
Foundations of Differential Dataflow

Mart́ın Abadi Frank McSherry Gordon D. Plotkin1,2

1 Microsoft Research?

2 LFCS, School of Informatics, University of Edinburgh

Abstract. Differential dataflow is a recent approach to incremental
computation that relies on a partially ordered set of differences. In the
present paper, we aim to develop its foundations. We define a small pro-
gramming language whose types are abelian groups equipped with linear
inverses, and provide both a standard and a differential denotational se-
mantics. The two semantics coincide in that the differential semantics is
the differential of the standard one. Möbius inversion, a well-known idea
from combinatorics, permits a systematic treatment of various operators
and constructs.

1 Introduction

Differential computation [2] is a recent approach to incremental compu-
tation (see, e.g., [1,3]) that relies on partially ordered versions of data.
We model partially ordered versions as functions over a partial order,
and call them streams. In the intended implementations of differential
computation, the set of updates required to reconstruct any given version
At of a stream A is retained in a data structure indexed by the partial
order, rather than consolidated into a “current” version. For example, in
an iterative algorithm with two nested loops with counters i and j, dif-
ferential computation may associate a version with each pair (i, j) (with
the product partial order on such pairs). Then an implementation may
re-use work done at all (i′, j′) < (i, j) to compute the (i, j)-th version.

Differential dataflow is an instantiation of differential computation
in a data-parallel dataflow setting. In such a setting the data used are
large collections of records and the fundamental operators are indepen-
dently applied to disjoint parts of their inputs. Differential computation
preserves the sparseness of input differences in the output, as an output
can change only if its input has changed. The result can be very concise
representations and efficient updates. The Naiad system [4] includes a
realization of differential dataflow that supports high-throughput, low-
latency computations on frequently updated large datasets.

? Most of this work was done while the authors were at Microsoft. M. Abadi is now
at Google and the University of California at Santa Cruz.

Differential dataflow aims to avoid redundant computation by replac-
ing the versions of its collection-valued variables with versions of differ-
ences. These versions may have negative multiplicities, so that a version
At of a stream A is the sum of the differences (δA)s at versions s ≤ t:
At =

∑
s≤t δAs. This formula resembles those used in incremental com-

putation, where s, t ∈ N, but permits more general partial orders.

Functions on streams A are replaced by their differentials, which op-
erate on the corresponding difference streams δA, and are responsible for
producing corresponding output difference streams. In particular, as es-
tablished in [2], the product partial order Nk enables very efficient nested
iterative differential computation, because each nested iteration can se-
lectively re-use some of the previously computed differences, but is not
required to use all of them. Efficiently updating the state of an itera-
tive computation is challenging, and is the main feature of differential
dataflow.

In the present paper we aim to develop the foundations of differential
dataflow. We show that the use of collections allowing negative multiplic-
ities and product partial orders of the natural numbers are special cases
of general differential computation on abelian groups and locally finite
partial orders. We demonstrate the relevance and usefulness of Möbius
inversion, a well-known idea from combinatorics (see, for example, [5,6]),
to understanding and verifying properties of function differentials.

Specifically, we consider the question of finding the differential of a
computation given by a program in a small programming language that
includes nested iteration. To this end, we define both a standard com-
positional denotational semantics for the language and a compositional
differential one. Our main theorem (Theorem 1 below) states that the
two semantics are consistent in that the differential semantics is the dif-
ferential of the standard semantics.

In Section 2 we lay the mathematical foundations for differential com-
putation. We discuss how abelian groups arise naturally when considering
collections with negative multiplicities. We explain Möbius inversion for
spaces of functions from partial orders to abelian groups. This leads us
to a uniform framework of abelian groups equipped with linear inverses.
We then define function differentials, giving some examples. In particular,
we derive some formulas for such differentials, previously set out without
justification [2].

In Section 3 we consider loops. Two policies for loop egress are men-
tioned in [2]: exit after a fixed number of iterations and exit on a first
repetition. We consider only the first of these, as it is the one used in

practice and mathematically simpler: the second would require the use of
partial streams.

In Section 4 we present the language and its two semantics, and estab-
lish Theorem 1. As noted above, the semantics are denotational, defining
what is computed, rather than how; going further, it may be attractive to
describe an operational semantics in terms of the propagation of differ-
ences in a dataflow graph, somewhat closer to Naiad’s implementation.

In Section 5 we discuss the treatment of prioritization, a technique
from [2] for nested iterative computations. The treatment in [2] via lexi-
cographic products of partial orders does not correctly support more than
one nested loop (despite the suggestion there that it should); further, the
treatment of differential aspects is incomplete, and it is not clear how to
proceed. We instead propose a simpler rule and show that it correctly
achieves the goal of arbitrary prioritized computation.

We conclude in Section 6, and discuss some possible future work.

