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Abstract. We seek universal categorical conditions ensuring the representability of all partial
recursive functions. In the category Pfn of sets and partial functions, the natural numbers
provide both an initial algebra and a final coalgebra for the functor 1 + −. We recount how
finality yields closure of the partial functions on natural numbers under Kleene’s µ-recursion
scheme. Noting that Pfn is not cartesian, we then build on work of Paré and Román, obtaining
weak initiality and finality conditions on natural numbers algebras in monoidal categories
that ensure the (weak) representability of all partial recursive functions. We further obtain
some positive results on strong representability. All these results adapt to Kleisli categories
of cartesian categories with natural numbers algebras. However, in general, not all partial
recursive functions need be strongly representable.

1 Introduction

It is a great pleasure to write in celebration of Samson Abramsky’s 60th birthday. The
interaction between category theory and computer science has long been central in Samson’s
work. Here we touch lightly on several themes of this kind which have been of interest
to him: coalgebras, computability, definability, domain equations, linearity, and—even—
natural numbers objects [11].

Our interest is in finding universal categorical conditions that ensure the representabil-
ity of all partial recursive functions. The case of the primitive recursive functions is well
understood. In general terms, the existence of a “natural numbers” algebra

1 −→ N←− N

with sufficient initiality properties ensures the representability of all primitive recursive
functions. More precisely, all primitive recursive functions are representable in any cartesian
closed category with a weak natural numbers object, i.e., a weakly initial natural numbers
algebra [7], and, more generally, in any cartesian category with a so-called weak stable
natural numbers object [7,2,10].

Natural numbers algebras can equivalently be written in the form

1 + N −→ N

and it is then natural to consider the dual notion of natural numbers coalgebras

N −→ 1 + N



and ask for final ones. As is known, for example from domain theory [5, Example IV-7.15],
the natural numbers form a final such coalgebra in the category Pfn of sets and partial
functions. We verify this directly in Section 3. We further recount there how finality leads
to Kleene’s µ-recursion scheme.

One may therefore hope that all partial recursive functions are representable in any
category possessing a natural numbers algebra with sufficiently strong initiality and fi-
nality properties. Such conditions should apply to Pfn, and, more broadly, to categories
considered in general frameworks for partial functions, such as those of [3] or [4].

Unfortunately, Pfn is not cartesian. Rather, cartesian product equips Pfn with a
symmetric monoidal structure. So the above work on representability in cartesian cate-
gories does not immediately apply. Instead, in Section 4, we turn to the work of Paré and
Román [12]. They gave a notion of stable left (or right) natural numbers objects in monoidal
categories that ensures the representability of all primitive recursive functions. Their proof
uses the uniqueness clause of initiality. However we prefer to use only existence, as that is
the common assumption used to ensure representability. This can be done using structural
functions (such as symmetry) and, following Paré and Román, suitable versions of these
can be defined over weak stable natural numbers objects. In [1] Alves et al considered the
symmetric monoidal case using similar methods, but working in an informal type-theoretic
setting rather than a categorical one.

Putting all this together in Section 5, we finally obtain universality properties that
ensure the representability of all partial recursive functions (Theorem 1) and that can
be applied to categories of partial functions. The notion of representability that we use
is somewhat weak and there is a natural stronger one. We show that all total recursive
functions, and, more generally, all partial recursive functions with recursive graphs, are
strongly representable, under weak additional assumptions (Theorem 2). If we also assume
that all definable partial functions are partial recursive, then all partial recursive functions
are strongly representable (Corollary 1). However this fails in general, and we provide a
syntactic category which has a stable natural numbers object which is also final but in
which no partial recursive function with a non-recursive graph is strongly representable
(Theorem 3).

For categorical terminology used below, the reader may refer, for example, to [2].

2 Primitive recursive functions in cartesian categories

We recall some definitions and results on natural numbers algebras in cartesian categories.
Further information can be found in many places, for example [7,2,10]. We assume given a
cartesian category C, and a natural numbers algebra

1
zero−−−−→ N

succ←−−−− N



within it. We can then represent natural numbers and functions on them. First the numerals
k :1→ N (for k ∈ N) are defined by:

k =def succk ◦ zero

Then a morphism g : Nn → N is said to represent a function f : Nn → N if, for all
k1, . . . , kn ∈ N:

g ◦ 〈k1, . . . , kn〉 = f(k1, . . . , kn)

The representable functions include some base functions: zero represents the constant 0;
succ represents the successor function; and the projections πi : Nn → N, for i = 1, . . . , n
are also representable. The representable functions are also closed under composition, by
which is meant that if f :Nm → N is representable, and so are gi :Nn → N, for i = 1, . . . ,m,
then h :Nn → N is representable, where, for k1, . . . , kn ∈ N:

h(k1, . . . , kn) =def f(g1(k1, . . . , kn), . . . , gm(k1, , kn))

Our natural numbers algebra 1
zero−−→ N

succ←−− N is a natural numbers object if it is an
initial natural numbers algebra, by which we mean that for any other such structure

1
z−−→ B

s←−− B

there is a unique map h :N→ B such that the following diagram commutes:

1
zero

- N
succ

- N

1

1

?

z
- B

h

?

s
- B

h

?

