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THE A-CALCULUS IS c-INCOMPLETE 

G. D. PLOTKIN 

?1. Introduction. The w-rule in the A-calculus (or, more exactly, the AK-fg, 7 

calculus) is 

MZ = NZ (all closed terms Z) 

M=N 

In [1] it was shown that this rule is consistent with the other rules of the A- 

calculus. We will show the rule cannot be derived from the other rules; that is, we 

will give closed terms M and N such that MZ = NZ can be proved without using 

the co-rule, for each closed term Z, but M = N cannot be so proved. This strengthens 

a result in [4] and answers a question of Barendregt. 

?2. Definitions. The language of the A-calculus has an alphabet containing 

denumerably many variables a, b, c, . . . (which have a standard listing e1, e2,. . 

improper symbols A, ( , ) and a single predicate symbol = for equality. 

Terms are defined inductively by the following: 

(1) A variable is a term. 

(2) If M and N are terms, so is (MN); it is called a combination. 

(3) If M is a term and x is a variable, (A x M) is a term; it is called an abstraction. 

We use for syntactic identity of terms. 

If M and N are terms, M = N is a formula. 

BV(M), the set of bound variables in M, and FV(M), its free variables, are 

defined inductively by 

BV(x) = 0; BV((MN)) = BV(M) u BV(N); 

BV((AxM)) = BV(M) u {x}; 

FV(x) = {x}; FV((MN)) = FV(M) u FV(N); 

FV((AxM)) = FV(M)\{x}. 

A term M is closed iff FV(M) = 0. 

[M/x]N, the result of substituting M for x throughout N, is defined inductively by 

[M/xjx M, [M/xjy y (x 0 A 

[M/x](NN') ([M/x]N[M/x]N'), [M/x](AxN) (AxN), 

[M/x](AyN) (Az[M/x][z/y]N) (x 0 y) 

where z is the variable defined by 

(1) if x 0 FV(N) or y d FV(M), z=y, 
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(2) otherwise z is the first variable in the list e1, e2,... such that z 0 FV(N) u 
FV(M). 

That this is a good definition is shown in [2] where other properties of the sub- 
stitution prefix can be found. 

Rules. 

(I) 
1. (AxM) = (Ay[y/x]M) (y 0 FV(M)); 

2. ((txM)N) = [N/x]M; 

3. (vxMx) = M (x 0 FV(M)). 

(II) 
1. M=M. 

2 M=N 
N=M 

M=NN= L 

*M = L 

(LNII) 
M=M' M=M' M=M' 

(NM) = (NM')' (MN) = MWN) (AxM) = (AxM') 

We will use M = N to mean that M = N can be proved by the above rules. In 
addition, M =0 N (a-equivalence) is to mean that M = N can be proved using 
(I)1, (II) and (III); M >? N (P-reduction) is to mean that M = N can be proved 
using (I)1,2, (II)1,3 and (III); M > a6 N (&q-reduction) is to mean that M = N can 

be proved using (I), (II)1,3 and (III); M > , N (X7-reduction) is to mean that M = N 
can be proved using (I)3, (II)1,3 and (III). 

Clearly, if M >?, N or M = Or N then FV(M) = FV(N). 
It is shown in [2] that if M = N then there is a Z, such that M >?6n Z and N >?6n Z 

(Church-Rosser theorem). Further if M > 8n N then, for some Z, M >?8 Z > 7 N. 

By M N we mean that there are terms M1, . . ., Mm and a variable x (m > 2) 
such that M _ (AxM,)M2- * Mm and N -([M2/x]M1)M3 ... Mm. 

The transitive closure, ->+, of -- is called head reduction. 

Standard reduction sequences (s.r. sequences) are defined inductively by the 

following: 

(1) x is a s.r. sequence for any variable x. 

(2) If M1,..., Mm and N1,..., N, are s.r. sequences, so is (M1N1),..., (MmNi), 

* * (MmNn)- 
(3) If M1,..., Mm is a s.r. sequence, so is AxM1,..., AxMm for any variable x. 

(4) If M1, . . ., Mm and N1, . . ., Nn are s.r. sequences, Mm is the first abstraction 
in M1, . . ., Mm and (MmN) -* N1 then (M1N),..., (MmN), N1,.., Nn is a s.r. 

sequence. 

