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In [9] a unifying framework was given for operational and denotational se-
mantics. It uses bialgebras, which are combinations of algebras (used for syn-
tax and denotational semantics) and coalgebras (used for operational semantics
and solutions to domain equations). Here we report progress on the problem
of adapting that framework to include recursion. A number of difficulties were
encountered. An expected one was the need to treat orders in the general theory;
much less expected was the need to give up defining bisimulations in terms of
spans of functional bisimulations, and move to a relational view. Even so the
outcome is not yet satisfactory because of well-known difficulties involved in
prebisimulations. Our work can be compared to, e.g., that of [2]. The principal
difference is that we aim, following [9], at a conceptual overview of the area using
appropriate categorical tools.

The main idea of [9] is to represent rules for operational semantics by a
natural transformation:

ρ : Σ(X ×BX) → BTX

where Σ is the signature functor associated to an algebraic signature of the same
name, B is a behaviour functor and T is the term monad associated to Σ. For
suitable choices of these over the category of sets, image-finite sets of rules in
GSOS format yield such natural transformations.

Models of such rules are bialgebras

ΣX α→ X
γ→ BX

satisfying a suitable pentagonal condition. The category of these models has

an initial object consisting of the programming language ΣL
ι∼= L and its op-

erational semantics L
γ→ BL. Every model gives an adequate compositional

denotational semantics for the language L. Suppose now that the final coalgebra

M
σ∼= BM exists; it can be thought of as the solution to the “domain equation”

X ∼= BX in the category at hand. Then it automatically gives a final object
which incorporates a semantic algebra ΣM α→ M .

One can model bisimulation by spans of coalgebra maps (first done in [3]).
With this, under mild conditions, one has that the semantics given by the final
coalgebra is fully abstract and that there is a greatest bisimulation which is a
congruence. These conditions are that kernel pairs exist and that weak kernel
pairs are preserved by B.
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Turning to recursion we need first to consider syntax. One way would be to
add µ-terms µx.t to the usual algebraic terms over a given signature Σ, as in [2].
However, taken literally, we would then also have to incorporate an extension
of the framework to handle binding operators, as in [5]. While that would be
interesting, it would obscure the issues caused by recursion; we prefer to consider
infinite terms, regarding the µ-terms as syntactic sugar for their unwinding.

We therefore consider the functor Σ : CPPO → CPPO over the category
of cppos and strict continuous functions given by:

Σ(D) =
∐

f∈Σ

(Darity(f)
⊥ )

Its initial algebra is the free continuous algebra with signature Σ. A natural
choice of behaviour functor is

B(D) = P(A⊥ ⊗D⊥)

where A is a set of actions, and P(D) is the free continuous semilattice with
a zero over D (on bifinite cppos this is the convex powerdomain with a zero).
The final coalgebra of B is the solution to Abramsky’s domain equation for
bisimulation [1].

Every image finite set of GSOS rules again gives rise to a natural trans-
formation as above, but now over CPPO, and we may attempt to apply the
general theory. However weak pullbacks are not preserved (because of convexity
phenomena) and full abstraction fails in the sense that there are not enough
bisimulations to equate processes with the same final semantics.

One can instead develop a general theory for locally ordered categories (bet-
ter: CPPO-enriched ones). One can define simulations (or ordered bisimula-
tions) as spans of lax and and oplax coalgebra maps; it is shown in [4] that
these include partial bisimulations [1] (also known as prebisimulations). There
is then a new version of the general theory but now with the conditions that
insertors exist and that weak insertors are preserved. Unfortunately, the weak
preservation condition fails.

This motivates us to give up considering bisimulations as spans and, instead,
to work directly with relations. One introduces a category of relations, lifts the
behaviour functor to the category and takes bisimulations to be coalgebras in
the category of relations—see, e.g., [8]. Thus one asks that the coalgebra map is
“logical,” preserving the relation. One can argue this is less arbitrary than the
span view where one has to turn the relation itself into a coalgebra, and there
is not necessarily a canonical way to do this (and in our case there may be no
way!).

A first attempt at a category for relations is CPPOa whose objects are pairs
(D, R) of cppos and admissible relations on them, and whose morphisms are
the strict continuous functions preserving the relations. The various functors
involved have natural liftings to the category of relations: liftings of a functor F
correspond to families FD of monotone actions on relations over D such that for



any f : (D,Q) → (E, R),

FD(f−1(R)) ⊆ F (f)−1FE(R)

In the case of the powerdomain functor P there is a minimal such action which
makes singleton, empty set and union logical. It is then natural to assume that ρ
is logical, in the sense that it lives in CPPOa, and indeed this is the case when
ρ arises from GSOS rules as above.

One can then show that full abstraction holds if a partial converse to the
above condition on actions holds, viz that

F (h)−1FM (=M ) ⊆ FL(h−1(=M ))

where h is the unique coalgebra map from the operational semantics to the
solution of the domain equation, and =M is the equality relation on M . However,
this is false and full abstraction again fails; intuitively this is because we are again
trying to handle equality (bisimulation) when convexity phenomena are present.

Instead one should use simulations, which we take to be admissible relations
R such that:

≤ o R o ≤ ⊆ R

and move to the subcategory CPPOs whose objects are pairs of cpppos and
simulations. The condition now needed is that:

F (h)−1FM (≤M ) ⊆ FL(h−1(≤M ))

where ≤M is the inequality relation on M . This holds under the condition that
h preserves finiteness. Unfortunately that does not hold in general, though it
does if the set of GSOS rules is compact in the sense of [2]. However we lack a
conceptual proof of that assertion, and in any case we would prefer a general
result. The essential difficulty is that an infinite process may be simulated by
a set of processes rather than any single one. It may be possible to account for
this by changing the kind of relations used, taking advantage of the scope of the
fibrational approach to logical relations as discussed in, e.g., [7].

As regards possible further developments, one evident possibility for future
work is to combine recursion and value-passing (e.g. as in the work of [6]). More
immediately it would be good to treat other examples than GSOS. In particu-
lar probabilistic computation presents a challenge with its need for continuous
domain theory.
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