As an evident example, in the category Set of sets and (total) functions, the natural
numbers algebra 1l

zero−−→ N succ←−− N is a natural numbers object, where zero(∗) =def 0 and
succ(n) =def n+ 1.

With initiality, the representable functions are closed under the following scheme, which,
given a ∈ N and g :N→ N, yields h :N→ N such that:

h(0) = a
h(k + 1) = g(h(k))

However that is still too weak. Our natural numbers algebra 1
zero−−→ N

succ←−− N is a stable
natural numbers object if, for any structure

P
f−−→ B

g←−− B



there is a unique map h :P ×N→ B such that the following diagram commutes:

P
〈P, zero ◦ tP 〉- P ×N

P × succ
- P ×N

P

P

?

f
- B

h

?

g
- B

h

?

If C is cartesian closed then natural numbers objects are automatically stable, but that
does not hold more generally. If we only have existence (but not uniqueness) we say that
we have a weak stable natural numbers object.

With stability, indeed, even with weak stability, the representable functions are closed
under pure iteration with n parameters. This, given f : Nn → N and g : N → N, yields
h :Nn+1 → N such that:

h(k1, . . . , kn, 0) = f(k1, . . . , kn)
h(k1, . . . , kn, k + 1) = g(h(k1, . . . , kn, k))

By a result of Gladstone [6] we obtain all primitive recursive functions if we start from
the base functions and close under composition and pure iteration (even allowing only one
parameter).

In summary we have:

Proposition 1. All primitive recursive functions are representable in any cartesian cate-
gory with a weak stable natural numbers object.

3 The Category of Sets and Partial Functions

We begin by reviewing some general ideas. Suppose we are in a category with a terminal
object and binary sums. Then, as remarked in the introduction, natural numbers algebras
1

zero−−→ N
succ←−− N are in 1-1 correspondence with F -algebras (N, α :F (N)→ N) where F is

the endofunctor F (A) =def 1 +A. This correspondence sends (zero, succ) to

α =def 1 + N
[zero,succ]−−−−−−−→ N

(Weak) natural numbers objects correspond in this way to (weakly) initial F -algebras.

One can also discuss F -coalgebras of given endofunctors F . These are structures of the
form (A,α : A → F (A)). In the case where F = 1 + −, we call such coalgebras natural
numbers coalgebras. A homomorphism of F -coalgebras h : (A,α) → (B, β) is a morphism



h :A→ B such that the following diagram commutes:

A
α
- F (A)

B

h

?

β
- F (B)

F (h)

?

and one is interested in (weakly) final coalgebras.

A natural place to begin to explore these ideas is the category Pfn of sets and partial
functions, since partial recursive functions are morphisms there. We know that the natural
numbers form an initial algebra α : F (N) ∼= N in Set (the category of sets and total
functions) where, as above, F (X) = 1l+X and α(inl(∗)) = 0 and α(inr(n)) = n+1. As α is
an isomorphism (as is, by Lambek’s Lemma, the algebra map of the initial algebra of any
endofunctor), we obtain a natural numbers coalgebra α−1 :N → F (N) in Set. Concretely
one has:

α−1(k) =

{
inl(∗) (k = 0)
inr(k′) (k = k′ + 1)

This natural numbers coalgebra is not final in Set. However sums in Set are also sums in
Pfn, and so F extends to Pfn. As we now check, the coalgebra is final there.

We have to show that for any β :Y ⇀ 1l + Y there is a unique map h :Y ⇀ N such that
the following diagram commutes in Pfn:

Y
β
- 1l + Y

N

h

?

α−1
- 1l + N

1l + h

?

As α is an isomorphism this is equivalent to asking that the following diagram commutes:

Y
β
- 1l + Y

N

h

?
�

α
1l + N

1l + h

?



Using Kleene equality we can write this out as an equation:

h(y) '


0 (β(y) ' inl(∗))
h(y′) + 1 (β(y) ' inr(y′))
undefined (β(y)↑)

(1)

where, as usual, we write e ↑ to assert that an expression e is undefined (and write e ↓ to
assert it is defined).