This is a reformulation of the definition given in [2] where it is shown that if 

M > 8N then for some N' = c: N there is a s.r. sequence from M to N' (standardisa- 
tion theorem). If Mm is the first abstraction in a s.r. sequence M1, ..., Mm then 

M, M2 A- - - Mm and Mm is uniquely determined by M1. A term. M is of 
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order 0 iff there is no abstraction N such that M 2 B N or, equivalently, if there is no 

abstraction N such that M I+ N, or M _ N. 

If n is an integer, by n is meant the term 

AfAxf( ..* f (x) ...) (where nf are distinct variables). 

n times 

For any term M let YM be (AxM(xx))(AxM(xx)) where x 0 FV(M); then 
YM = M( YM) and, indeed, YM - M( YM). 

Let Succ _ AnAfAx(nf(fx)) (with n, f and x distinct). Then Succ n = n + 1. 

From [3] we see that there is a closed term Gd-1 such that, for any closed term Z, 
Gd- 1n = Z for some n. 

Finally, we define the terms M and N which provide a counterexample to o- 

completeness via intermediate definitions of terms H1, H, G1, G and F: 

H1 AJhAgAnAxAy((hg)n((hg)(Succ n)(g(Succ n))yx)(Gd -n)), 

H- (YH1), 

G, AgAn((Hg)(Succ n)(g(Succ n))(Gd - '(Succ n))(gn)), 
G (YG1), 

F_ (HG), 

M (FO(GO)), 

N Ax(M(Axx)) (with h, g, n, x, y distinct variables). 

?3. LEMMA 1. For all terms U, V, W, 

(1) FUVW-LL FU(F(Succ U)(G(Succ U))WV)(Gd-1U), 

(2) GU = F(Succ U)(G(Succ U))(Gd-'(Succ U))(G U). 

PROOF. 

FUVW YH1GUVW->+ H1HGUVW 

(1) a+ (HG) U((HG)(Succ U)(G(Succ U)) WV)(Gd'-U) 
- FU(F(Succ U)(G(Succ U))WV)(Gd-1U). 

GU=- YG1U= GlGU 

(2) = (HG)(Succ U)(G(Succ U))(Gd-1(Succ U))(GU) 
F(Succ U)(G(Succ U))(Gd-'(Succ U))(GU). 

It follows immediately that FUVW has order 0 for all terms U, V and W. 

The terms F and G were actually found as solutions to the double recursion 
equations given in Lemma 1. We could not simplify this to two single recursions. 

LEMMA 2. For all m, n ? 0, Fn(Gn)(Gd - 1n) = Fn(Gn)(Gd - 1(m + n)). 
PROOF. By induction on m. For m = 0, the result is obvious. Otherwise, 

Fn(Gn)(Gd 1n) 
= Fn(F(Succ n)(G(Succ n))(Gd - '(Succ n))(Gn))(Gd - 1n) (by Lemma 1.2) 
= Fn(Fn + 1(Gn + 1)(Gd-1n + 1)(Gn))(Gd-'n) 
= Fn(Fn + 1(Gn + 1)(Gd - 1m + n)(Gn))(Gd -'1n) 

(by the induction hypothesis' 
= Fn(Gn)(Gd'1m + n) (by Lemma 1.1). 

LEMMA 3. For all closed terms Z, Z', MZ = MZ'. 
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PROOF. Choose n, n' such that Z = Gd- n and Z' = Gd- n'. Then 

MZ = FO(GO)(Gd-1n) 

= FO(GO)(Gd- 10) (by Lemma 2) 

= FO(GO)(Gd - 'n') (by Lemma 2) 

= MZ'. 

LEMMA 4. If FUVW,..., Z is a s.r. sequence of length I where y E FV(V) but 

y 0 FV(Z) then there is a s.r. sequence of length < I from V to a term V' such that 

y 0 FV(V'). 
PROOF. Suppose otherwise. Let FUVW, . . ., Z be a s.r. sequence of minimal 

length I among those s.r. sequences from a term of the form FUVW, where 

y E FV(V), to a term Z, where y 0 FV(Z); and, for all V', if V, . . ., V' is a s.r. 

sequence of length < I then y E FV( V'). 

