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Robin Milner was born in 1934 to John Theodore Milner and Muriel
Emily Milner. His father was an infantry officer and at one time commanded
the Worcestershire Regiment. During the second world war the family led
a nomadic existence in Scotland and Wales while his father was posted to
different parts of the British Isles. In 1942 Robin went to Selwyn House, a
boarding Preparatory School which is normally based in Broadstairs, Kent
but was evacuated to Wales until the end of the war in 1945.

In 1947 Robin won a scholarship to Eton College, a public school whose
fees were a long way beyond the family’s means; fortunately scholars only
paid what they could afford. While there he learned how to stay awake all
night solving mathematics problems. (Scholars who specialised in maths
were expected to score 100% on the weekly set of problems, which were
tough.)

In 1952 he won a major scholarship to King’s College, Cambridge, sitting
the exam in the Examinations Hall which is 100 yards from his present office.
However, before going to Cambridge he did two years’ national military
service in the Royal Engineers, gaining a commission as a second lieutenant
(which relieved his father, who rightly suspected that Robin might not be
cut out to be an army officer).

By the time he went to Cambridge in 1954 Robin had forgotten a lot of
mathematics; but nevertheless he gained a first-class degree after two years
(by omitting Part I of the Tripos). In 1956 he took a short computing course
on the EDSAC; he then deserted numerate study for a while to take Part II
of the moral sciences Tripos (“moral sciences” was then Cambridge’s name
for philosophy).

For some reason, academic life did not appeal and he went to London
in 1958, wondering whether to take up music seriously, having done a lot of
singing and oboe playing, some cello and some composition while at Cam-
bridge. He decided otherwise, and instead taught mathematics for a year at
Marylebone Grammar School.



In 1960 Robin took a programming job at Ferranti, in London. He
looked after the program library of a small decimal computer called Sirius,
and even helped to sell some of the twenty-odd sold altogether. Then in 1963
he moved to a lectureship in mathematics and computer science at The City
University. In the same year he married Lucy. During the next five years
while they lived in London their children Gabriel, Barney and Chloë were
born.

It was at City that he became interested in artificial intelligence, the
semantics of programs and mathematical logic. His interest in the theory
of computing was further inspired by Christopher Strachey, Rod Burstall,
Peter Landin, David Park, Michael Paterson and Dana Scott.

Moving towards a life in research, he took a position as senior research
assistant in the Computer and Logic group of David Cooper at Swansea
University in 1968, working on program correctness. He wrote two papers
on program schemata (1969, 1970) and one on program simulation (1971).
The former was inspired by the work of Michael Paterson; the latter used an
algebraic approach, under the influence of Peter Landin. The algebraic ori-
entation continued in later research, providing a valuable means of modelling
structure in computing systems and linking up with later interest in process
calculi. While at Swansea he learnt of Dana Scott’s work with Christopher
Strachey on the foundations of programming languages. In particular, in
1969, Dana Scott wrote a celebrated article proposing the use of a hierarchy
of continuous partial functions and giving a typed λ-calculus and logic for
it; this would prove very influential.

In 1971 Robin moved to Stanford University as a research associate,
joining John McCarthy’s group at the Artificial Intelligence Project. Robin
took up Scott’s ideas as the basis of a system for computer-assisted theorem
proving, the Stanford LCF system (1972a, b, c)—LCF stands for “Logic of
Computable Functions,” referring to Scott’s logic. He also began his work
on concurrency, again in the tradition of Scott and Strachey, formulating a
domain-based notion of process to model the behaviour of computing agents.

In 1973, he was appointed to a lectureship at Edinburgh University, and
obtained a Personal Chair in 1984. Edinburgh LCF (1979) was a develop-
ment of the Stanford work, but now with a specially designed programming
language, Edinburgh ML, to serve for finding and constructing proofs—ML
stands for “Metalanguage.” He also worked on the semantic foundations of
LCF; see, especially, his (1977). Next, the language ML itself became of in-
dependent interest, with its many novel features, such as implicit typing. A
new research effort, with Burstall and others, finally led to the development
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of Standard ML (1990, 1991).
Perhaps, though, his greatest effort at Edinburgh was devoted to concur-

rency, starting with the invention of CCS—his Calculus for Communicating
Systems (1980, 1989). Its semantics went through an interesting develop-
ment, beginning with a domain-theoretic approach, but ultimately empha-
sizing a novel operational approach to the equality of processes, employing
the important notion of bisimulation. This in turn led to the development
of other calculi, such as the π-calculus for mobile computing and, most re-
cently, to action structures and calculi, intended to provide a framework
for comparing process and other calculi, with a view also towards unifying
sequential and concurrent computation.