One can show there is a unique such h. For uniqueness, for any h, h′ satisfying the
equation one proves by induction on k that, for all y, h(y) ' k if, and only if, h′(y) ' k.
For existence, one can set:

h(y) 'def µk ∈ N. sk(β(y)) ' inl(∗)

where s =def β ◦ inr−1, and check h satisfies (1). Here, as usual, µk ∈ N. ϕ(k) is the smallest
k ∈ N such that ϕ(k) holds, if there is one, and is undefined otherwise.

Given this connection with minimisation it may not now be surprising that we can
obtain Kleene’s µ-recursion scheme from finality. Suppose we have P :Nn+1 ⇀ N. Then we
apply finality to the coalgebra

β :Nn+1 −−⇀ 1l + Nn+1

where

β(x, k) '


inl(∗) (P (x, k) ' 0)
inr(x, k + 1) (P (x, k)↓ and 6' 0)
undefined (P (x, k)↑)

Substituting into (1), we find that the unique h :Nn+1 ⇀ N whose existence is guaranteed
by finality satisfies the following equation:

h(x, k) '


0 (P (x, k) ' 0)
h(x, k + 1) + 1 (P (x, k)↓ and 6' 0)
undefined (P (x, k)↑)

(2)

We then see that h can be defined by the minimisation

h(x, k) ' µk′. P (x, k + k′) ' 0 ∧ ∀k′′ < k′. P (x, k + k′′)↓

as, with this definition, one checks that h satisfies (2). Specialising, we obtain:

h(x, 0) ' µk ∈ N. P (x, k) ' 0 ∧ ∀k′ < k. P (x, k′)↓

and so h(−, 0) : Nn ⇀ N is the partial function obtained by µ-recursion from P , thereby
establishing the advertised connection between finality and Kleene’s µ-recursion scheme.



4 Primitive Recursive Functions in Monoidal Categories

We assume given a monoidal category C with the standard structural maps:

aA,B,C :A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C lA : I⊗A ∼= A rA :A⊗ I ∼= A

satisfying the usual equations. We need some notation. For any object A define An by
setting A0 = I and An+1 = An ⊗ A. For n ≥ 0 and ci : I → A (i = 1, . . . , n), define
〈c1, . . . , cn〉 : I→ An by: 〈〉 = idI and 〈c1, . . . , cn, cn+1〉 = (〈c1, . . . , cn〉 ⊗ cn+1) ◦ l−1I .

We next assume given a natural numbers algebra in C, by which we now mean a
structure

I
zero−−−−→ N

succ←−−−− N

We define k : I → N for k ∈ N to be succk ◦ zero, and for any k = k1, . . . , kn we write k
for 〈k1, . . . , kn〉 : I → Nn. We then say that a morphism f : Nn → N represents a (total)
function f :Nn → N if, for all k1, . . . , kn ∈ N, we have:

f ◦ 〈k1, . . . , kn〉 = f(k1, . . . , kn)

For example, zero represents the constant 0 and succ represents the successor function.
The natural numbers algebra I

zero−−→ N
succ←−− N is a right stable natural numbers object

if, for any structure of the form

P
f−−→ B

g←−− B

there is a unique morphism h :P ⊗N→ B such that the following diagram commutes:

P
(P ⊗ zero) ◦ r−1P- P ⊗N

P ⊗ succ
- P ⊗N

P

P

?

f
- B

h

?

g
- B

h

?

(and left stable natural numbers objects are defined symmetrically). As usual, one drops
uniqueness for the weak notion. A (weak) right (or left) stable natural numbers object is a
(weak) natural numbers object, in the evident sense.

From now on we assume our natural numbers algebra is a weak right stable natural
numbers object.

Taking P = Nn in the definition of weak right stable natural numbers object we find
that the morphism h whose existence is asserted satisfies the following two equations:

h ◦ 〈k1, . . . , kn, 0〉 = f ◦ 〈k1, . . . , kn〉
h ◦ 〈k1, . . . , kn, k + 1〉 = g ◦ h ◦ 〈k1, . . . , kn, k〉



So, in particular, taking B = N we find that the representable total functions on
natural numbers are closed under the scheme of pure iteration with n parameters. This,
given f :Nn → N and g :N→ N, yields h :Nn+1 → N such that:

h(k1, . . . , kn, 0) = f(k1, . . . , kn)
h(k1, . . . , kn, k + 1) = g(h(k1, . . . , kn, k))

As we now show, weak stability can be used to obtain representations of structural maps
involving N, viz. terminal maps, projections, symmetries, and diagonals. First, considering

I
idI−→ I

idI←− I and applying weak initiality we obtain a morphism tN :N→ I such that:

tN ◦ 0 = 〈〉
tN ◦ k + 1 = tN ◦ k

By induction on k, we then have tN ◦ k = 〈〉. Using tN, we obtain a morphism tNn :Nn → I
such that tNn ◦k = 〈〉. Then, using tN and the tNn , we see that the projections πni :Nn → N
(i = 1, n) are representable. We also define π1 :A⊗N→ A to be rA ◦ (A⊗ tN ), and define
π2 :N⊗A→ A similarly; for any k ∈ N and c : I→ A we have π1 ◦ 〈c, k〉 = π2 ◦ 〈k, c〉 = c.