Case (a). The s.r. sequence is of the type given in clause 4 of the definition of a 

s.r. sequence. In this case it must have the form FUVW,..., (AwN,)W, N2, ... ., Z 

where FUVW-*+ N2 and N2,. . ., Z is a s.r. sequence of length 1' < L This 

determines N2 and we find that N2- FU(F(Succ U)(G(Succ U))WV)(Gd-'U) 

from the proof of Lemma 1. By the minimality of 1, there is a s.r. sequence of 

length < I' from F(Succ U)(G(Succ U))WV to a term Z' where y 0 FV(Z'). But 

F(Succ U)(G(Succ U)) W is of order 0. Therefore this s.r. sequence must be of the 

type given in clause 2 of the definition of a s.r. sequence. So there is a s.r. sequence 

of length < I' from V to a term V' such that y 0 FV(V'), a contradiction. 

Case (b). The s.r. sequence is of the type given in clause 2 of the definition of a 

s.r. sequence. Then there is a s.r. sequence of length 1' < I from FUV to a term Z' 

such that yoFV(Z'), which must have the form (as ye-FV(V)) FUV,..., 

(AvN,) V, N2,..., Z' where FUV->+ N2 and N2, . . ., Z' is a s.r. sequence of length 
I" < 1'. This determines N2 and N2- AwFU(F(Succ U)(G(Succ U)wV)(Gd'-U) 

for some w 0 FV(U) u FV(V). This must be of the type given in clause 3 of the 

definition of a s.r. sequence and there is a s.r. sequence of length 1 from 

FU(F(Succ U)(G(Succ U))wV)(Gd'-U) to a term Z" such that y 0 FV(Z"). This 

leads to a contradiction as in Case (a). 

LEMMA 5. If FUVW,..., Z is a s.r. sequence such thaty e FV(W) but y o FV(Z) 

then, for some W', W 2 B W' and y 0 FV(W'). 

PRoOF. Suppose otherwise and let FUVW,..., Z be a s.r. sequence having 

minimal length I among those s.r. sequences from a term of the form FUVW to a 

term Z where y e FV( W), y 0 FV(Z) and, for all W', if W 2 B W' then y e FV( W'). 

This s.r. sequence must have the form FUVW,..., (AwN,)W, N2,..., Z where 

FUVW`-* N2 and N2, . . ., Z is a s.r. sequence of length 1' < 1. We find that 

N2- FU(F(Succ U)(G(Succ U)) WV)(Gd - 1 U). By Lemma 4 there is a s.r. sequence 

of length < I' from F(Succ U)(G(Succ U)) WV to a term Z' such that y 0 FV(Z'). 

Now F(Succ U)(G(Succ U)) W is of order 0. Therefore this last s.r. sequence must 

be of the type described in clause 2 of the definition of a s.r. sequence and so there 

is a s.r. sequence of length < I' from F(Succ U)(G(Succ U))W to a term Z" such 

that y ? FV(Z'). Hence, by the minimality of 1, W >?B W' for some term W' such 

that y ? FV(W'), a contradiction. 

LEMrMA 6. If x then Mx # My. 
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Suppose that x 0 y and Mx = My. Then, by the Church-Rosser theorem there 

is a Z' such that Mx ? 6, Z" and My ? 6, Z". Next, for some Z', My ?B Z' >? Z'" 

and finally, for some Z =,Z', there is a s.r. sequence from My to Z. But 

y * FV(Mx) v FV(Z") = FV(Z') = FV(Z). As My _ FO(GO)y, it follows from 

Lemma 5 that, for some term W', y ? 8W' and y * FV(W'), which contradicts the 

hypothesis. 

THEoRm. The w-rule is not derivable. 

PROOF. If Z is any closed term, 

MZ = M(Axx) (Lemma 2) 

= NZ. 

However, if M = N then Mx = Nx = M(Axx) = Ny = My, for any variables 

x and y, contradicting Lemma 6. 

This result is not peculiar to the AK-fli calculus. It can be obtained for any 

AK-flq calculus if there is a term Con - 1 such that for every constant a there is an n 

such that Con- 1 n = a; the result can also be obtained for the AI-g- calculus in an 

analogous way. 

A term M is a universal generator if every closed term is a subterm of some term 

to which M flt-reduces. It is shown in [1] that if MZ = NZ for all closed Z and 

neither M nor N are universal generators then M = N. Is it the case that if M = N 

can be proved using the w-rule and M is not a universal generator then M = N 

can be proved without the cu-rule? Notice that in the counterexample given above 

both M and N are universal generators. 
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