
Type Theory and Recursion
Extended Abstract

G. D. Plotkin
Department of Computer Science

Laboratory for Foundations of Computer Science
University of Edinburgh, The King’s Buildings

Edinburgh EH9 3JZ, SCOTLAND

At first sight, type theory and recursion are com-
patible: there are many models of the typed lambda
calculus with a recursion operator at all types. How-
ever the situation changes as soon as one considers
sums. By a theorem of Huwig and Poigné, any carte-
sian closed category with binary sums and such a gen-
eral recursion operator is trivial. Domain theory pro-
vides the category of cpos and continuous functions.
It is cartesian closed and has a general recursion oper-
ator — the least fixed-point operator. It (necessarily)
does not have binary sums, but the closely associated
category of cpos and strict continuous functions does.

We propose an analysis in terms of intuitionistic lin-
ear logic, or, better, intuitionistic linear type theory.
This is compatible with a general recursion operator
for the intuitionistic functions. The category of cpos
and strict continuous functions provides a very simple
model of the combination of the type theory with such
a general recursion operator. The continuous func-
tions appear as the intuitionistic, not necessarily lin-
ear, ones. There are many other interesting models
available arising from other notions of computation or
variant categories of domains. As the cpo model al-
lows contraction, relevant type theory is more appro-
priate for it than linear type theory. However other
models do not permit contraction; an example is the
category of complete semilattices and completely ad-
ditive functions. This is also the category of algebras
of the Hoare powerdomain which assigns to every cpo
the collection of all non-empty Scott-closed subsets.

Another concern of semantics has been polymor-
phism. Various models of Girard’s System F and re-
lated calculi have been developed. Of particular in-
terest are those where polymorphism is treated para-
metrically (uniformly). Various notions of parametric-
ity arise, such as the relational one of Reynolds or
the dinatural one of Bainbridge, Freyd, Scedrov and
Scott. With Reynolds’ relational parametricity, one

has derivable in System F finite products and sums,
second-order existential quantification and initial and
final algebras (of definable covariant functors). It is
both interesting — and necessary for the development
of the semantics of programming languages — to con-
sider the interaction of polymorphism and recursion.
However as the parametric models have categorical
sums, a now familiar difficulty arises.

We consider instead a second-order intuitionistic
linear type theory whose primitive type constructions
are linear and intuitionistic function types and second-
order quantification. In the presence of a suitably
modified form of Reynold’s parametricity the usual
operators of propositional linear logic can be derived
by formulae very similar to the Prawitz-Scott formu-
lae familiar from the intuitionistic case; categorically,
one obtains a model in Seely’s sense. One also ob-
tains initial and final algebras for definable covariant
functors over the category of linear maps. As before,
one can consistently add a general recursion operator.
One can then show compactness, in Freyd’s sense, and
obtain canonical solutions to arbitrary recursive type
equations of the form X ∼= T (X, X) (where now T
is a bifunctor contravariant in its first argument and
covariant in its second).

It is convenient to work in a suitable second-order
logic rather than consider directly the various possi-
ble categorical structures. The logic is formed from
the equational formulae of an appropriate type theory
by adding sufficient logical apparatus to enable the
formulation of a schema for relational parametricity.
Within the logic various induction and co-induction
principles can be defined for initial and final algebras;
corresponding means of reasoning are available for the
other derivable type constructs. The logic can be con-
sidered as a logic of programs in the same spirit as the
Logic of Computable Functions, originated by Scott
and further developed by Milner et al.