Regarding symmetry, considering N
(zero⊗N)◦l−1

N−−−−−−−−−→ N ⊗ N
succ⊗N←−−−−− N ⊗ N and applying

weak stability, we obtain a morphism σN,N :N⊗N→ N⊗N such that:

σN ◦ (k1 ⊗ 0) = 0 ⊗ k1
σN ◦ (k1 ⊗ k + 1) = (succ⊗N) ◦ σN ◦ (k1 ⊗ k)

and, by induction on k, we have σN,N ◦ (k1 ⊗ k) = (k ⊗ k1). Using σN,N, we then obtain
morphisms σNm,Nn :Nm ⊗Nn → Nn ⊗Nm such that σNm,Nn ◦ (k ⊗ k′) = (k′ ⊗ k).

Regarding diagonal maps, considering I
(0⊗ 0)◦l−1

I−−−−−−−→ N⊗N
succ⊗succ←−−−−−− N⊗N and applying

weak initiality, we obtain a morphism ∆N :N→ N⊗N such that:

∆N ◦ 0 = (0 ⊗ 0) ◦ l−1I

∆N ◦ k + 1 = (succ⊗ succ) ◦∆N ◦ k

and then, by induction on k, we have ∆N◦k = (k⊗ k)◦l−1I . Using tN and ∆N we then obtain
diagonal morphisms ∆m : N → Nm (m ≥ 0), and, in turn using the ∆m and σ, we further
obtain diagonal morphisms ∆n,m :Nn → (Nn)m (m,n ≥ 0) such that ∆n,m ◦k = 〈k, . . . ,k〉.

Finally, using the ∆n,m and categorical composition, we see that the representable
functions are closed under composition, i.e., that if f :Nm → N is representable, and so are
gi :Nn → N, for i = 1, . . . ,m, then h :Nn → N is representable, where, for k1, . . . , kn ∈ N:

h(k1, . . . , kn) =def f(g1(k1, . . . , kn), . . . , gm(k1, . . . , kn))



For suppose that f : Nm → N is represented by the morphism f : Nm → N and that,
for i = 1, . . . ,m, gi : Nn → N is represented by the morphism gi : Nn → N. Then their
composition h :Nn → N is represented by the morphism h :Nn → N, where

h =def Nn ∆n,m−−−−−→ (Nn)m
(... (I⊗ g1)⊗ ...⊗ gm)
−−−−−−−−−−−−−−→ Nm

f
−−→ N

By a result of Gladstone [6], all primitive recursive functions can be obtained starting
from the base functions (zero, successor, and the projections) and closing under composition
and pure iteration (even allowing only one parameter). We therefore have:

Proposition 2. All primitive recursive functions are representable in any monoidal cate-
gory with a weak stable right (or left) natural numbers object.

(The case of a weak stable left natural numbers object follows by symmetry from that of
a right one.)

5 Partial Recursive Functions in Monoidal Categories

We assume given a monoidal category C, as in the previous section, which also has binary
sums. It would be natural to make a distributivity assumption. For example we might
assume that the tensor right-distributes over binary sums, i.e., that the canonical map
B⊗A+C⊗A→ (B+C)⊗A is an isomorphism. However, as with other structural maps,
this proves unnecessary in the presence of weak stability.

Turning to natural numbers objects, we further assume given a natural numbers algebra

I
zero−−−−→ N

succ←−−−− N

which is a weak right stable natural numbers object such that the map

I + N
α−−→ N

is an isomorphism, where α =def [zero, succ], and is such that the coalgebra

N
α−1

−−−−→ I + N

is weakly final.
The k are defined as above, but we need a wider notion of representability. Say that a

morphism g : Nn → N represents a partial function f :Nn ⇀ N if, for all k1, . . . , kn ∈ N, if
f(k1, . . . , kn) ' k then g ◦ 〈k1, . . . , kn〉 = k.

We know that all primitive recursive functions are representable, and one sees, much
as in the total case, that the representable functions are closed under composition. So it
remains to show that the representable functions are closed under Kleene’s µ-recursion
scheme.



