for every environment) a relation between
semantic values and terms of the language which holds when the value is less than
the limiting value of the term given via its operational semantics and moreover when
in all suitable contexts the relation still holds. As explained by Stoy [Sto2] one can
think of the relation as being that the value approximates to the term. The suitable
contexts are given by other related pairs of values and terms and are determined by
examining where the original proof by Structural Induction failed. As usual, the
existence of such recursively specified relations is determined by induction on the
projective levels and the desired result is shown by establishing by structural induction
that the denotation of a term is related to the term itself.

Comparing the two approaches, we see that the second is the more direct while
the first provides more information, via the intermediate semantics, on the details of
the operational semantics. In that connection we should also remark that Wadsworth’s
labelled expressions have been very useful in the study of the A-calculus [Bar]. It may
be that the intermediate semantics with its feeling of explaining resource-bounded
denotations will also be of use. Technically, as the reader will see, the proofs are less
straightforward with the second approach, at least in the present case. The references
demonstrate the wide applicability of the second approach; we expect this also for the
intermediate semantics method although we have no precise general recipe available
for defining such semantics.

We assume the general framework of denotational semantics [Ten], [Stol], [Mil2],
[Gor]. We take domains to be to-complete partial orders (which are just partial orders
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D= (D, E) with a least element -L o, and lubs U.x. of increasing sequences). The
important functions between domains are thosef: D --> E which are continuous, meaning
that if x, is an increasing sequence in D then f(x,) is in E and then, too, f(ll, x,)=
U,f(x,); we write D--> E for the cpo of all continuous functions from D to E, with
the pointwise orderingf_ g iff for all in D, f(x)_=_ g(x). See [SP] for further information
on this topic, especially as regards constructions of domains including the solution of
recursive domain equations. Our notation is essentially that of [Wad], to facilitate
comparison of results, and that of [SP] to handle cpos.

2. The intermediate semantics approach. We shall now prove the completeness of
an operational semantics for the A-calculus relative to its usual denotational semantics,
by introducing an appropriate intermediate semantics.

First let us recall the syntax of the A-calculus. We assume a denumerable set Var
of variables. Basically, the set Exp of A-terms is taken to be the least such that:

if x is in Var then x is in Exp;
if x is in Vat and M is in Exp then (Ax. M) is in Exp;
if M and N are in Exp then (MN) is in Exp.

However, for convenience, we extend Exp to include partial terms by means of a clause
for the special symbol

fl is in Exp.
We may now regard Exp as a poset, taking the least partial order

_
on Exp such that:

fl_ M, for all M in Exp;
if M_ M’ then (Ax. M)E (Ax. M’) for all M and M’ in Exp and x in Var;
if M M’ and N N’ then (MN) (M’N’) for all M, M’, N, N’ in Exp.

Note that (Exp, _) is not a cpo. However, we shall ensure that all functions that we
define on Exp are monotonic.

The standard denotational semantics of the A-calculus is given by the (monotonic)
function T’:Exp-> (Env->D) specified in Table 1. Here D is taken to be the (initial)
solution of D=D-> D that includes some arbitrary nontrivial cpo Do ([SP] (see also
our Appendix)). (This is a slight generalisation of Scott’s original D-model [Sco],
[Wad], where only complete lattices were considered.) We omit the isomorphism
D D-> D from formulae, when there is no danger of confusion.

TABLE
Standard semantics.

Domains

D D--> D (see text)
Env DTM

Denotations

of: Exp Env D
rx=p(x)
l/’Ax. M]p Ad e D M](p[d/x])
t/’MNp Mp)( Np

Our operational semantics for the A-calculus is given by the to-indexed family of
(monotonic) functions " Exp--> Exp defined in Table 2 for any n and any M in Exp;
"(M) may be regarded as the partial normal form of M determined by n steps of
a (parallel)reduction algorithm. That is, "(M) can be obtained by making some
/3-reductions on M, followed by replacing all remaining/3-redexes by fl. Thus each
(M) is an approximate normal form of M in the terminology of [Wad]. Moreover,
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TABLE 2
Operational semantics.

" Exp Exp (each n o

(M) =1
"+l(x) =x
"+l(hx. M) hx. M’ where M’= "+(M)

ll if

"+(MN)="([N’/x]M"), ifM
| M’N’) otherwise,
-where M’= +(M), N’ +(N)

"+1(fl) =fl
([-/x]- Exp x Exp--> Exp is the usual substitution operator)

9"(M) is monotonic in n" "(M)Gn+I(M), for all n, as can be shown by a simple
induction on (n, M) (lexicographically ordered).

