
Recursive checkonly QVT-R transformations
with general when and where clauses via the

modal mu calculus

Julian Bradfield and Perdita Stevens

School of Informatics
University of Edinburgh

Abstract. In earlier work we gave a game-based semantics for check-
only QVT-R transformations. We restricted when and where clauses to
be conjunctions of relation invocations only, and like the OMG standard,
we did not consider cases in which a relation might (directly or indi-
rectly) invoke itself recursively. In this paper we show how to interpret
checkonly QVT-R – or any future model transformation language struc-
tured similarly – in the modal mu calculus and use its well-understood
model-checking game to lift these restrictions. The interpretation via
fixpoints gives a principled argument for assigning semantics to recur-
sive transformations. We demonstrate that a particular class of recursive
transformations must be ruled out due to monotonicity considerations.
We demonstrate and justify a corresponding extension to the rules of the
QVT-R game.

1 Introduction

QVT-R is the OMG standard bidirectional model transformation language[6].
It is bidirectional in the sense that, rather than simply permitting one model
to be built from others, it permits changes to be propagated in any direction,
something which seems to be essential in much real-world model-driven devel-
opment. The same transformation can be read as specifying the circumstances
under which no changes are required (checkonly mode) or as specifying exactly
how one model should be modified so as to restore consistency that has been lost
(enforce mode). This paper concerns checkonly mode, a thorough understanding
of which is prerequisite to understanding enforce mode, because of the require-
ment (hippocraticness) that running a transformation in enforce mode should
not modify models which are already consistent.

QVT-R has several interesting features. In particular, the fundamental way
in which a QVT-R transformation is structured, using a collection of so-called
relations connected by when and where clauses is attractive as it appears to
enable the transformation to be understood by the developer in a modular way.
This transformation structuring mechanism might reasonably be applied in fu-
ture bidirectional model transformation languages, so it is of interest even if
QVT-R itself is not ultimately successful.

In earlier work [7] the second author provided a game-theoretical semantics
for its use in “checkonly” mode, that is, as a logic for defining predicates on
pairs of models. Given a QVT-R checkonly problem instance (a transformation,
together with a tuple of models to check in a given direction), we defined a formal
game between two players, Verifier and Refuter, such that Verifier had a winning
strategy for the game if and only if the transformation should return true on the
given tuple of models in the stated direction. We justified the correctness of the
semantics defined in this way, by referring both to [6] and to the behaviour of
the most faithful QVT-R tool, ModelMorf. In that work, we did not define which
player would win an infinite play of the game. Instead, we placed a restriction on
the permitted transformations such that all plays of the games in our semantics
would be finite; we justified this by pointing out that the OMG semantics [6]
implied nothing about what the semantics in the infinite play cases should be, but
we remarked that it should be possible to do better “by intriguing analogy with
the modal mu calculus”. Intuitively the analogy is that the interplay of when and
where clauses mixes induction with coinduction; the essential character of the
mu calculus is that it does the same. In this paper, we make the analogy concrete;
this allows us to give semantics to many recursive QVT-R transformations, and
allows us to explain why considerations of monotonicity force other recursive
transformations to remain forbidden. We also use mu calculus theory to prove
that extra levels of nesting of when and where clauses provide genuine extra
expressivity.

When defining the semantics of QVT-R via a translation to the mu calculus,
it is natural also to permit more general when and where clauses than previous
work has done. The translation is an aid to clear thought, only: having made
it, we extend our earlier QVT-R game so that all the transformations we can
translate can also be given semantics directly by this easy-to-understand game.

Both recursion and complex clauses are useful in practice, especially where
metamodels contain loops of associations; indeed, both are used in the example
in [6], even though it does not give semantics of recursion.

Related work Our earlier paper [7] discusses the field of previous work on se-
mantics for checkonly QVT-R in full. As discussed there, very few authors have
interested themselves in QVT-R as a bidirectional language. The majority ap-
proach is to study QVT-R transformations in enforce mode only, and furthermore
with the restriction that the transformation function does not take a version of
the target model, only source models. The target model produced depends only
on the source model and the transformation. Recursive relations typically give
rise to recursion (possibly with non-termination) in the target formalism, but
this does not contribute to understanding recursion in checkonly QVT-R.

More relevantly, in [3] the authors aim to generate invariants in OCL, not
in order to give a formal semantics for QVT-R but to support auxiliary anal-
ysis to increase confidence in a transformation’s correctness. The paper in-
cludes an example of a complex recursive QVT-R relation (in Fig 6(a), re-
lation ChClass-Table is given a where clause Attribute-Column(c1,t) and

ChClass-Table(c1,t)). Unfortunately, as discussed in [7], key details of the

invariant generation are elided. Looking at the example, it appears that a re-
cursive QVT-R relation will lead to a recursive OCL constraint. The problem
is thereby moved into the OCL domain, where it is still problematic: [4] in fact
forbids infinite recursion. [3] does not discuss this issue, and in particular, does
not specify which QVT-R transformations can be translated without producing
OCL whose meaning on the relevant models is undefined.