2 Mathematical foundations

The mathematical foundations of differential dataflow concern: data or-
ganized into abelian groups; version-indexed streams of data and their
differentials, which are obtained by Möbius transformation; and stream
operations and their differentials, which, in their turn, operate on stream
differentials. These three topics are covered in Sections 2.1, 2.2, and 2.3.

2.1 Abelian groups

Abelian groups play a major role in our theory, arising from negative
multiplicities. The set of collections, or multisets, C(X) over a set X can
be defined as the functions c : X → N that are 0 almost everywhere. It
forms a commutative monoid under multiset union, defined pointwise by:
(c∪d)(x) = c(x)+d(x). The set of multisets A(X) with possibly negative
multiplicities is obtained by replacing N by Z; it forms an abelian group
under pointwise sum.

A function between commutative monoids is linear if it preserves fi-
nite sums; e.g., selection and aggregation provide linear functions from
C(X) to commutative monoids such as C(Y) and N. These functions lift
to the corresponding groups: every linear f : C(X) → G, with G an
abelian group, has a unique linear extension f : A(X) → G given by
f(c) =

∑
x∈X c(x)f(x) (omitting the evident map X → C(X)). These

observations exemplify a well-known general construction universally em-
bedding cancellative commutative monoids in abelian groups.

2.2 Versions, streams, and Möbius inversion

We work with locally finite partial orders, that is, partial orders T such
that ↓ t =def {t′ | t′ ≤ t} is finite for all t ∈ T . Examples include finite
products of N, as mentioned in the introduction, and the partial order
Pfin(I), of finite subsets of a given set I (perhaps used to model a set of
individuals), ordered by subset. We think of functions from T to G as
T -indexed streams of elements of G.

The Möbius coefficients µT (t′, t) ∈ Z, with t, t′ ∈ T , are given recur-
sively by:

µT (t′, t) =


0 (t′ 6≤ t)
1 (t′ = t)
−
∑

t′≤r<t µT (t′, r) (t′ < t)

For example for T = N (the natural numbers with their usual ordering),
µN(n′, n) is 1, if n′ = n; is −1, if n′ = n − 1; and is 0, otherwise. For
T = Pfin(I), µ(W ′,W) is −1#(W\W ′), if W ′ ⊆W ; and is 0 otherwise. For
product partial orders one has: µS×T ((s′, t′), (s, t)) = µS(s′, s)µT (t′, t).

The Möbius transformation of a function f : T → G, where G is an
abelian group, is given by:

δT (f)(t) =
∑
t′≤t

µT (t′, t)f(t′)

For example δN(f)(n) = f(n)− f(n− 1), if n > 0, and = f(0) if n = 0.

Defining

ST (f)(t) =
∑
t′≤t

f(t′)

we obtain the famous Möbius inversion formulas:

ST (δT (f)) = f = δT (ST (f))

See, for example, [5,6]. Expanded out, these formulas read:

f(t) =
∑
t′≤t

∑
t′′≤t′

µT (t′′, t′)f(t′′) f(t) =
∑
t′≤t

µT (t′, t)
∑
t′′≤t′

f(t′′)

The collection GT of all T -indexed streams of elements of G forms an
abelian group under pointwise addition. We would further like to iterate
this function space construction to obtain the doubly indexed functions
mentioned in the introduction; we would also like to consider products
of such groups. It is therefore natural to generalize to abelian groups G

equipped with linear inverses G
δG−→ G

SG−−→ G. A simple example is any
abelian group G, such as A(X), with δG = SG = idG, the identity on G.

For such a G and a locally finite partial order T we define linear

inverses GT
δ
GT−−→ GT

S
GT−−−→ GT on GT by setting:

δGT (f)(t) =
∑
t′≤t

µT (t′, t)δG(f(t′)) and SGT (f)(t) =
∑
t′≤t

SG(f(t′))

It is clear that δGP and SGP are linear; we check they are mutually inverse:

δGP (SGP (f))(t) =
∑

t′≤t µ(t′, t)δG(
∑

t′′≤t′ SG(f(t′′)))

=
∑

t′≤t
∑

t′′≤t′ µ(t′, t)δG(SG(f(t′′))) (as δG is linear)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′ f(t′′)

= f(t) (by the Möbius inversion formula)

SGP (δGP (f))(t) =
∑

t′≤t SG(
∑

t′′≤t′ µ(t′′, t′)δG(f(t′′)))

=
∑

t′≤t
∑

t′′≤t′ µ(t′′, t′)SG(δG(f(t′′))) (as SG is linear)

=
∑

t′≤t
∑

t′′≤t′ µ(t′′, t′)f(t′′)

= f(t) (by the Möbius inversion formula)

Iterating the stream construction enables us to avoid the explicit use
of product partial orders, as the group isomorphism (GT)T

′ ∼= GT×T
′

extends to an isomorphism of their linear inverses.