The completeness of this operational semantics (relative to the given denotation
semantics) is just that for any term M, its denotation //’[M]] is included in the limit
of the denotations l["(M)]], as n goes to oo--this limit exists since is monotonic
(and Env- D is a cpo).

THEOREM 1. For M in Exp

//’M]]E II //’["(M)]].

An immediate corollary of this theorem is that for all M,

[M]II{A]IA is an approximate normal form of M},

which is the hard part ofWadworth’s classic Approximation Theorem for the A-calculus
12]. (The reverse directions of both these theorems follow easily from the consistency
of/3-reduction and the minimality of fl, with respect to . We shall not consider
consistency any further in this paper.)

To prove our theorem, we introduce an intermediate semantics "Exp-
Env’- D’, as given in Table 3 (?/"’Exp- Env’- 4- D’ might be considered more
natural, but leads to clumsier statements of theorems). Recall that 9 is the chain cpo
of the extended natural numbers. There is an evident embedding of to in oo, such that
the usual operations of successor, predecessor and minimum on to have unique
continuous extensions to --we get + 1 -1 and k min oo k. The domain

TABLE 3
Intermediate semantics.

Domains

D’= (11oo_> D’) D’ (see text)
Env’ (1] D’)v.r

Denotations

oy,: Exp-> 11oo_> Env’ D’
f+/-D’ ilk=0,’xkp’

otherwise,[p’(x)k+/-) if k=0,
’hx. M]]s kP’=

[Ac’1]->D’. ?/"M]k(p’[c’/x]) otherwise

f-l-w if k 0,

’MNkp (Y’M(k 1)p’)(Ak’ 11oo. ol/.,N(k, man k p’)
otherwise

?/"[[fl kp +/-r’
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D’ is taken to be the (initial) solution of D’---(9-> D’)-> D’ that includes the same
nontrivial domain Do that we included earlier in D. Again we often omit the isomorph-
ism. As it happens, o//., does not respect fl-reduction: in general only I/"(AXM)N]E_
’[N/x]M]] holds--but that is not important here.

Our first lemma relates "(M) to oF, at n.
LEMMA 1. For all n < oo and M in Exp,

’[M]n E_ Y’" M)]n.
We shall prove this lemma by induction on (n, M), later in this section. By the

continuity of t/"[[M]n in n, we then get

(1) ’[[M]]E LJ F""(M)]]oo.
n>_0

Now putting oo for k in Table 3, it seems quite obvious that YM]] is equivalent to
F"M]]oo, and that we should be able to infer the required result, namely,

(2) //’,M]]___ LI //’"(M)]I.
n=>0

However, to prove this "obvious" equivalence between //’M]] and W’M]]c, we
need to relate values of D and D’. As we have already remarked, the techniques for
this are quite standard but they appeal to the construction of solutions to reflexive
domain equations, and we relegate the details to Appendix I. It would be routine to
relate any reflexively-defined domain to an analogous one involving 1o, in essentially
the same way. (Thus the proofs ofthe remaining lemmas except perhaps that of Lemma
4 should not really be considered when assessing the complexity of our approach.)

LEMMA 2. There exists a relation _D x D’ such that
(i) for all d in Do, d d under the inclusion of Do in D and D’;
(ii) for all d in D and d’ in D’, d d’ ifffor all e in D and c’ in --> D’, e c’()

implies d (e) d’( c’).
The proof of Lemma 2 may be found in the Appendix.
The next lemma states that o//.M] and o//.,[M]] are related by the relation provided

by Lemma 2.
LEMMA 3. For all M in Exp and p in Env and p.’ in Env’, iffor all z in Var,

p(z) p ’( z)oo then l/’[M]lp ’[M]oop ’.
We shall prove this lemma by induction on M, later in this section.
According to the next lemma, if d- d’ then d is (continuously) determined by

d’. This will allow us to infer (2) from (1) above.
LEMMA 4. There exist continuous functions s:D--> D’ and r:D’-> D such that
(i) for all d in D, d--s(d);
(ii) for all d in D and d’ in D’, if d d’ then d r(d’).
The proof of Lemma 4 may be found in the Appendix.
We now show how our theorem follows from Lemmas 1, 3 and 4.