Robin’s research forms a very coherent body of work, with one idea or
system or calculus, leading to another in what seems to be an entirely nat-
ural, if miraculous, progression. His research has had great influence on
others, both direct and indirect, and he has received well-deserved recogni-
tion. In 1987 he and his collaborators won the British Computer Society
Technical Award for the development of Standard ML. In one year, 1988, he
became a founder member of Academia Europaea, a Distinguished Fellow
of the British Computer Society and a Fellow of the Royal Society. In 1991
he was accorded the ultimate accolade of the Turing Award.

The coherence and strength of Robin’s research can in part be attributed
to a clear philosophical position: that computer science, like other sciences,
has both an experimental and a theoretical aspect. The experimental one
resides in computing systems (whether hardware or software, and includ-
ing applications); these have a rich behaviour, demonstrate interesting and
practically important phenomena, and provide the experiments at hand.
The theoretical aspect is the provision of mathematical models to ease the
construction, and permit the analysis of such systems; the concepts and
structures arising in these models originate in the understanding of the sys-
tems to which they apply. This view of the subject is exemplified in Robin’s
work on, say, LCF, ML and CCS: each is rooted in application and all are
characterized by an economy of concept that yet permits great elasticity of
expression.

Robin has also carried these ideas forward in his social contribution to
our subject. In 1986 he was one of the founding members and the first
director of the Laboratory for Foundations of Computer Science—a happy
outcome of the UK Alvey Programme. Robin’s philosophy, expounded in his
founding lecture (1987b), is pervasive, whether in the title of the Laboratory
or in its research. In 1995, he left Edinburgh to take up a Chair at Cam-
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bridge (in fact the first established chair in Computer Science at Cambridge)
becoming Head of Department a year later. There he continues energetically
promoting the integration of advanced application with applicable theory.

Semantics and Domain Theory

Milner’s work at Stanford and at Edinburgh (at least, until around 1978)
was within the Scott-Strachey paradigm. Here one considers the semantics
of programming languages as being given compositionally by denotation
functions that ascribe meanings to programs. These meanings are elements
of Scott domains or related kinds of complete partial order. The notation
used to write the meanings is one or another λ-calculus. Scott’s LCF was
based on one such, later called PCF; it is simply typed with two base types,
natural numbers and booleans, with arithmetic and boolean primitives, and
with recursive definitions at all types. Milner’s LCF system employed a
more elaborate typed calculus, PPλ, with a signature of a finite set of base
types and constants, with sum, product and recursively defined types, and
with a simple kind of polymorphism.

His other (perhaps less official) strand of work at Stanford was on con-
currency, introducing recursively defined domains of processes—later termed
resumptions by Plotkin—to provide abstract models of the behaviour of
transducers or other types of computing agents (1973, 1975a). An example
of such a domain equation is:

P ∼= V → (L× V × P )

These resumptions are used to model deterministic agents that input val-
ues from V and output them to locations in L. Nondeterminism (used to
account for parallelism) is dealt with by means of oracles, raising the issue
of an adequate treatment of non-deterministic relations within the domain-
theoretic framework; this inspired later work on powerdomains. Algebraic
ideas occur here with the presentation of semantics using “combinators,”
the means for combining programs. The most important one is that for
the parallel composition of programs. Milner had an idea of his agents as
automata whose only means of communication was via a collection of lines,
though that was not strongly emphasized in his writing. Perhaps this and
the algebra helped inspire the later invention of CCS.

A notable point was the discussion at a general level of full abstraction.
The idea of full abstraction is that two terms are to have the same denotation
if—and only if—they are contextually equivalent in a sense determined by an
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operational semantics (for example, one given via an abstract machine). It
is precisely the difficulty of providing such a fully abstract domain-theoretic
treatment of concurrency that led Milner to his later operational treatment.
The question also arises as to the full abstraction of Scott’s standard model
for PCF. After it was shown that this semantics is not fully abstract, Mil-
ner gave a fully abstract domain-theoretic model by means of an ingenious
syntactic, or “term model,” construction (1977).