As for products, given two abelian groupsG andH with linear inverses
δG, SG and δH , SH , we construct linear inverses δG×H and SG×H for G×H
by setting: δG×H(c, d) = (δG(c), δH(d)) and SG×H(c, d) = (SG(c), SH(d)).
We write π0 and π1 for the first and second projections.

2.3 Function differentials

The differential (or conjugate) of a function f : G → H is the function
δ(f) : G→ H where:

δ(f) =def δH ◦ f ◦ SG

The definition applies to n-ary functions, e.g., for f : G×H → K we have
δ(f)(c, d) = δK(f(SG(c), SH(d))). So δ(f)(δG(c1), δH(c2)) = δK(f(c1, c2))
and compositions of functions can be recast differentially by replacing
both streams and functions by their corresponding differentials. Efficient
differential implementations were developed in [2] for several important
classes of primitive functions (e.g., selection, projection, relational joins).

For any partial order T , a function f : G→ H can be lifted pointwise
to a function fT : GT → HT by setting:

fT (c)t = f(ct)

The most common case is when T = N, used to lift a function to one whose
inputs may vary sequentially, either because it is placed within a loop or
because external stimuli may change its inputs. The following proposition
relates the differential of a lifted function to its own differential. It justifies
some implementations from [2], showing that some lifted linear functions,
such as selection and projection, are their own differentials.

Proposition 1. For any c ∈ GT and t ∈ T we have:

1.
δ(fT)(c)t =

∑
t′≤t

µ(t′, t)δ(f)(
∑
t′′≤t′

ct′′)

2. If, further, f is linear then we have: δ(fT)(c)t = δ(f)(ct).
3. If, yet further, δ(f) = f then δ(fT) = fT , that is, δ(fT)(c)t = f(ct).

Proof. 1. We calculate:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δH(fT (SGT (c))t′)

=
∑

t′≤t µ(t′, t)δH(f(SGT (c)t′))

=
∑

t′≤t µ(t′, t)δH(f(
∑

t′′≤t′ SG(c)t′′))

=
∑

t′≤t µ(t′, t)δH(f(SG(
∑

t′≤t′ ct′′)))

=
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′)

2. If f is linear so is δ(f) and then, continuing the previous calculation:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′ δ(f)(ct′′)

= δ(f)(ct)

3. This is an immediate consequence of the previous part.
ut

For binary functions f : G×H → K, we define fT : GT ×HT → KT

by fT (c, d)t = f(ct, dt). In the case T = N a straightforward calculation
shows that if f is bilinear (i.e., linear in each of its arguments) then:

δ(fN)(c, d)n = δ(f)(cn, δ(d)n) + δ(f)(δ(c)n, dn)− δ(f)(δ(c)n, δ(d)n)

justifying the implementations in [2] of differentials of lifted bilinear func-
tions such as relational join. The equation generalizes to forests, i.e., those
locally finite partial orders whose restriction to any ↓ t is linear.

The following proposition (proof omitted) applies more generally;
Part 2 justifies the implementation of binary function differentials in [2].

Proposition 2. For any c ∈ GT , d ∈ HT , and t ∈ T we have:

1.
δ(fT)(c, d)t =

∑
t′≤t

µ(t′, t)δ(f)(
∑
t′′≤t′

ct′′ ,
∑
t′′≤t′

dt′′)

2. If, further, f is bilinear (i.e., linear in each argument separately), and
T has binary sups then we have:

δ(fT)(c, d)t =
∑
r, s

r ∨ s = t

δ(f)(cr, ds)

3. If, yet further, δ(f) = f we have:

δ(fT)(c, d)t =
∑
r, s

r ∨ s = t

f(cr, ds)

3 Loops

We follow [2] for the differential of an iterative computation, but employ
additional formalism to justify the construction, and to be able to gen-
eralize it sufficiently to support prioritization correctly. Loops follow the
dataflow computation pictured in Figure 1. The Ingress node introduces

grow without bound as t increases. In practice, δA can
be thought of like a (partially ordered) log of updates that
have occurred so far. If we know that no further updates
will be received for any versions t < t0 then all the updates
up to version t0 can be consolidated into the equivalent of
a checkpoint, potentially saving both storage cost and com-
putational effort in reconstruction. The Naiad prototype
includes this consolidation step, but the details are beyond
the scope of this paper.

4. DIFFERENTIAL DATAFLOW
We now present our realization of differential computa-

tion: differential dataflow. As discussed in Section 6, incre-
mental computation has been introduced in a wide variety
of settings. We chose a declarative dataflow framework for
the first implementation of differential computation because
we believe it is well suited to the data-parallel analysis tasks
that are our primary motivating application.