Proof of Theorem 1. Let M in Exp and p in Env be arbitrary. The required result
will follow if we show that

t/’M]lpE U "(M)]p.
n>=O

Define p’ in Ear’ by

p’(x)=Ake.s(p(x))

where s:D--> D’ is as in Lemma 4(i), so that for all z in Vat,

p(z) s(p(z)) p’(z).
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Now by Lemma 1, for all n in to(_1100) we have

F’Mnp E l/"" M)np’

which by continuity in n and LJ,__>o n oo (in 1]) gives

(3) t/"M] oO p E U t/" M ] oo p ’.
n>_O

Lemma 3 gives

(4)

and that for all n,

(5)

Let r" D’ D be as in Lemma 4(ii). Then we have

1/’M]p r(I/"[[M] oo p’) from (4)

E r(U,_o F’[["(M)] oop’)

FM]p t/"M] oo p’

l/’ l[ M ]lp l/"[[ M ]l oo p ’.

by(3)

II r(//"" (M)]] oo p’) by continuity
n0

LJ F["(M)]p from (5),
n_0

as required.
We now return to our lemmata. The proof of Lemma 1 will make use of the

following standard lemma about substitution, which confirms that the operator I-Ix]-
has been defined correctly so as to respect the static determination of bindings.

SUBSTITUTION LEMMA. For all M and N in Exp and p’ in Env’ and k in 1100,

l/"[N/x]M]lkp’ t,r’[[ M]]k(p ’[ Ak’ 1100. l/" N]]k’p’)/x]).

We shall omit the straightforward but tedious proof by induction (on M), which
is entirely analogous to the usual substitution lemma for the standard semantics, o//..

Praof of Lemma 1. We are to show that for all n < oo and M in Exp,

t/"M] n E l/" M ] n.

We use induction on (n, M). For n -0 and any M, we have ’[[M]]0 _L //l(M)]]0
as required.

For n+ 1 and any Mo, let v and w abbreviate l/"Mo]](n+ 1) and //"[["+(Mo)]](n +
1), respectively. We shall show that v w, as required, by cases on Mo.

For f, we have v _L, hence vE w.
For x, we have "+(x)= x, giving v w.
For (Ax. M), we have t"+(Ax. M)=(Ax. M’), where M’="+I(M). By the

induction hypothesis for (n + 1, M) we have o//.,[[ M]](n + 1 E o//., [ M’]](n + 1 ), hence v
_
w

(by monotonicity).
Finally, for (MN), take p’ in Ear’. Then

vp (ot/.,Mnp,)(Ak, e 11oo. ot/.,N(k, min n+ 1)p’).

Let M’= "/1(M) and N’= "+I(N). By the induction hypothesis, we have

l/"l[Mn E’f" M)n

E t/"[M’n (by monotonicity);
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also for any k’ s 11oo, we have k’ min n + 1 -< n + 1 so that

’[[N]l(k’ min n+ 1) o//., k’ min n+l(N)](k, min n+ 1)
m__ V’[[ N’]](k’ min n + 1) (by monotonicity).

Putting these calculations together, we get

(6) vp (ol/.,M,]]np,)(Ak, 11oo. oF,[[ N,]]( k, min n+ 1)p’).

We shall now consider the cases for M’, but note first that when n =0, we have
t/"M’]]Op’= +/-, so that (6) gives vp’+/-wp’, and hence v_w as required. We may
now suppose n > 0.

For M’= f, we have "l/"l]lnp’= +/-, and then (6) again gives vp’= +/- and vw as
required.

For M’= Ax. M", we have

vp’(t/"M’]]np’)(hk’11o0. F’[[N’]k’p’) by k’ min n+ l_k’

l/"[[M"]]n(p’[(hk’e 110" l/"[[N’]k’p’)/x])

l/"[N’/x]M"]]np’ by the substitution lemma

m__ l/""([N’/x]M")llnp’ by the induction hypothesis

t/"t"+l(MN)]lnp’
l/"[["+l(MN)]](n + 1)p’= wp’

giving v w, as required.
In the remaining cases for M’ (viz. x and (M"N")) we have "+I(MN) (M’N’).

Hence

wp’= (l/"M’]lnp’)(hk ’o0 ’N’](k’ min n+ 1)p’)

so vp’ wp’ by (6), giving v_ w as required.
This exhausts the cases for M’, thus completing the final case (MN) for Mo.