We first need a weak version of right distributivity. Applying weak stability to the
structure

A+B
(A⊗ zero)◦r−1

A +(B⊗ zero)◦r−1
B−−−−−−−−−−−−−−−−−−−−→ (A⊗N)+(B⊗N)

(A⊗ succ)+ (B⊗ succ)−−−−−−−−−−−−−−→ (A⊗N)+(B⊗N)

we obtain a map

(A+B)⊗N
dA,B,N−−−−−−→ (A⊗N) + (B ⊗N)

and, as can be shown by induction on k, for any k and any a : I→ A and b : I→ B, we have

dA,B,N ◦ ((inl ◦ a) ⊗ k) = inl ◦ (a ⊗ k) and dA,B,N ◦ ((inr ◦ b) ⊗ k) = inr ◦ (b ⊗ k)

Iterating, for any n we obtain a map:

(A+B)⊗Nn dA,B,Nn

−−−−−−−→ (A⊗Nn) + (B ⊗Nn)

such that for any k1, . . . , kn and any a : I→ A and b : I→ B, we have

dA,B,N ◦ ((inl ◦ a) ⊗ 〈k1, . . . , kn〉) = inl ◦ (a ⊗ 〈k1, . . . , kn〉)
and

dA,B,N ◦ ((inr ◦ b) ⊗ 〈k1, . . . , kn〉) = inr ◦ (b ⊗ 〈k1, . . . , kn〉)
Spelling out weak finality, we have that for any coalgebra β : B → I + B there is

a morphism h : B → N such that (equivalently) either of the following two diagrams
commute:

B
β
- I +B

N

h

?

α−1
- I + N

I + h

?

B
β
- I +B

N

h

?
�

α
I + N

I + h

?

Looking at the second diagram, we obtain two equations, holding for any b, b′ : I→ B:

h ◦ b = zero (if β ◦ b = inl) (3)

h ◦ b = succ ◦ h ◦ b′ (if β ◦ b = inr ◦ b′) (4)

Now, to show closure under µ-recursion, suppose P : Nn × N ⇀ N is represented by a
morphism P :Nn ⊗N→ N. Then we apply weak finality to the coalgebra

Nn+1 ∆n+1,2−−−−−−→ (Nn+1)2

(α−1 ◦P ◦ lNn+1 )⊗Nn+1

−−−−−−−−−−−−−−−→ (I + N)⊗Nn+1

dI,N,Nn+1

−−−−−−−−→ (I⊗Nn+1) + (N⊗Nn+1)
[π1,(Nn⊗succ)◦π2]−−−−−−−−−−−→ I + Nn+1



and obtain a morphism
h :Nn+1 → N

obeying the following two equations:

h ◦ 〈k1, . . . , kn, k〉 = zero (if P ◦ 〈k1, . . . , kn, k〉 = zero)
h ◦ 〈k1, . . . , kn, k〉 = succ ◦ h ◦ 〈k1, . . . , kn, k + 1〉 (if P ◦ 〈k1, . . . , kn, k〉 = succ ◦ k′,

for some k′)

One then proves by induction on l that, for all k1, . . . , kn, k, we have:

µk′. (P (k1, . . . , kn, k+k′) ' 0∧∀k′′ < k′. P (x, k+k′′)↓) ' l ⇒ h◦〈k1, . . . , kn, k〉 = l

and so we see that h represents the partial function

f(k1, . . . , kn, k) 'def µk′. P (k1, . . . , kn, k + k′)' 0 ∧ ∀k′′ < k′. P (x, k + k′′)↓

We therefore have, as required, that the representable functions are closed under Kleene’s
µ-recursion scheme, as h ◦ (Nk ⊗ zero) ◦ r−1Nn represents the partial function

g(k1, . . . , kn) 'def µk. P (k1, . . . , kn, k)' 0 ∧ ∀k′ < k. P (x, k′)↓

Our discussion has established:

Theorem 1. Let C be a monoidal category with binary sums and a weak left (or right)
natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an isomorphism and

(N, [zero, succ]−1) is a weakly final natural numbers coalgebra. Then all partial recursive
functions are representable in C.

There is a natural stronger notion of representability of partial functions over N which
we now investigate. Say that a morphism g :Nn → N strongly represents a partial function
f :Nn ⇀ N if, for all k1, . . . , kn ∈ N, f(k1, . . . , kn) ' k if, and only if, g ◦ 〈k1, . . . , kn〉 = k.

Lemma 1. Let C be a monoidal category with a weak left (or right) natural numbers
object I

zero−−→ N
succ←−− N such that 0 6= 1.Then all representable total functions are strongly

representable.

Proof. We first remark that if k = k′ then k = k′. For if not, as the predecessor function is
representable, we get 0 = 1, contradicting our assumption.