In common with existing work on query planning and
data-parallel processing, we model a dataflow computation
as a directed graph in which vertices correspond to program
inputs, program outputs, or operators (e.g. Select, Join,
GroupBy), and edges indicate the use of the output of one
vertex as an input to another. In general a dataflow graph
may have multiple inputs and outputs. A dataflow graph
may be cyclic, but in the framework of this paper we only
allow the system to introduce cycles in support of fixed-point
subcomputations.

4.1 Language
Our declarative query language is based on the .NET Lan-

guage Integrated Query (LINQ) feature, which extends C#
with declarative operators, such as Select, Where, Join and
GroupBy, among others, that are applied to strongly typed
collections [5]. Each operator corresponds to a dataflow ver-
tex, with incoming edges from one or two source operators.

We extend LINQ with two new query methods to exploit
differental dataflow:

// result corresponds to body^infty(source)
Collection<T> FixedPoint(Collection<T> source,

Func<Collection<T>,Collection<T>> body)

// FixedPoint variant which sequentially introduces
// source records according to priorityFunc
Collection<T> PrioritizedFP(Collection<T> source,

Func<T, int> priorityFunc,
Func<Collection<T>,Collection<T>> body)

FixedPoint takes a source collection (of some record type
T), and a function from collections of T to collections of the
same type. This function represents the body of the loop,
and may include nested FixedPoint invocations; it results
in a cyclic dataflow subgraph in which the result of the body
is fed back to the next loop iteration.
PrioritizedFP additionally takes a function, priority-

Func, that is applied to every record in the source collec-
tion and denotes the order in which those records should
be introduced into the body. For each unique priority in
turn, records having that priority are added to the current
state, and the loop iterates to fixed-point convergence on
the records introduced so far. We will explain the semantics
more precisely in the following subsection.

The two methods take as their bodies arbitrary differential
dataflow queries, which may include further looping and se-

!""#$%"&'$(")*+,$

-)
./
01
1$

2.
/0
11
$

300&%+*4$

$$

Figure 5: The dataflow template for a computation
that iteratively applies the loop body to the input
X, until fixed-point is reached.

quencing instructions. The system manages the complexity
of the partial orders, and hides the details from the user.

4.2 Collection dataflow
In this subsection, we describe how to transform a pro-

gram written using the declarative language above into a
cyclic dataflow graph. We describe the graph in a standard
dataflow model in which operators act on whole collections
at once, because this simplifies the description of operator
semantics. In Section 4.3 we will describe how to modify the
dataflow operators to operate on differences, and Section 4.4
sketches how the system schedules computation.

Recall from Section 3.2 that collection traces model col-
lections that are versioned according to a partial order. We
require that all inputs to an operator vary with the same
partial order, but a straightforward order embedding exists
for all partial orders that we consider, implemented using
the Extend operator:

[Extend(A)](t,i) = At .

The Extend operator allows collections defined outside a
fixed-point loop to be used within it. For example, the col-
lection of edges in a connected components computation is
constant with respect to the loop iteration i, and Extend is
used when referring to the edges within the loop.

Standard LINQ operators such as Select, Where, GroupBy,
Join, and Concat each correspond to single vertices in the
dataflow graph and have their usual collection semantics
lifted to apply to collection traces.

Fixed-point operator.
Although the fixed-point operator is informally as simple

as a loop body and a back edge, we must carefully handle
the introduction and removal of the new integer coordinate
corresponding to the loop index. A fixed-point loop can be
built from three new operators (Figure 5): an ingress vertex
that extends the partial order to include a new integer co-
ordinate, a feedback vertex that provides the output of the
loop body as input to subsequent iterations, and an egress
vertex that strips off the loop index from the partial order
and returns the fixed point. (The standard Concat oper-
ator is used to concatenate the outputs of the ingress and
feedback vertices.)

More precisely, if the input collection X already varies
with a partial order T , the ingress operator produces the

Fig. 1. A loop (reproduced with permission from [2])

input to a loop, and is modeled by the function in : G→ GN where:

in(c)i =def

{
c (i = 0)
0 (i > 0)

The Feedback node advances values from one iteration to the next, and
is modeled by the function fb : GN → GN where:

fb(c)i =def

{
0 (i = 0)
ci−1 (i > 0)

The Concat node merges the input and feedback streams, and is modeled
by the function +GT : GT × GT → GT . The Egress node effects the
fixed-iteration-number loop egress policy, returning the value at some
kth iteration, and is modeled by the function outk : GN → G where:

outk(c) = ck

In addition, the loop body is modeled by a function fN : GN → GN for a
given function f on G.

The loop is intended to output an N-indexed stream s ∈ GN at W ,
starting at f(c), where c ∈ G is input at X, and then successively out-
put f2(c), f3(c), It is more convenient, and a little more general,
to instead take the output just after Concat, obtaining the sequence
c, f(c), f2(c), This s is a solution of the fixed-point equation

d = in(c) + fb(fN(d)) (1)

Indeed it is the unique solution, as one easily checks that the equation is
equivalent to the following iteration equations:

d0 = c dn+1 = f(dn)

which recursively determine d. The output of the loop is obtained by
applying outk to s, and so the whole loop construct computes fk(c).