Having now completed the induction step to n + 1, we may infer the required result.
We finish this section with a proof of Lemma 3. Its simplicity justifies our earlier

remarks about the obviousness of the equivalence of //’M]] and //"M]loo.
ProofofLemma 3. We use (structural) induction on M. Our induction hypothesis

is that for all components M of Mo in Exit,

(7) for all p in Ear and p’ in Ear’, if for all z in Vat, p(z)--p’(z)oo
then l/" M]lp V [[M]] oo p

We shall show that (7) then holds also for Mo, by cases on Mo.
For l, we have Vf/]]p +/-D +/-Do +/-D’= F’f]] OOP’, for any P and p’ (considering

the inclusion of Do in D and D’). But by Lemma 2(i), +/-D +/-D’. Hence (7) holds for lq.

For x, we have Vx]]p p(x) and V’[[xoop’= p’(x)oo, for any p and p’. So (7)
holds for x.

For (hx. M), take p and p’ such that for all z in Vat, p(z) p’(z)oo. Also take e

in D and c’ in 11o0 D’ such that e---c’(oo). We have

(V[[hx M]p)( e) VM]](p[e/x])

V’M] oo(p ’[ c’/ x]) by the induction hypothesis

(l/"Ax. M]]oop’)(c’)

so by Lemma 2(ii) we get Vl[h.x. M]]p V’l[hx. M]loop’, showing that (7) holds for

(hx. M).
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Finally, for (MN), take p and p’ such that for all z, p(z)---p’(z)oo. Now by the
induction hypothesis,

t/’Mp ’M]] op and

(Ak’ . V’N]](k’ min oo)p’)(o)

so that

1/’[[MN]p ’[[Mp)( Nip)

(Ol/.,M]p,)(Ak, o. ’N](k’ min o)p’)

’MNoop’
so (7) holds in this case also.

There are no more cases, so we may infer the required result.

3. The relational approach. Here we use a different operational semantics
6en" Exp--) Exp, (given in Table 4) which is "outside-in" whereas the previous one was
"inside-our’ (and this seems to be needed to make the relational approach work).
Again each Sen(M) is an approximate form of M, monotonic in n. And we will show:

THEOREM 2. For all M in Exp

VM]E II
-o

thereby providing our second proof of Wadsworth’s theorem.
If one tries to prove this directly by structural induction on M, the proof breaks

down in the case where M is an application. Consequently, following the idea explained
above for every p in Env we wish to define a relation - between D and Exp so that:

d-M iff dE II Y’(M)]p and

Ve D, N Exp. e-N d(e), (MN).
These relations are constructed in Appendix II where we also demonstrate the very
useful:

LEMMA 5. Suppose d in D and M in Exp are such that whenever e -Nfor i-- 1,
n’ it is the case that

d(e) (en,)_L3 Y’(MN N.,)]p.

Then it follows that d -M.
Note that it follows that _L-M always holds.
Now to demonstrate Theorem 2, it is clearly enough to show that M](p)-M

always holds. This is now done by proving a stronger statement (to handle free variables)
by structural induction on M.

TABLE 4
Another operational semantics.

ff, Exp--, Exp (each n o)
6e(M) 1
"+I(N N,,) 1
,ct’"+(xN N,,)= x"(N,)... S/’"(N,,,)

Xxg’"(m) if n’=O,..n+I((Ax. M)NI N"’)=I,St"(([N/x]M)N2" N,.,) ifn’O
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LEMMA 6. Let M be an expression and p be an environment. Suppose that aj .-.oAj
forj 1, m. Then

l/’M]p[al/Xl, ", am/Xm] "’0 [A1/xl, Am/Xm]M

holds, where the xi are distinct variables.

Proof By structural induction on M. We will write for p[al/xl,..., am/Xm]
and K for [A/Xl,’.. ,Am/Xm]g (for any term K), where the as, As, xj will be
understood from the context.

Case I. M is an application, (MIM2).
By induction hypothesis we have //’[Mi]](t ---phT/i (i 1, 2).
So FM()([M_())7p (/r/r2). But as the left-hand side is //’MM2(/)

and the right-hand side (2/idrM2) so we are finished.
Case II. M is ll. This is by the remark after Lemma 5.
Case III. M is a variable, x:

Subcase 1. x is some xj.
Then //’[x]]/5 aj ;Aj .