The subject was developed much further by many people over the fol-
lowing years, searching for the proper notion of model; they were generally
looking for an extensional notion of sequentiality at higher types. Notable
further contributions included the introduction of stable functions (stability
is an approximation to the desired notion of sequentiality) and of game-
theoretic models (games provide an intensional characterization of sequen-
tiality). It was recently shown that the operational equivalence relation
is undecidable even for PCF restricted so that the only base type is the
booleans. It follows that there can be no “finitary” extensional mathemat-
ical account of sequentiality, thereby providing a fundamental reason why
previous attempts failed.

Beyond PCF, full abstraction studies have been undertaken for a wide
variety of languages. However it is fair to say that for the case of concurrency,
the one of original interest to Milner, there is as yet no satisfactory widely
applicable treatment within the domain-theoretic paradigm.

Computer Assisted Theorem Proving

Milner’s LCF system enables one to carry out proofs on a machine,
where the structure of the proof is largely known in advance. This was a
considerable, if not entirely novel, departure from the contemporary em-
phasis on theorem proving systems in Artificial Intelligence. Systems such
as De Bruijn’s Automath and Hewitt’s PLANNER were forerunners; the
former enabled one to write down and check large proofs and the latter
permitted the design of proof strategies.

The need for proof-checking systems resides in their intended application.
The proofs needed to show computer systems correct are, in a way, tedious.
While their structure is generally fairly clear (say a large induction), they
can be very large, not least since computer systems are. One is therefore
liable to make mistakes in such proofs when working “by hand,” and machine
help is much to be desired to provide the security of an assurance that no
such mistakes have occurred.
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With LCF, Milner, and his colleagues, firmly established the field of
large-scale computer-assisted theorem proving. In doing so, they made
several important contributions: tactics (subgoaling strategies for finding
proofs) and tacticals (for their combination); a specially designed typed
programming language for writing tactics and tacticals; and a means to
achieve security against faulty deduction.

The programming language was ML, and was designed by Milner and
his colleagues at Edinburgh. The features of ML are well-adapted to the
application of computer-assisted theorem-proving. Its higher-order and ex-
ception features are used to write tactics and tacticals. Its type discipline
provides the desired security, achieved through an abstract recursively de-
fined data type of proofs whose elements can only be constructed by means
of the inference steps of the underlying logic of LCF. The inclusion of assign-
ment, pattern matching, polymorphism and call-by-value were motivated by
related practical concerns.

The article by Gordon in this volume provides much further detail on
the development of Stanford and Edinburgh LCF and later projects. In
particular, projects such as LCF require the efforts of many people: Gordon
gives a good account of their contribution. Milner’s own work on computer-
assisted theorem proving effectively came to an end in 1978, but the subject
had been established. It was pursued further at Cambridge and INRIA
with the development of Cambridge LCF, HOL and Isabelle, as well as the
further development of ML. Other systems arose: some incorporate various
constructive type theories, notable here are Coq and LEGO (both based on
the Calculus of Constructions) and NuPrl and ALF (based on Martin-Löf’s
type theory); others such as Mizar, PVS or (for example) Larch arose from
different research traditions.

What started out as a mechanization of one particular logic has evolved
into a field of wider scope. Experience shows that one naturally wishes to
conduct proofs in a variety of logics, with the particular one being chosen by
the user of a system rather than its designer. A subject of logical frameworks
has arisen to accommodate such variety, and systems such as Isabelle and
ELF are designed for just this task. Finally, the size of the proofs that
can be performed has risen substantially. It is now possible to tackle large
systems of commercial interest.

Standard ML

As explained above, the design of ML was strongly influenced by the
needs of theorem proving. But it was equally shaped by Milner’s approach
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to language design in general. Two objectives stand out in this approach:
first, the language should solve the practical problems that motivated its
existence; second, it should do so with an absolute minimum of concepts,
all of which should be rigorously defined and analysed. It should also be
remarked that ML falls within the wider tradition of functional program-
ming languages. Several such languages were influential in the design of
ML: Burstall and Popplestones’ POP-2, Evan’s PAL, Landin’s ISWIM, Mc-
Carthy’s LISP and Reynold’s GEDANKEN.