The differential version of the loop employs the differential versions
of in, fb, and out, so we first check these agree with [2].

Proposition 3. The differentials of in, fb, and out satisfy:

δ(in)(c)i =


c (i = 0)
−c (i = 1)
0 (i ≥ 2)

δ(fb) = fb δ(outk)(c) =
∑
m≤k

cm

Proof. 1. We have:

δ(in)(c)(j) = δGN(in(SG(c))(j) =
∑

i≤j µ(i, j)δG(in(SG(c))(i))

Then we see that if j = 0, this is δG(in(SG(c))(0)) = δG(SG(c)) = c;
if j = 1, this is δG(in(SG(c))(1)) − δG(in(SG(c))(0)) = 0 − c; and if
j ≥ 2, this is δG(in(SG(c))(j))− δG(in(SG(c))(j − 1)) = 0− 0.

2. It suffices to show fb preserves S, i.e., fb(SGT (c))j = SGT (fb(c))j , for
all j ∈ N. In case j = 0, both sides are 0. Otherwise we have:

fb(SGT (c))j = SGT (c)j−1

=
∑

i≤j−1 SG(ci)

=
∑

1≤i≤j SG(ci−1)

=
∑

i≤j SG(fb(c)i)

= SGT (fb(c))j

3. We calculate:

δ(outk)(c) = δG(outk(SGT (c))
= δG(outk(m 7→

∑
m′≤m SG(cm′)))

= δG(
∑

m≤k SG(cm))

=
∑

m≤k cm
ut

As the differential version of the loop employs the differential versions
of in, fb, and +, one expects δ(s) to satisfy the following equation:

d = δ(in)(δ(c)) + fb(δ(fN)(d)) (2)

since + and fb are their own differentials. This equation arises if we dif-
ferentiate Equation 1; more precisely, Equation 1 specifies that d is a
fixed-point of F , where F (d) =def in(c) + fb(fN(d)). One then calcu-
lates δ(F):

δ(F)(d) = δ(F (S(d)))
= δ(in(c) + fb(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(δ(Sd)))
= δ(in)(δ(c)) + fb(δ(fN)(d))

So Equation 2 specifies that δ(s) is a fixed-point of δ(F). It is immediate,
for any G and F : G→ G, that d is a fixed-point of F iff δ(d) is a fixed-
point of δ(F); so δ(s) is the unique solution of the second equation. As
sn = fn(c), differentiating we obtain an explicit formula for δ(s):

δ(s)n =
∑
m≤n

µ(m,n)δ(f)m(δ(c))

equivalently:

δ(s)n =

{
δ(c) (n = 0)
δ(f)n(δ(c))− δ(f)n−1(δ(c)) (n > 0)

Finally, combining the differential versions of the loop and the egress
policy, we find:

δ(outk)(δ(s)) =
∑

m≤k δ(s)m
=
∑

m≤k
∑

l≤m µ(l,m)δ(f)l(δ(c))

= δ(f)k(δ(c))

and so the differential of the loop followed by the differential of egress is,
as expected, the differential of the kth iteration of the loop body.

4 The programming language

The language has expressions e of various types σ, given as follows.

Types

σ ::= b | σ × τ | unit | σ+

where b varies over a given set of base types. Types will denote abelian
groups with linear inverses, with σ+ denoting a group of N-streams.

Expressions

e ::= x | f(e1, . . . , en) | let x : σ be e on e′ |
0σ | e+ e′ | −e |
〈e, e′〉 | fst(e) | snd(e) | ∗ |
iter x : σ to e on e′ | outk(e) (k ∈ N)

where we are given a signature f :σ1, . . . , σn → σ of basic function sym-
bols. (The basic types and function symbols are the built-ins.) The iter-
ation construct iter x : σ to e on e′ produces the stream obtained by
iterating the function λx : σ. e, starting from the value produced by e′.
The expression outk(e) produces the kth element of the stream produced
by e.

Typing Environments Γ = x1 : σ1, . . . , xn : σn are sequences of variable
bindings, with no variable repetition. We give axioms and rules to estab-
lish typing judgments, which have the form Γ ` e : σ.