Subcase 2. x is no xj. Then we must show that [x]p --. x and we employ
Lemma 5, taking eiN (i 1, n’) and calculating:

l/’x](p )( el) (e.,)

_t/’x]I(p)(I/’[6t’"N]](p))’" "(l/’[9’Nn,l](p)) (since e ---o N)

=11 x]](p )( T’6e"N,]](p (t/’9nN,,]](p

=1_1 [x(St"N,) (9"N,,)]](p)

=11 l/’.acfn+l(xNa N.,)](p)

as required.
Case IV. M is an abstraction, ,Xx. M’. We may assume without loss of generality

that x is no x and x does not occur free in any of the As.
We apply Lemma 5 and take e.--oN (i 1, n’).

Subcase 1. n’ 0. We calculate

[Ax. M’] Ad e D l/’[M’]p[d/x] (as x is no xs)

GAd e D. II t/’[["M’]]p[d/x]

(by the induction hypothesis applied to M’)

as required.
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Subcase 2. n’> 0. First calculate that:

//’lAx. M’]]()(el)
T’M’]]p[el/x, al/Xl,’", am/Xm] (as X is no xj)

p[NI/x, A/x1, Am/xm]M’

(as e -pN and by induction hypothesis applied to M’)

=[N/x]M’ (since x is no xj and does not occur free in any Aj).

So as e2"--pN2, , e.,---oN., we have that

//’lAx. M’]](/)el e.,-o ([NI/x]4’)N2...
and so we see that

FAx. M’]()e. e,,_l ’VSf"(([N/x]I(d’)N2. N,,)](p)

=11 F"+I((Ax. d’)N,N2 N,,)]](p)

=u Se"+’((Xx. M’)N, N,,)(t,)

as required, concluding the proof. D

Appendix I.
Construction of D and D’. This proceeds as described in [SP]. Let Do be a fixed

(nontrivial) cpo. For the construction of D satisfying

D - (D--> D)
first define an o-chain A <D,,f,) of cpos D, and embeddings f’D,--> D,+ by

and

fo(d)=AeDo.d,

f.+l(g) =f.gf.,
f(g) g(IDo),
Rf.+l(h) =f.ohof..

Next D is the colimit of A, being the sub-cpo of H. D. of all sequences d with, for
every n, d. a=f. (d.+). We have a cone Ix" A--> D of embeddings where

fLm(dn)(ixn(dn))m [fRmn(dn)
(m>-n),
(m <n),

and Ix(d)= d,, for all n (and where Lm "-fm-, oL, f.Rm=fR.o.., ofRm_l)" Note
that z0 is the inclusion of Do in D. Now we have a cone v" A-- (D--> D) where
A-=(D.+,f.+0 is A less its first element and v,(g)=ix, ogoixR. (and
R

IX. h ix.).
Then the isomorphism pair

D (D->D)

is given by the formulae:
R R

n_O n_--_.O

We need to examine the first formula in more detail.
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For we calculate that for any d, e in D

(*(d)(e))= (lira Izm(dm+l(l’*Rm(e))))=l_.Jm m(dm+l(em))

and then note that for any n, rn

(,(d)(e)).= V,(tzm(d,,,+(em)))
n

11 Rfnm(dm+l(em))
mn

(making use of the calculation, ]d, Rnld,m’--(lmfnm)Rid, "--fnRmd,R ]d.’m =fRnm). In the
case where e =/n(e.) with e. in D. we have

((d)(/z.e.)). II Rf,,,n(dm+((Iz,,en)m))
m_n

l__J fnm(dm+(fn,n(en)))

f,,+,,.+(a,.+)(e.)
mn

d.+l(en).

Turning to D’, which is to satisfy the isomorphism

D’ (- D’) -> D’,

we take the to-chain A’= (D’,f’) of cpos and embeddings where

D= Do, D’n+l (- D’) - D’.
and

f(d’) Ac’ (]o._> D). d’, fR(g’) g’(+/-_D,),

f’.+l(g’) =f g’o (AC’ oo_> D’n+l f c),
,R fnR ]oof,,+l(h’) oh’o(Ac’ ->D’ f’. c’).