Now, suppose that g : Nn → N represents a total function f : Nn → N, and choose
k1, . . . , kn. Then g ◦ 〈k1, . . . , kn〉 = f(k1, . . . , kn). So if g ◦ 〈k1, . . . , kn〉 = k then, by the
remark, we have, as required, f(k1, . . . , kn) = k. ut

Theorem 2. Let C be a monoidal category with binary sums and a weak left (or right)
natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an isomorphism and

(N, [zero, succ]−1) is a weakly final natural numbers coalgebra. Then:



1. If 0 6= 1 then all total recursive functions are strongly representable in C.
2. If succ ◦ c 6= zero for all c : I → N, then all partial recursive functions with recursive

graphs are strongly representable in C.

Proof. The first part follows immediately from Theorem 1 and Lemma 1. For the second
part, suppose that g : Nn ⇀ N has a recursive graph. Then there is a recursive function
P : Nn+1 → N such that P (k, k′) holds iff g(k) ' k′. Let P represent P , and define
h : Nn+1 → N and f : Nn+1 ⇀ N as in the above derivation of µ-recursion from weak
finality. Then h ◦ (Nk ⊗ zero) ◦ r−1Nn represents g. To show the representation is strong, it
suffices to show that h strongly represents f (we already know it represents f).

To that end, fixing k, we show, by course-of-values induction on l, that, for all k′, if
h◦〈k, k′〉 = l then f(k, k′) ' l. Suppose, first, that P (k, k′) ' 0. Then we have f(k, k′) ' 0
and, using (3), that l = h ◦ 〈k, k′〉 = 0. Then, by the assumption, we have l = 0 and this
case concludes.

Otherwise we have P (k, k′) ↓ and 6= 0 and then we have f(k, k′) ' f(k, k′ + 1) + 1
and, using (4), that l = h ◦ 〈k, k′〉 = succ ◦ h ◦ 〈k, k′ + 1〉. Hence, by the assumption, we
have l 6= 0, and we can apply the induction hypothesis, as succ has a left inverse. ut

The strong representability of all partial recursive functions can be established under
a further, computability, assumption. Assuming that 0 6= 1 holds in our given category,
every morphism g :Nn → N can be seen as defining a partial function g :Nn ⇀ N, where

g(k1, . . . , kn) ' k ≡def g ◦ 〈k1, . . . , kn〉 ' k

Note that g strongly represents g. We have:

Corollary 1. Let C be a monoidal category with binary sums and a weak left (or right)
natural numbers object I

zero−−→ N
succ←−− N such that [zero, succ] is an isomorphism and

(N, [zero, succ]−1) is a weakly final natural numbers coalgebra.
Then, if 0 6= 1 and if all strongly representable partial functions are partial recursive,

all partial recursive functions are strongly representable.

Proof. A theorem of Visser [14, III.7] states that any class of unary partial recursive func-
tions that (1) contains an upper bound of every partial recursive function and (2) is closed
under right composition with all total recursive functions consists of all unary partial re-
cursive functions.

Consider the class of all strongly representable (equivalently definable) unary partial
functions. By assumption, these are all partial recursive. By Theorem 1, the first of the two
conditions hold. By Theorem 2 every total recursive function is strongly representable and it
is easy to see that the class of strongly representable unary partial functions is closed under
right composition with strongly representable unary total functions. So the second condition
also holds and Visser’s theorem applies, showing that all unary partial recursive functions
are strongly representable. It follows easily that all n-ary partial recursive functions are
strongly representable. ut



The corollary applies to various free categories such as the free monoidal category of the
kind assumed given in this section.

These results can be applied to Kleisli categories. Suppose we have a cartesian category
C with binary sums and a commutative strong monad T. Then the cartesian structure of
C induces a symmetric monoidal structure on the Kleisli category CT [8,13]. Further, CT

inherits binary sums from C. As we are now in a symmetric situation, there is no need
to distinguish between left and right (weak) natural numbers objects; so assume next that
1

zero−−−→ N
succ←−−− N is a (weak) stable natural numbers object in C. One can check that it is

also a (weak) stable numbers object in CT (more precisely that 1
ηN ◦ zero−−−−−−→ N

ηN ◦ succ←−−−−−− N
is). So, if we further assume that [ηN ◦ zero, ηN ◦ succ] is an isomorphism whose inverse
provides a weak final natural numbers coalgebra in CT, then all the above general results
apply to CT.

In [3,4] categories of partial functions are seen as Kleisli categories for so-called “lifting”
monads on cartesian categories. As an example, in any distributive category, − + 1 is
an equational lifting monad in the sense of [3]. As lifting monads are commutative, the
discussion of Kleisli categories applies to them.