Typing Axioms and Rules

Γ ` x : σ (x : σ ∈ Γ)

Γ ` ei : σi (i = 1, . . . , n)

Γ ` f(e1, . . . , en) : σ
(f : σ1, . . . , σn → σ)

Γ ` e : σ Γ, x : σ ` e′ : τ
Γ ` let x : σ be e on e′ : τ

Γ ` 0σ : σ
Γ ` e : σ Γ ` e′ : σ

Γ ` e+ e′ : σ

Γ ` e : σ

Γ ` −e : σ

Γ ` e : σ Γ ` e′ : τ
Γ ` 〈e, e′〉 : σ × τ

Γ ` e : σ × τ
Γ ` fst(e) : σ

Γ ` e : σ × τ
Γ ` snd(e) : τ

Γ, x : σ ` e : σ Γ ` e′ : σ
Γ ` iter x : σ to e on e′ : σ+

Γ ` e : σ+

Γ ` outk(e) : σ

Proposition 4. (Unique typing) For any environment Γ and expres-
sion e, there is at most one type σ such that Γ ` e : σ.

In fact, there will also be a unique derivation of Γ ` e : σ.

4.1 Language semantics

Types Types are modeled by abelian groups with inverses, as described
in Section 2. For for each basic type b we assume given an abelian group
with inverses (B[[b]], δb, Sb). The denotational semantics of types is then:

D[[b]] = B[[b]]
D[[σ × τ]] = D[[σ]]×D[[τ]]
D[[unit]] = 1

D[[σ+]] = D[[σ]]N

Expressions For each basic function symbol f : σ1, . . . , σn → σ we assume
given a map:

B[[f]] : D[[σ1]]× . . .×D[[σn]] −→ D[[σ]] .

We do not assume these are linear, multilinear, or preserve the δ’s or S’s.
Let D[[Γ]] = D[[σ1]]× . . .×D[[σn]] for Γ = x : σ1, . . . , xn : σn. Then for

each Γ ` e : σ we define its semantics with type:

D[[Γ ` e : σ]] : D[[Γ]] −→ D[[σ]]

In case Γ, σ are evident, we may just write D[[e]].

Definition of D We define D[[Γ ` e : σ]](α) ∈ D[[σ]], for each α ∈ D[[Γ]] by
structural induction on e as follows:

D[[Γ ` xi : σi]](α) = αi
D[[Γ ` f(e1, . . . , en) : σ]](α) = B[[f]](D[[e1]](α), . . . ,D[[en]](α))

D[[Γ ` let x : σ be e on e′ : τ]](α) = D[[Γ, x : σ ` e′]](α,D[[e]](α))
D[[Γ ` 0σ : σ]](α) = 0D[[σ]]

D[[Γ ` e+ e′ : σ]](α) = D[[e]](α) +D[[σ]] D[[e′]](α)

D[[Γ ` −e : σ]](α) = −D[[σ]](D[[e]](α))

D[[Γ ` 〈e, e′〉 : σ × τ]](α) = (D[[e]](α),D[[e′]](α))
D[[Γ ` fst(e) : σ]](α) = π0(D[[e]](α))
D[[Γ ` snd(e) : τ]](α) = π1(D[[e]](α))
D[[Γ ` ∗ : unit]](α) = ∗

D[[Γ `iter x :σ to e on e′ :σ+]](α)n = (λa :D[[σ]].D[[e]](α, a))n(D[[e′]](α))
D[[Γ ` outk(e) : σ]](α) = outk(D[[e]](α))

The semantics of iteration is in accord with the discussion of the solution
of Equation 1 for loops.

4.2 Differential semantics

We next define the differential semantics of our expressions. It has the
same form as the ordinary semantics:

Dδ[[Γ ` e : σ]] : D[[Γ]] −→ D[[σ]]

The semantics of types is not changed from the non-differential case.

First for f : σ1, . . . , σn → σ we set

Bδ[[f]](α1, . . . , αn) = δD[[σ]](B[[f]](SD[[σ1]](α1), . . . , SD[[σn]](αn))

Then Dδ is defined exactly as for the non-differential case except for
iteration and egress where, following the discussion of loops, we set

Dδ[[Γ ` iter x : σ to e on e′ : σ+]](α)(n) =∑
n′≤n µ(n′, n)(λa : D[[σ]].Dδ[[e]](α, a))n

′
(Dδ[[e]](α)))

and

Dδ[[Γ ` outk(e) : σ]](α) =
∑
n≤k
Dδ[[e]](α)(n)

Theorem 1. (Correctness of differential semantics) Suppose Γ ` e : σ.
Then:

Dδ[[Γ ` e : σ]](α) = δD[[σ]](D[[Γ ` e : σ]](SD[[σ]](α)))

equivalently:

Dδ[[Γ ` e : σ]](δD[[σ]](α)) = δD[[σ]](D[[Γ ` e : σ]](α))

Proof. The first of these equivalent statements is proved by structural
induction on expressions. We only give the last two cases of the proof.