Now D’ is the colimit of A’ being the sub-cpo of 1-in D’. of all sequences d’ with, for
every n, d’ f"R(d’ "iX’ D’\’-n+l)" We have a cone/z --> of embeddings defined as before
(and with tz’,,R(d ’) d’n, as before). Now we have a cone v’ from A’- (defined as before)

g’o(Ac D’ ,R C) (and v’(h’)to (oo D’)--> D, where V’n(g’) tZ,, --> P,n

/X’.o h’o (Ac ]--> O’../x. c)).
Then the isomorphism pair

D’ (1 D’) -> D
xIt’

is given by the analogous formulae to those for and W. Upon detailed examination
these yield for any d’ in D’ and c’ (oo_.> D’) that

(’(d’)(c’))n= II fm(d’+(,’o c’)).
mn

Also for any d D’ and cn (l--> D’.) we have that

(a,’(d’)(’ oc’)) d’+,(c)
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The relation between D and D’. First we inductively construct relations ---. between
D and D’. by

d---od’ iffd-d’;

d "-’,,+1 d’ iff Ve D,,, c’ (1]-> D’,). e---, c’(c) d(e)--,,,d’(c’).

We recall that for cpos D and E a relation R
_
D x E is inclusive (termed w-complete

in [SP]) itt it is closed under lubs of increasing sequences, which is to say that if d.,
e. are increasing sequences in D and E respectively, then if R(d., e.) holds for every
n so does R(I d.,I e.).

LEMMA 7. Each ---,, is inclusive.
Proof By induction on n. For n 0 this is obvious. For n + 1 assume for all rn _-> 0

c’ in 9that d., .+1 d’., where d, d’ are increasing sequences. Take e in D., - D’. with
e.--c’(c). Then d.,(e)--..d’.,(c’) and so lira (dm(e))’.ll,. (d’m(C’)), by induction
hypothesis and so we have (11., d)(e) =k_J., (d,,,(e))’nl lm (d’m(C’)) (lira d’)(c’), con-
cluding the proof.

LEMMA 8. (i) For all d in Dn and d’ in D’,,, d..d Df,,(d)-,,+lf’,,(d’).
(ii) For all d in D.+I and d’ in D’.+I, d ",,+1 d’ Dfg.(d)’,’,,R(d’).
Proof By simultaneous induction on n. For n--0 suppose first that d---od’. To

show fo(d)"-lf(d’) take e in Do and c’ in -D with e--.oC’(O). Then fo(d)(e)= d
and f(d’)(c’)=d’, so fo(d)(e)’-’of’o(d’)(c’) as required. Next suppose dld’. As
+/----o(Ak . +/-)(o) we have fRo(d)= d(+/-)’-’od’(Ak o. +/-) =f,oR(d ,) as required.

For n / 1, suppose first that d ".+1 d’ and take e in On+l and c’ 6 (1- D’.+1) such
that e’--,,+lc’(). Then fR.(e)--.f’,.R(c’(C)) (by induction hypothesis); so
dR (e)) "-.d’(f’.Roc’) (by assumption); so f.(d(fR. (e)))’-’.+lf’.(d(f’.Roc’)) (by induc-
tion hypothesis). But this is just f.+(d)(e)---.+lf’.+l(d’)(c’) as required.

Suppose next that d ".+2 d’ and take e in D. and c’ (1 D’.) such that e.c’(o).
Then f.(e)---.+lf’.(c’()) (by induction hypothesis); so d(f.(e))---.+ld’(f’.oc’) (by
assumption); so fR.(d(f.(e)))’.f’.R(d’(f’.oc’)) (by induction hypothesis). But this is

f,.+l(d)(e) "f.+ljust R ,R (d’)(c’) as required, concluding the proof.
Now we can define our relation between D and D’ by

d---d’ ifVn d.
By Lemma 7 and the componentwise calculation of lubs of w-sequences in D and D’
we get that.--- is inclusive. By Lemma 8 we get that for any d in D. and d’ in D’. if

d--..d’ then/z.(d)---z’.(d’).
We are now in a position to supply the proof of Lemma 2.
Proof of Lemrna 2. (i) What this claims is that for any do in Do it holds that

/-o(do) "-/x(do), which follows at once by the above remark and the fact that do"odo.
(ii) : First suppose d---d’ (so that d.+---d’.+ for any n). Take e in D and c’

in 1--> D’ such that e--c’(o) (to show that d(e).--, d’(c’), meaning that dp(d)(e)-
’(d’)(c’)). Now since e.-.c’() we have for any rn that em""m(I.tmRC’)(O)) and so by
assumption, we have d,,,+ l(e,.) d’ ,R,.+l(/x,, C’). Therefore by Lemmas 7 and 8(ii) we
have for any n that