We know from Theorem 2 that, under a weak condition, all partial recursive functions
with recursive graphs are strongly representable. We now see that this need not be the
case if the graphs are not recursive. We first show how, given a consistent extension T of
Peano arithmetic, to construct a distributive category C containing a stably initial natural
numbers object which also provides a final coalgebra in the Kleisli category of the lifting
monad −+ 1. The desired counterexample is then obtained by a suitable choice of T.

So let T be a consistent extension of Peano arithmetic. We allow ourselves to employ
symbols for primitive recursive functions and assume their recursive definitions available
in T, and make use of evident multifix notation for them.

Fix three distinct variables z, x and y. Given formulas ϕ(z) and ψ(z) whose only possible
free variable is z, and a formula γ(x, y) whose only possible free variables are x and y, say
that γ is a T-relation from ϕ to ψ if:

`T ϕ(x) ∧ γ(x, y) ⇒ ψ(y)

that it is T-function from ϕ to ψ if, in addition:

`T ϕ(x) ∧ γ(x, y) ∧ γ(x, y′) ⇒ y = y′

and that it is a total T-function from ϕ to ψ if, further:

`T ϕ(x) ⇒ ∃y. γ(x, y)

Define an equivalence relation on T-relations from ϕ to ψ by:

γ ∼ γ′ ≡ `T ϕ(x)⇒ (γ(x, y)⇔ γ′(x, y))



Note that if γ ∼ γ′ then γ is a (total) T-function from ϕ to ψ if, and only if γ′ is.

The objects of pC are the formulas ϕ whose only possible free variable is z and the
morphisms [γ] :ϕ → ψ of pC are the ∼-equivalence classes of T-functions γ from ϕ to ψ.
Identities and composition are given by:

ϕ
idϕ−−→ ϕ = [y = x]

and

[δ] ◦ [γ] = [∃w. γ(x,w) ∧ δ(w, y)]

where [γ] :ϕ→ ψ and δ :ψ → χ.

The total T-functions form a subcategory C of pC which we now investigate. It is

distributive. The final object is z = 0 with ϕ
t−→ 1 = [y = 0]. Binary products are given

by ϕ × ψ = ϕ(π1(z)) ∧ ψ(π2(z)), with projections πi = [y = πi(x)] (i = 1, 2) and with
〈γ, δ〉 = [γ(x, π1(z)) ∧ δ(x, π2(z))], for [γ] :χ→ ϕ, [δ] :χ→ ψ (we make use of a surjective
pairing function).

The initial object is ⊥ with 0
i−→ ϕ = [⊥]. Binary sums are given by

ϕ+ ψ = (∃w. z = 2w ∧ ϕ(w)) ∨ (∃w. z = 2w + 1 ∧ ψ(w))

with coprojections inl = [y = 2x] and inr = [y = 2x+ 1] and with

[[γ], [δ]] = [(∃w. x = 2w ∧ γ(w, y)) ∨ (∃w. x = 2w + 1 ∧ δ(w, y))]

for [γ] :ϕ→ χ, [δ] :ψ → χ. It is not hard to see that products distribute over sums.

Next, we have a natural numbers algebra

1
zero−−→ N

succ←−− N

where N = >, zero =def [y = 0], and succ =def [y = s(x)]. Considered as an algebra
α :1 + N→ N, we have:

α = [(x = 0 ∧ y = 0) ∨ (∃w. x = 2w + 1 ∧ y = succ(w))]

Note that k = [y = sk(0)]. Also, succ ◦ c 6= zero, for all c : 1 → N, as T is a consistent
extension of Peano arithmetic.

We next check that our natural numbers algebra is a stable natural numbers object.
As C is cartesian, it is enough to show that for any structure of the form

ϕ
[γ]−−−→ ψ

[δ]←−−− ψ

there is a unique [θ] :ϕ×N→ ψ such that the following diagram commutes:



ϕ× 1
idϕ × zero

- ϕ×N
idϕ × succ

- ϕ×N

ϕ

π1

?

[γ]
- ψ

[θ]

?

[δ]
- ψ

[θ]

?

The diagram commutes if, and only if both

`T ϕ(x1)⇒ (θ(〈x1, 0〉, y)⇔ γ(x1, y))

and

`T ϕ(x1)⇒ (θ(〈x1, s(x2)〉, y)⇔ ∃w. θ(〈x1, x2〉, w) ∧ δ(w, y))

hold. For uniqueness, given θ and θ′ satisfying these two conditions, one shows that

`T ϕ(x1)⇒ (θ(〈x1, x2〉, y)⇔ θ′(〈x1, x2〉, y))

holds, using induction on x2. For existence, one defines θ using codes for sequences, following
the standard method used to show that the primitive recursive functions are representable
in Peano arithmetic.