Iteration:

Dδ[[Γ ` iter x : σ to e on e′ : σ+]](α)(n)

=
∑

n′≤n µ(n′, n)(λa : D[[σ]].Dδ[[e]](α, a))n
′
(Dδ[[e′]](α))

=
∑

n′≤n µ(n′, n)(λa : D[[σ]]. δ(D[[e]](Sα, Sa)))n
′
(δ(D[[e′]](Sα))) (by IH)

=
∑

n′≤n µ(n′, n)(δ ◦ (λa : D[[σ]].D[[e]](Sα, a)) ◦ S)n
′
(δ(D[[e′]](Sα)))

=
∑

n′≤n µ(n′, n)δ((λa : D[[σ]].D[[e]](Sα, a))n
′
(D[[e′]](Sα)))

=
∑

n′≤n µ(n′, n)δ(D[[iter x : σ to e on e′]](Sα)(n′))

= δ(D[[iter x : σ to e on e′]](Sα))(n)

Egress:

Dδ[[Γ ` outk(e) : σ]](α) =
∑

n≤k Dδ[[e]](α)(n)

=
∑

n≤k δ(D[[e]](Sα))(n) (by IH)

=
∑

n≤k
∑

n′≤n µ(n′, n)δ(D[[e]](Sα)(n′))

= δ(D[[e]](Sα)(k))
= δ(D[[outk(e)]](Sα))

ut

A compositional differential semantics satisfying Theorem 1 exists on gen-
eral grounds3, as functions f :G→H over given abelian groups G, H with
inverses are in 1-1 correspondence with their conjugates (the conjugate
operator has inverse f 7→ SH ◦ f ◦ δG). However the direct definition of
the differential semantics is remarkably simple and practical.

5 Priorities

In “prioritized iteration” [2], a sequence of fixed-point computations con-
sumes the input values in batches; each batch consists of the set of values

3 We thank the anonymous referee who pointed this out.

assigned a given priority, and each fixed-point computation starts from
the result of the previous one, plus all input values in the next batch.

Such computations can be much more efficient than ordinary itera-
tions, but it was left open in [2] how to implement them correctly for
anything more complicated than loop bodies with no nested iteration.
The proposed notion of time was the lexicographic product of N with any
nested T , i.e., the partial order on N× T with:

(e, s) ≤ (e′, s′) ≡ (e < e′) ∨ (e = e′ ∧ s ≤ s′)

where a pair (e, s) is thought of as “stage s in epoch e”. Unfortunately,
the construction in [2] appears incorrect for T 6= N. Moreover, the lexico-
graphic product is not locally finite, so our theory cannot be applied.

It may be that the use of lexicographic products can be rescued. We
propose instead to avoid these difficulties by using a simple generalization
of iteration where new input can be introduced at each iteration. One use
of this generality is prioritized iteration, where elements with priority i are
introduced at iteration i×k; this scheme provides exactly k iterations for
each priority, before moving to the next priority starting from where the
previous priority left off. This is exactly the prioritized iteration strategy
from [2] with the fixed-iteration-number loop-egress policy, but cast in a
framework where we can verify its correctness.

The generalisation of Equation 1 is:

d = c+ fb(fN(d)) (3)

where now c is in GN (rather than in G, and placed at iteration 0 by in).
This equation is equivalent to the two iteration equations d0 = c0 and
dn+1 = cn+1 + f(dn) and so has a unique solution, say s. Differentiating
Equation 3, we obtain:

d = δ(c) + fb(δ(fN)(d))

By the remark in Section 3 on fixed-points of function differentials, this
also has a unique solution, viz. δ(s). To adapt the language, one simply
changes the iteration construct typing rule to:

Γ, x : σ ` e : σ Γ ` e′ : σ+

Γ ` iter x : σ to e on e′ : σ+

We assume the ingress function is available as a built-in function; other
built-in functions can enable the use of priority functions. The semantics
of this version of iteration is given by:

D[[Γ `iter x :σ to e on e′ :σ+]](α) = µd :D[[σ+]].D[[e′]](α)+fb(D[[e]](α, d))

where we are making use of the usual notation for fixed-points; that is
justified here by the discussion of Equation 3. The differential semantics
has exactly the same form, and Theorem 1 extends.

6 Discussion

We have given mathematical foundations for differential dataflow, which
was introduced in [2]. By accounting for differentials using Möbius inver-
sion, we systematically justified various operator and loop differentials
discussed there. Using the theory we could also distinguish the difficult
case of lexicographic products, and justify an alternative.

Via a schematic language we showed that a differential semantics is
the differential of the ordinary semantics, verifying the intuition that to
compute the differential of a computation, one only changes how individ-
ual operators are computed, but not its overall shape. (We could have
given a more concrete language with selection and other such operators,
but we felt our approach brought out the underlying ideas more clearly.)

There are some natural possibilities for further work. As mentioned
in the introduction, one might formulate a small-step operational seman-
tics that propagates differences in a dataflow graph; one would prove a
soundness theorem linking it to the denotational semantics. It would also
be interesting to consider the egress policy of exiting on a first repetition,
i.e., at the first k such that ck = ck+1, where c is the output stream. As no
such k may exist, one is led to consider partial streams, as mentioned in
the introduction. This would need a theory of Möbius inversion for par-
tial functions, but would also give the possibility, via standard domain
theory, of a general recursion construct, and so of more general loops.