[_j R tRd m+l(Id, ’))f.,.(’f,,,,(dm+l(em))---,, II ,R

m>=n m>--n

and by the above remarks on and ’ this is just

((d)(e)). ---. (’(d’)(c’)).
showing (d)(e)---dp’(d’)(c’) as required
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(iii) <:=: Suppose that whenever e in D and c’ in ]--> D’ satisfy e c’() then
dp(d)(e)-dp’(d’)(c’). We wish to show that d--- d’ and by Lemma 8(ii) it is enough to

c’()show d.+ .+ d.+ for all n. So take e in D. and c in ]*--> D’ such that e

Then by a previous remark we have/z. (e) (/z’. c’) and so, by our supposition, that
d )(/z. e ’(d’)(tz ’. c’).
So we have

d.+(e) ((d)(/z.(e))). (by a calculation given above)

---. (’(d’) (/x’ c’)). (as just shown)

d’+(c’) (by a calculation given above)

showing that d.+l".+l d’+l and thereby concluding the proof.
The functions s and r. First we inductively define continuous s.’D.--> D’. and

-->D. by

So ro idoo,

S.+l(d) Ac’ ]--> D’. s.(d(r.(c’(o)))),

r./(d’) Xe D.. r.(d’(Xk s.(e))).

LEMMA 9. (i) For all n, f,R S+I ----- S. ofR.(ii) For all n, fR. r.+l -- r. of’.R.
Proof. By simultaneous induction on n. For n=0, first we have fR(s(d))=

s(d)(_l_) so(d(ro(+/-(av))))= d(+/-)= so(f(d)); and second f(r(d’))= r(d’)(+/-)
ro(d’(Xk So(X)))= d’(+/-)= ro(f’o’(d’)).

For n + 1 and part (i) we first calculate that for any d in D.+2 and c’ in ]-->

f’.+l(S.+(d))(c’) "=f. (s./(d)(f’.oc’))

f’.(S.+l(d(r./’.(c’())))))

and then calculate that

Rs.+(f./l(d))(c’) s.(f. (d(f.(r.(c’()))))).

But (f’Ros.+I)(s. ofR.) (by induction hypothesis, part (i)) and also (r.+lof’.)
f. ofR. r.+ of’._f, r.of’. of’. (by induction hypothesis, part (ii)) (f. r.) and apply-
ing these two facts enables us to complete the above calculation, showing that

f./(s./(d))(c’)
___

s./ (f.+1( d))(c’)

as required. For part (ii) the proof is similar.
Because of part (i) of this lemma, for any d in D and any n, the sequence

(fnm(’ sm(dm)))m>=n is increasing and so we can define s" D--> D’ by:

(s(d)). ’f.(s(d))
m>_n

it being simple to verify that s(d) is in D’. Similarly using part (ii), we can define
r" D’--> D by

(r(d’)).= f.(rm(d’)).
mn

LEMMA 10. (i) For all d in D,, d--,s,(d).
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(ii) For all d in D, and d’ in D’. if d-,d’, then d r. (d’).
Proof Simultaneous induction on n, the case n 0 being evident. For n + 1 and

part (i) suppose d is in D.+. Take e in D. and c’ in ll--> D’ such that e-,c’(oo) (so
that e r(c’(oo)), by induction hypothesis part (ii)). Now we just calculate that

d(e) .s(d(e)) (by induction hypothesis part (i))

s,(d(r,(c’(oo))))

=s.+,(d)(c’)

as required.
For part (ii) suppose d is in D,+ and d’ is in D’,+ and d -,+ d’. For any e in

D, we have

e .--.s.(e) (by induction hypothesis part (i))

(Ak e s,(e))(oo)

and so d(e)-,d’(Ak o s,(e)), by assumption and so d(e) r,(d’(Ak 9 s,(e))),
by induction hypothesis, part (ii). But this just says, since e was chosen arbitrarily,
that d r,+ l(d’).

We can now prove Lemma 4.