The detailed story of the evolution of ML is complex; an account of the
period from 1974 to 1996 can be found in (1997). Here we rather discuss
some highlights of that evolution, with emphasis on Milner’s contribution.
The first, practical, design objective was addressed through implementation
work and experiments. Milner was involved with several people working on
early implementations of ML: Malcolm Newey, Lockwood Morris, Michael
Gordon, Christopher Wadsworth, Luca Cardelli, Alan Mycroft, Kevin Mit-
chell and John Scott.

The technical vehicle that guided the design of ML was language se-
mantics. This provided a framework that permitted economy of design, the
second objective. In particular Milner’s paper on ML’s polymorphic type
discipline (1978a) was seminal in several ways. Besides presenting the ML
type discipline (described below), it provided a strong indication that formal
semantics could play a central rôle in the design of non-trivial programming
languages.

The ML type discipline possesses several properties which distinguished
it from contemporary languages. First, it is provably sound: if an expression
of the type system has a type, then its value (the result of its evaluation)
has the same type; or, as Milner put it: “well-typed expressions do not go
wrong.” Second, some expressions are allowed to have more than one type,
i.e., to be “polymorphic.” For example, the polymorphic list reverse function
can reverse all lists, irrespective of the type of the elements of the list. Third,
types can be inferred automatically from programs by an algorithm, called
W . As shown in the later paper with Damas (1982b), W always terminates,
either by failing (when the expression cannot be typed) or with a most
general, also called principal, type of the expression.

Although discovered independently, Milner’s type discipline has much
in common with Curry, Hindley and others’ earlier work on principal type
schemes in Combinatory Logic. In particular, both he and Hindley use
Robinson’s unification algorithm for type checking. The main difference
between the two is that Milner’s type discipline allows type schemes with
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quantification in the typing of declarations. For example, consider the Stan-
dard ML program declaring a function length:

fun length [] = 0
| length (_::xs) = 1 + length xs

val n = length [1,2,3] + length [true, false];

The function length is given the type scheme

length : ∀α.α list→ int

which can be instantiated to both int list→ int and bool list→ int.
By 1985, several dialects and implementations of ML existed. Further,

new ideas had emerged both within the immediate ML community and
also from Burstall and his group who had developed influential languages:
CLEAR, a specification language designed with Goguen, and HOPE, a func-
tional programming language. It was evident that standardization was nec-
essary. A number of design meetings were held, leading to a technical report
consisting of Milner’s description of the Core Language, MacQueen’s mod-
ule system and Harper’s I/O primitives. Around the same time, operational
semantics was gaining momentum, through work by Plotkin, Milner and
Kahn. Milner’s description of the dynamic semantics of the Core was essen-
tially a natural language formulation of an operational semantics.

In 1985, Milner, Tofte and Harper began working on an operational
semantics of full Standard ML, including static and dynamic semantics of
both Core and Modules. Every construct of the language was described
by a very small number of rules, typically one defining the static semantics
(elaboration) and one defining the dynamic semantics (evaluation) of the
construct. For example, the elaboration rule for recursive value bindings is

C + VE % valbind⇒ VE

C % rec valbind⇒ VE

where C is a context mapping free identifiers of valbind to their static mean-
ing, and VE is a static value environment mapping the identifiers defined
by valbind to their types. The evaluation rule for recursive value bindings is

E % valbind⇒ VE

E % rec valbind⇒ Rec VE

where VE is a dynamic value environment (a finite map from variables
to values) and RecVE is a finite value environment which represents one
unfolding of the recursively defined values.
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More difficult was the handling of Modules, due to novel concepts such
as structure sharing and functors. New theory had to be invented for dealing
with these constructs (1987c). A key idea was that type checking of struc-
ture sharing could be done using a nonstandard form of unification, related
to unification in record calculi. The work eventually led to the Definition of
Standard ML (1990) and the Commentary on Standard ML (1991). Some
years later, in 1996, when a clearer understanding of the semantics and prag-
matics of the language had emerged, Milner, Tofte, Harper and MacQueen
revised and simplified the language, leading to a new Definition (1997).
Structure sharing was abandoned and type abbreviations in signatures were
added. The resulting static semantics of Modules is a mere eight pages long
and fulfils a longstanding desire to obtain a simple operational semantics for
ML Modules.