References

1. P. Bhatotia et al, Incoop: MapReduce for incremental computations, Proc. 2nd
ACM Symposium on Cloud Computing, 7pp., 2011.

2. F. McSherry et al, Differential dataflow, Proc. Sixth Biennial Conference on Inno-
vative Data Systems Research, www.cidrdb.org, 2013.

3. S. R. Mihaylov et al, REX: recursive, delta-based data-centric computation, Proc.
VLDB Endowment, 5(11), 1280–1291, 2012.

4. D. G. Murray et al, Naiad: a timely dataflow system, Proc. ACM SIGOPS 24th.
Symposium on Operating Systems Principles, 439–455, 2013.

5. G.-C. Rota, On the foundations of combinatorial theory I, Theory of Möbius func-
tions, Probability theory and related fields, 2(4), 340–368, 1964.

6. R. P. Stanley, Enumerative Combinatorics, Vol. 1, CUP, 2011.

Appendix: Proofs

We give the proofs omitted above.

Proof of Proposition 2

Proof. 1. We calculate:

δ(fT)(c, d)t =
∑

t′≤t µ(t′, t)δK(fT (SGT (c), SHT (d))t′)

=
∑

t′≤t µ(t′, t)δK(f(SGT (c)t′ , SHT (d)t′))

=
∑

t′≤t µ(t′, t)δK(f(
∑

t′′≤t′ SG(c)t′′ ,
∑

t′′≤t′ SH(d)t′′))

=
∑

t′≤t µ(t′, t)δK(f(SG×K(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)))

=
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)

2. Continuing the previous calculation, now using the bilinearity of f ,
we have:

δ(fT)(c)t =
∑

t′≤t µ(t′, t)δ(f)(
∑

t′′≤t′ ct′′ ,
∑

t′′≤t′ dt′′)

=
∑

t′≤t µ(t′, t)
∑

r≤t′,s≤t′ δ(f)(cr, ds)

=
∑

t′≤t µ(t′, t)
∑

t′′≤t′
∑
{δ(f)(cr, ds) | r ∨ s = t′′}

=
∑
{δ(f)(cr, ds) | r ∨ s = t}

3. This is an immediate consequence of the previous part.
ut

Proof of Theorem 1

Proof. We give the remaining cases of the proof. We prove the first of
these equivalent statements by structural induction on expressions. We
assume Γ has the form x1 : σ1, . . . , xn : σn.

Case 1. e is xi

Dδ[[Γ ` xi : σ]](α) = αi

= δ(S(αi))

Case 2. e is f(e1, . . . , en)

Dδ[[Γ ` f(e1, . . . , en) : σ]](α) = Bδ[[f]](Dδ[[e1]](α), . . . ,Dδ[[en]](α))

= δ(B[[f]](Sδ(D[[e1]](Sα)), . . . , Sδ(D[[en]](Sα))) (by IH)

= δ(B[[f]](D[[e1]](Sα), . . . ,D[[en]](Sα))

= δ(D[[f(e1, . . . , en)]](Sα))

Case 3. e is let x : σ be e on e′

Dδ[[Γ ` let x : σ be e on e′ : σ]](α) = Dδ[[Γ, x : σ ` e′]](α,Dδ[[e]](α))

= δ(D[[Γ, x : σ ` e′]](Sα, SδD[[e]](Sα))) (by IH)

= δ(D[[Γ, x : σ ` e′]](Sα,D[[e]](Sα)))

= δ(D[[Γ ` let x : σ be e on e′]](Sα))

Cases 4, 5, and 6. These are all much the same. We only give case 5.

Dδ[[Γ ` e+ e′ : σ]](α) = Dδ[[e]](α) +Dδ[[e′]](α)

= δ(Dδ([[e]](Sα)) + δ(Dδ[[e′]](Sα)) (by IH)

= δ(D[[e+ e′]](Sα))

Case 7.

Dδ[[Γ ` 〈e, e′〉 : σ × τ]](α) = (Dδ[[e]](α),Dδ[[e′]](α))

= (δ(Dδ[[e]](Sα)), δ(Dδ[[e′]](Sα))) (by IH)

= δ((Dδ[[e]](Sα),Dδ[[e′]](Sα)))

= δ(Dδ[[〈e, e′〉]](Sα))

Cases 8 and 9. Only case 8 is shown.

Dδ[[Γ ` fst(e) : σ]](α) = π0(Dδ[[e]](α))

= π0(δ(D[[e]](Sα))) (by IH)

= δ(π0(D[[e]](Sα)))

= δ(D[[fst(e)]](Sα))

Case 10. This is trivial, so omitted.
ut

	Foundations of Differential Dataflow