Proof of Lemma 4. (i) Take d in D. Then for any m we have dm’-’msm(dm), by
Lemma 10(i), and so for any n and any m>=n we have by Lemma 8(ii),

nfnm(sm(dm)) and so, by Lemma 7, d,- (s(d)), showing d--. s(d) as required.tR

(ii) Suppose d d’. Then for any m we have din" d’m and so dm rm(d’m) by
Lemma 10(ii). So for any n and m>-n, by Lemma 8(ii) we have d,,=fR,m(dm)
f,am(rm (d’m)) and so d (r(d’)) by the definition of r(d’) showing d r(d’), as

required. [3

Appendix If. We show that a relation, ---p, with the required properties exists. First

define relations --p between D and Exp for every n > 0 by:

d--.M iffVn’>0VN, N,,, i.,.o(d)_ll,.,ce(MN’.’N,,,)ll(p)

"+M iff/,+(d)_l /fkM]](p) andd---,

(VeD.,NExp.e.--oNd(e) ,(MN)).
o (MN).M iff#o(d)k FfkM](p) andfor all N,LEMMA 11. (i) d

o M always holds.(ii)
Proof. Obvious.
LEMMA 12. Each is inclusive (in its first argument).
Proof. Easy induction on n.

n+l M.LEMMA 13. (i) If d "M then f,(d).
"+ M then f. d o M.(ii) If d o M. ThenProof By simultaneous induction on n. For n 0, assume for that d -first we calculate that:

,,(fo(a)) ,oa)_

and second, supposing that e o N we see thatfo(d)(e) d ...o (MN) by Lemma ll(i).
M as required.So fo(a)--



PROVING LIMITING COMPLETENESS 193

M. We show, using Lemma 11 that foR(d) o M.Next, for (ii) suppose that d "o "o
First,

txo(fo(d)) tx,(foofo d))E tx,( d)U
k

0’M. Next for any N, since _LoN, by Lemma ll(ii) we have foR(d)since d o
d (_L) ...o (MN) as required.p

.+1M. Then first we haveFor n + 1, part (i) suppose d "o

EU vkM]l(p
k

n+l M)(as d "o

n+land second, taking e in D.+, and N in Exp with e--- o N, we see that fR.(e)"- o N (by
"+’ M) andthe induction hypothesis, part (i)) and so that d(f.(e))- o (MN) (as d--- o

-"+’(MN) (by induction hypothesis, part (ii)). But this last isso that f. (d (f.(e)))
"+2M as required. The verification"+’ (MN) and so we have f.+l (d)just f.+l(d)(e) o

of part (ii) is very similar and we omit it. E1

-"M then d’--"Note that _L ---"Mo always holds and that if d’Ed_ o o M, that is
is downwards closed in its left argument. All in all, {did--- M} is always a nonempty
Scott closed set.

Now we can define the relation "o by:

d "--oM iff /n. d. "o M.
This is clearly inclusive using Lemma 12, and indeed _L ---oM always holds (and actually
{dld---oM} is always nonempty Scott closed). Note that, by Lemma 13, if
then

Now we show that the recursive specification for "o is satisfied.
LEMMA 14. d "oM iff d EI Ik VSt’kM]p and

(Ve---oN.d(e).--o(MN)).
Proof This is routine, but perhaps worth writing down.
:=> Suppose d---,M. Then d.--.,M, so tx.(d.)EL_Jk F[[kM](p) holds for every n

and so holds for d =1 I./z.(d.) too. Next, suppose e--oN. Then e..--oN and so, as
n+ld.+,-- o M, we have d.+,(e.)--o(MN and so tz.(d.+,(e.)) o(MN) and so, as

d(e)=l tz.(d.+,(e.)), d(e)-o (MN), as required.
= Suppose dEllk "bekM]](p) and whenever eoN then d(e)---o(MN). We

n+lwill show that d.+l-’-o M, for every n. Clearly/z.+,(d.+l)EI Ik W[[kM]](p), from the
supposition. Suppose that e-N. Then tx.(e)--oN and so d(tz.e)oN and so
d.+,(e) d(lz.e). "o N, as required.

ProofofLemma 5. We show by induction on n that for any d, M if for any n’ => 0
whenever e "oN (for 1, n’) then

de,.., e.,EI [[5MN, N.,]](p)
k

then it follows that d,,--, M.
First suppose n 0. Take N1," , N.,. Then _1_ -oNi and so

/xo(do) =/xo(do)_L’’’ _LEd_L... _LEII 6t’MN1 N.,](p)

as required.
For n + 1, first

/z.+,(d.+,) E d El t/’[kM]](p)
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and second, suppose that e- N. Then tz.(e)pN. Now suppose that, in order to
apply the induction hypothesis to d(l.e), (MN), that eipN, for i= 1, n’. Then

d(tz,,e)e, e,, II 6e(MN)N N,,](p)

by assumption on d, M and so (d(tx,e)),--, (MN). But as d(tx,,e), d,+(e), it follows
n+lthat d+(e) (MN) and so, finally, that d+ M, as required.
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