On the theoretical side, ML’s type discipline gave rise to a considerable
body of theoretical work. Particularly interesting was the result that decid-
ing ML typability is complete for deterministic exponential time, contrasting
with the observation that ML type inference works well in practice. Another
important result is that type checking polymorphic recursion is equivalent
to the (undecidable) semi-unification problem. There has also been work
extending the ML type discipline with higher ranks of polymorphism, sub-
typing, object types and overloading—much more than can be described
here. The ML type system appears to be a local optimum in the design
space. Subtyping is a case in point: while there has been some success in
extending the notion of principal type to a notion of principal solution of
constraint sets, it seems to be very hard to find a notion of “most general
type” which coincides with “most readable type.”

Standard ML has developed in other ways, for example through work
on implementations. Implementation technology was developed in the con-
text of Standard ML of New Jersey, Edinburgh ML and Poly/ML. Other
Standard ML implementations have emerged: Moscow ML, The ML Kit
and, most recently, MLWorks, a commercial implementation developed by
Harlequin. Good textbooks on programming with Standard ML have been
written and the language has become quite widely used for teaching and
research.

Variants of ML have emerged, notably Caml Light and Objective Caml,
both developed at INRIA. Objective Caml extends ML with facilities for
object-oriented programming. Several researchers, including Berry, Milner
and Turner (1992b), have explored the combination of ML and concurrency,
leading to Concurrent ML, FACILE, Distributed Poly/ML and LCS. Finally,
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there is a new design effort underway, known as the ML2000 project; this
involves researchers from France and several sites in the United States.

Concurrency

As outlined above, Milner’s initial work (1973, 1975a) on concurrency
was carried out within the Scott-Strachey approach to semantics. The in-
tention was to extend the scope of denotational semantics beyond sequential
input/output programs. Difficulties arise from non-terminating programs
with side-effects, non-deterministic programs and parallel programs. Milner
showed that these computational features can be modelled operationally
using (deterministic) transducers. The notion of name or location was im-
portant here. It was given as an address at which communication takes
place (which later turned into the notion of a port): in a given state with a
given input value the output function of a transducer determines both the
output communication line and the value to be transmitted on that line.

Transducers are intensional objects whose extensional behaviour as pro-
cesses he wished to capture mathematically. Such processes were modelled
by means of the domain of resumptions given by the recursive domain equa-
tion presented above. The domain was intended to play the same rôle for
non-sequential programs as the domain of continuous functions for sequen-
tial programs. This was before the invention of powerdomains, and so for
nondeterminism oracles were employed. A semantics for a programming lan-
guage with these non-sequential features was presented in (1973). Notable
here was the global recursive definition of a combinator for the parallel com-
position of processes, a definition made possible by the use of the domain
of resumptions. The analysis of assignment as a complex action involving
communication with registers was also important.

In (1975a) he discussed this model further, including a general discussion
of criteria for denotational semantics. Compositionality can be achieved by
regarding syntax as a word algebra and semantics as the (unique) homo-
morphism to an algebra of operators on processes (or other suitable mathe-
matical entities). The semantics should be justified by its relationship to an
operational semantics for the language; in particular it should be adequate
or, and much better, fully abstract, as described above.

The work of the later 1970s has a stronger algebraic flavour. Flowgraphs
were introduced in the two papers (1979b, d), both written in 1977, the sec-
ond jointly with Milne. Communication plays a central rôle, and is to be
understood as exchange of values at explicitly named ports. A flowgraph
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is a (pictorial) representation of the potential flow of information through
ports in a system. Just as with Scott’s flow diagrams, flowgraphs provide an
intermediary between a program and its meaning. Combinators for combin-
ing flowgraphs were introduced; these became the static operators of CCS:
binary parallel composition, renaming and restriction. Various laws of flow
were presented (such as the commutativity and associativity of parallel com-
position), and in (1979b) Milner showed that flowgraphs form the free such
algebra, thereby justifying the laws. Flowgraphs can be viewed as an expres-
sion of heterarchy, where one and the same system can be viewed as built
up from subsystems in distinct ways. The contrast is with a hierarchical
view, where systems can be uniquely analysed into subsystems and so have
a tree-like form rather than a graphical one.