We next interest ourselves in the Kleisli category CL, where L =def − + 1 is the
equational lifting monad available in any distributive category. By a remark made above,
1

zero−−−→ N
succ←−−− N is a stable natural numbers object in CL as it is in C. The k in CL are

as in C, but composed with the unit ηN :N→ N + 1. As ηN has a left inverse, the condition
that succ ◦ c 6= zero for all c :1→ N is inherited by CL from C.

We wish to check next that (N, [ηN ◦ zero, ηN ◦ succ]−1) is a final (1 + −)-coalgebra in
the Kleisli category CL. There is an equivalence of categories

F a G :CL
∼= pC

where both F and G are the identity on objects,

F ([γ]) = [(∃w. γ(x,w) ∧ y = 2w) ∨ (¬∃w. γ(x,w) ∧ y = 1)]

for [γ] :ϕ→ ψ in pC and

G([δ]) = [δ(x, 2y)]

for [δ] :ϕ→ ψ in CL. Under this equivalence (N, [ηN ◦ zero, ηN ◦ succ]−1) is a final (1 +−)-
coalgebra in CL if, and only if, (N, [zero, succ]−1) is in pC.

We therefore now check that the latter is such a coalgebra, guided by the corresponding
discussion in Section 3. Noting that, in pC, every object is a retract of N, it is enough to



check that for any coalgebra [γ] : N → 1 + N there is a unique morphism [δ] : N → N such
that the following diagram commutes:

N
[γ]
- 1 + N

N

[δ]

?
�

α
1 + N

1 + [δ]

?

This diagram commutes if, and only if, the following holds:

`T δ(x, y)⇔ ∃v. γ(x, v) ∧ [(v = 0 ∧ y = 0) ∨ (∃v′. v = 2v′ + 1 ∧ ∃w. δ(v′, w) ∧ y = s(w))]

equivalently if, and only if, both

`T δ(x, 0)⇔ γ(x, 0) (5)

and

`T δ(x, s(y))⇔ ∃w. γ(x, s(w)) ∧ δ(w, y) (6)

hold.

The uniqueness of δ, up to ∼, is shown by induction on y. For its existence, we first
define [θ] :N×N→ N by weak stability so that

`T θ(〈x1, 0〉, y)⇔ γ(x1, y) and `T θ(〈x1, s(x2)〉, y)⇔ ∃w. θ(〈x1, x2〉, s(w)) ∧ γ(w, y)

and then set:

δ(x, y) =def θ(〈x, y〉, 0) ∧ ∀y′ < y.¬θ(〈x, y′〉, 0)

The formula δ(x, y) is evidently T-functional and it evidently satisfies (5). To show it
satisfies (6), one first shows that

`T θ(〈x1, s(x2)〉, y)⇔ ∃w. γ(x1, s(w)) ∧ θ(〈w, x2〉, y) (7)

holds, using induction on x2. Using (7), one then shows that

`T γ(x1, s(w))⇒ [(∀y′ < s(y).¬θ(〈x1, y′〉, 0))⇔ (∀y′ < y.¬θ(〈w, y′〉, 0))] (8)

holds. Finally, one proves δ(x, y) satisfies (6) by using its definition and then (7) and (8).

A formula χ(x1, . . . , xn) semi-represents a relation R ⊆ Nn in an extension T of Peano
arithmetic, if, for all k1, . . . , kn, R(k1, . . . , kn) holds if, and only if, `T χ(k1, . . . , kn) does.



Theorem 3. There is a distributive category C with a stable natural numbers object

1
zero−−→ N

succ←−− N

such that in the Kleisli category CL, where L = (−+ 1):

1. (N, [zero, succ]−1) is a final natural numbers coalgebra, and
2. succ ◦ c 6= zero, for all c :1→ N, but
3. the only strongly representable partial recursive functions in CL are those with a recur-

sive graph.

Proof. By Theorem 3 of [9] (which gives more than we need) there is a consistent complete
extension T of Peano arithmetic in which the only semi-representable relations are either
recursive or non-arithmetical. Define C as above. Then C has all the required properties
except, perhaps, the last. For that, let f : Nn ⇀ N be a partial recursive function, and
suppose that it is strongly representable in CL by [γ] :Nn → N. Then, for all k1, . . . , kn, we
have:

f(k1, . . . , kn) ' k ≡ [γ] ◦ 〈k1, . . . , kn〉 = k ≡ `T γ(〈k1, . . . , kn〉, k)

(making use of an evident primitive recursive n-tupling function). So the graph of f is
semi-representable in T and is therefore recursive. ut
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