Meanings of concurrent programs, the processes, are elements of a power-
domain of resumptions: this is where the dynamics of a system are described.
The domain of processes is also a flow algebra. The domain equation for
processes is

PL
∼= P(

∑

µ∈L

(Uµ × (Vµ → PL)))

where L is the set of ports, Uµ and Vµ are, respectively, domains of input
and output values at port µ, and P is a powerdomain operator (for non-
determinism). Milner had in mind the Smyth powerdomain with an added
empty set (for termination), although he was unhappy with this account as
it identifies too many processes.

Further developments culminated in CCS. In (1978b) Milner recounted
the definition of a flow algebra, and introduced, as one particular instance,
synchronization trees (without the presence of value-passing). The dy-
namic operators of CCS, prefixing and summation, were then introduced
as combinators on these trees. The prefixing operator provides a facility
for value-passing actions, whether for input or output. The silent τ action
also appeared as the result of synchronization. Later that year in (1978c),
written while visiting Aarhus, these dynamic operators were explicitly in-
cluded alongside the static operators as part of the definition of an algebra
for modelling communicating systems. The notion of a single observer was
used to justify interleaving (instead of a partial order approach as in the
case of Petri nets). This was exemplified in the equational law relating
parallel composition with nondeterminism, which later became the expan-
sion theorem. With these two papers the general conception of CCS was in
place: concurrent systems can be modelled by behaviour expressions, and
equational reasoning provides a mechanism for showing properties of sys-
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tems. By way of an example, Milner showed the possibility of deadlock for
a description of the dining philosophers. However, one ingredient was still
missing: a justification for the equational laws.

The next crucial step was the paper (1980a) written with Hennessy. This
paper isolated basic CCS where there is no value-passing, only synchroniza-
tion. Basic CCS bears much the same relation to full CCS as propositional
logic does to predicate logic. Observational equivalence of synchronization
trees was introduced both in a strong form, and in a weak form where τ ac-
tions are abstracted away. At this stage equivalences were defined iteratively
instead of using greatest fixed points; they arose from the simple idea that
an observer can repeatedly interact with an agent by choosing an available
transition from it. The equivalence of processes was then defined in terms
of the ability of these observers to continually match each other’s choices
of transition by one labelled with the same action. Hennessy-Milner logic
(with strong and weak modalities) was also introduced in order to provide a
logical account of the equivalences. Equational axiomatizations of the asso-
ciated congruences were presented for finitary terms (here, those built from
prefixing, binary summation and nil). As a result there was an intended
model for process expressions, given by synchronization trees quotiented by
observational congruence.

One additional ingredient needed to define observational equivalence di-
rectly on process expressions was their structural operational semantics us-
ing transition systems labelled by actions. The combination of structure and
labelling has since proved a very adaptable specification method and is now
standard. These ideas were presented in the influential CCS book (1980)
written in Aarhus, and presented as lectures. The book inspired the whole
field of process calculus in the same way that Milner’s paper (1978a) inspired
that of (polymorphic) type theoretic work in programming languages. The
two paradigms reflect his principled approach to theoretical computer sci-
ence, with its concern for applicability and the use of a small number of
primitives. As Milner says (1979a) about his approach to concurrency

The broad aim of the approach is to be able to write and ma-
nipulate expressions which not only denote . . . the behaviour of
composite communicating systems, but may reveal in their form
the physical structure of such systems.

The accessibility of the material is also most important. Parts of the book
(1980) can be taught as an undergraduate course. Indeed Milner’s later
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more polished book (1989) is a distillation of the ideas arising from teaching
CCS to final year undergraduates at Edinburgh. Both books give interesting
accounts of the evolution of CCS, as does (1990b).

Further developments of the theory of CCS occurred through the 1980s.
In 1981 Park gave a notion of bisimulation leading to a somewhat differ-
ent, but more satisfactory notion of observational equivalence (for both the
strong and weak forms); it also has an interesting and useful characterization
as a greatest fixed point. Milner used bisimulations in the paper (1983a)
which, further, introduced SCCS, a synchronous version of CCS (and, in a
way, more basic). Mathematically SCCS is very elegant, and its model turns
out to provide a canonical model for non-well founded set theory. Variations
on the notion of observational equivalence were considered. For example,
in (1981) Milner defined an observational preorder for processes which is
sensitive to divergence. Again, an alternative framework for defining equiv-
alences using testing was introduced: the resulting equivalences are very
closely related to the failures model for Hoare’s CSP.

Milner extended the finitary axiomatizations of strong and weak bisim-
ulation to finite terms which permit guarded recursion (1984a, 1989a). The
axiomatization in the first of these papers was based on Salomaa’s axiomati-
zation of language equivalence for regular expressions, except for the axiom
a(X + Y ) = aX + aY . However the theory is subtly different. Indeed
automata theory from the perspective of bismulation equivalence, as op-
posed to language equivalence, contains surprises. One example is that
bisimulation equivalence is decidable for context-free grammars. In another
direction, some recent work has concentrated on value-passing, providing
complete equational theories for regular value-passing process expressions,
for both testing and bisimulation congruences. Again, Hennessy-Milner logic
is not very expressive, and is unable to capture liveness and safety proper-
ties of processes. Various extensions have been proposed, such as modal
µ-calculus, for describing temporal properties of processes: these extensions
have the feature that two bisimulation equivalent systems have the same
temporal properties.

The theory of CCS has inspired tools such as AUTO/GRAPH and the
Concurrency Workbench for analysing concurrent systems. These tools al-
low automatic checking of equivalences and preorders between finite-state
processes. The Concurrency Workbench, written in ML and developed
jointly in Edinburgh and Sussex, also permits model checking temporal
properties of processes. Notions of simulation and bisimulation have also
found their way into model-checking tools.
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Since the mid-80s various extensions to process calculi have been pre-
sented, for example for modelling time, probability, location and priority.
The CCS paradigm has motivated various results about these extensions,
including definitions of equivalence, characteristic modal logics and tempo-
ral extensions, and connections with automata theory.

Operational semantics are paramount in the theory of CCS and related
calculi; indeed Milner has never returned to a denotational theory of pro-
cesses. However, a denotational account of strong bisimulation is possible.
Semantics fully abstract with respect to strong bisimulation have been given
within a variety of mathematical frameworks: non-well founded sets, do-
mains and metric spaces. In all cases appropriate “domain equations” are
employed, giving a suitable notion of resumption. It should be emphasized
that, to date, no corresponding treatment of weak bisimulation is available.

Milner was dissatisfied with CCS for two reasons. The first originated
in a particular practical problem presented in the CCS book (1980). There
the meanings of parallel imperative programs were given by translation into
value-passing CCS. Program variables were modelled using explicit registers
which appeared in parallel with the translation of the programs themselves.
However when the programming language permits recursive procedures, the
modelling suffered because concurrent calls of the same procedure were in-
terleaved. Milner remarked that a more natural modelling would include
a return link for each call of a procedure, and this would require passing
ports as values, which is impossible in CCS. The second concern resulted
from the notable success of process calculi, as inspired by Milner’s work.
Numerous process calculi have flourished over the years, and many different
equivalences have been defined. But there are too many apparently different
calculi, with none accepted as canonical, and too many equivalences. Recent
work on rule formats for defining process operators has offered some insights
into the dynamics of some classes of calculi, but that can only be part of
the story.

Both these concerns have underpinned Milner’s later work in concur-
rency. An important development was a tractable calculus for passing ports,
thereby allowing dynamic communication topologies to be modelled. Early
discussions with Nielsen in 1981, while in Aarhus, had failed to produce
such a calculus. Then, in 1986, Engberg and Nielsen made an important
breakthrough, finding such a calculus. Following this, Milner jointly with
Parrow and Walker, beginning in 1987, produced a simpler approach, the
π-calculus (1992d, e; see also the paper by Engberg and Nielsen in this vol-
ume). This calculus contains fewer primitives than value-passing CCS, be-
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ing based only on names. There is also a subtle mechanism for dynamically
changing the scope of static name bindings. A fundamental point is that
the λ-calculus can be encoded within π-calculus.

The combination of names and binding causes difficulties when giving
an operational semantics for the calculus. Transition system models are
not entirely natural as actions are unexpectedly complex: both bound and
free output actions are required. This induces corresponding complexity in
the definition of both strong and weak bisimulation and their characteristic
Hennessy-Milner logics (1992d, e, 1993f). The calculus does, however, high-
light an interesting difference between early and late bismulation, which also
applies to value-passing CCS (1993f).

In order to resolve these problems, Milner introduced a change in the
style of semantics. Instead of transition systems, he used reductions, based
on Berry and Boudol’s elegant Chemical Abstract Machine approach. With
Sangiorgi, Milner could then define bisimulation congruence using reductions
and barbs (1993e). The calculus presented there was also more refined than
the original one, incorporating sorts (analogous to types) and the commu-
nication of tuples. An interesting question for reduction-based approaches
is how to define temporal logics for π-calculus agents.

The π-calculus has had a strong impact. In part this is because pro-
cess calculi, λ-calculi and concurrent object-oriented programs can all be
modelled within it. This yields a relationship with functional program-
ming and a fundamental model of “mobile” objects providing a framework
for understanding contemporary programming disciplines. Other develop-
ments include higher-order process calculi, and experimental programming
languages such as Pict and the join calculus.

Milner’s most recent work in concurrency is on action structures and
calculi, and is intended to address the second concern. The aim is to find
mathematical structures which can underlie concrete models of computation
and which are free from ad hoc details. Again the motivations reflect basic
concerns (1994a), for we

lack a canonical structure which is combinational i.e. which ex-
plains how processes are synthesized, and which embodies the
dynamics of interaction among processes.

Action structures are categories with extra structure, including certain “con-
trols”; actions are modelled as morphisms and the controls allow complex
actions to be built from simple ones. They also possess an ordering on the
actions, used to specify (reduction) dynamics. The categorical structure has
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been shown to link up with (categorical models of) Girard’s linear logic, a
topic of independent computational interest. The controls allow an analysis
of the structural aspects of such process calculi as the π-calculus; however it
is still not clear how to give a uniform analysis of such aspects of their dy-
namics as observational equivalence. These issues remain an active concern
of Milner’s.
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Conf. (ed. Z. Ésic), Szeged, Lecture Notes in Computer Science, Vol. 710,
pp. 87–105, Berlin, Springer-Verlag.

c Elements of interaction, Communications of the ACM, Vol. 36, No. 1,
pp. 78–89.

d Higher-order action calculi. In Proc. 9th. CSL Conf. (eds. E. Börger,
Y. Gurevich & K. Meinke), Swansea, Lecture Notes in Computer Sci-
ence, Vol. 832, pp. 238–260, Berlin, Springer-Verlag.

e The polyadic π-calculus: a tutorial. In Logic and Algebra of Specifica-
tion (eds. F. L. Bauer, W. Brauer & H. Schwichtenberg), pp. 203–246,
Berlin, Springer-Verlag.

f (With J. Parrow & D. Walker) Modal logics for mobile processes,
Theoretical Computer Science, Vol. 114, pp. 149–171.

1994a Action structures and the π-calculus. In Proof and Computation (ed.
H. Schwichtenberg), pp. 317–378, Series F: Computer and Systems Sci-
ences, Vol. 139, NATO Advanced Study Institute, Proc. Int. Summer
School held in Marktoberdorf, Germany, 1993, Berlin, Springer-Verlag.

b Computing is interaction (abstract). In Proc. 13th. IFIP World Com-
puter Congress (eds. B. Pehrson & I. Simon), Hamburg, Vol. 1, pp. 232–
233, Amsterdam, North-Holland.

1995 (With A. Mifsud & J. Power) Control structures. In Proc. Tenth
Symposium on Logic in Computer Science, San Diego, pp. 188–198,
Washington, IEEE Computer Press.

22



1996a Calculi for interaction. In Acta Informatica, Vol. 33, No. 8, pp. 707–
737.

b Semantic ideas in computing. In Computing Tomorrow (eds. I. Wand
& R. Milner), Cambridge, pp. 246–283, Cambridge University Press.

1997a Strong normalisation in higher-order action calculi. In Proc. 3rd.
TACS Symp. (eds. M. Abadi and T. Ito), Lecture Notes in Computer
Science, Vol. 1281, pp. 1–19, Berlin, Springer Verlag.

23