None of the existing QVT-R tools have documented behaviour on recursive
checkonly QVT-R.

2 Background

2.1 QVT-R

A transformation T is defined over a finite set of (usually two) metamodels (types
for the input models) and, when executed in checkonly mode, can be thought of
as a function from tuples of models, each conforming to the appropriate meta-
model, to booleans. In any execution there is a direction, that is, a distinguished
model which is being checked. The argument models are also known as domains
and we will be discussing transformation execution in the direction of the kth
domain. That is, the kth argument model is being checked for consistency with
the others. See [7] for further discussion; here we assume some familiarity with
QVT-R.

Let us discuss preliminary matters of variables, values, typing, bindings and
expressions. In QVT-R these matters are prescribed, building on the MOF meta-
modelling discipline and OCL. The available types are the metaclasses from any
of the metamodels, together with a set of base types (defined in OCL) such as
booleans, strings and integers, and collections. Values are instances of these. The
expression language is an extension of OCL over the metamodels. QVT-R is a
typed language, with some type inference expected.

Our work will focus on the structural aspects of the transformation and will
turn out to be independent of QVT-R’s particular choices in these matters. We
assume given sets Var of typed variables, Val of values and Expr of typed ex-
pressions over variables. We write fv(e) for the set of free variables in e ∈ Expr.
Constraint is the subset of Expr consisting of expressions of type Boolean. A
(partial) set of bindings B for a set V ⊆ Var of variables will be a (partial)
function B : V ⇀ Val satisfying the typing discipline. We write B′ � B when
dom(B′) ⊇ dom(B) and B′ and B agree on dom(B). We assume given an eval-
uation partial function eval : Expr×Binding ⇀ Val defined on any (e, b) where
fv(e) ⊆ dom(b). Like [6] we will assume all transformations we consider are
statically well-typed.

A transformation T is structured as a finite set of relations R1 . . . Rn, one or
more of which are designated as top relations. We will use the term relation since
it is that used in QVT-R, but readers should note that a QVT-R relation is not
(just) a mathematical relation. Instead, a relation consists of: a unique name;
for each domain a typed domain variable and a pattern; and optional when and

where clauses (to be discussed shortly). We write rel(T) for the set of names of
relations in T and top(T) ⊆ rel(T) for the names of relations designated top.
A pattern is a set of typed variables together with a constraint (“domain-local
constraint”) over these variables and the domain variable. A variable may occur
in more than one pattern, provided that its type is the same in all.

The set of all variables used (in QVT-R declarations can be implicit) in a
relation R will be denoted vars(R). The subset of vars(R) mentioned in the when
clause of R is denoted whenvars(R). The subset mentioned in the domains other
than the kth domain is denoted nonkvars(R). The set containing the domain
variables is denoted domainvars(R). These subsets of vars(R) may overlap.

For purposes of this paper a when or where clause may contain a boolean
combination of relation invocations and boolean constraints (from Constraint).
Each relation invocation consists of the name of a relation together with an
ordered list of argument expressions. Evaluating these expressions yields values
for the domain variables of the invoked relation. The BNF (non-minimal, as it
will be convenient to have all of and, or and not) for where clauses is:

where(R) := S(e1, . . . en) where S ∈ rel(T), ei ∈ Expr and fv(ei) ⊆ vars(R)

| where(R) and where(R) | where(R) or where(R)

| not where(R) | (where(R))

| φ such that φ ∈ Constraint and fv(φ) ⊆ vars(R)

and the BNF for when is the same, substituting when for where, and whenvars
for vars. The use of whenvars in the definition of when(R) does not constrain
what can be written; v ∈ vars(R) is in whenvars(R) precisely if it is used in
the when clause. QVT-R itself uses semi-colon (in some contexts, and comma in
others) for “and”, but this seems unnecessarily confusing when we also want to
allow other boolean connectives.

Figure 1 reproduces the moves from the game theoretic semantics of QVT-R
checkonly. We refer the reader to [7] for full discussion and examples. The game
Gk is played in the direction of domain k; that is, model k is being checked with
respect to the other model(s).

Apart from the distinguished Initial position, positions in the game are all
of the form (P,R,B, i) where: P is a player (Verifier or Refuter), indicating
which player is to move from the position; R is the name of a relation from the
transformation, the one in which play is currently taking place; B is a set of
bindings whose domain will be specified; and i is either 1 or 2, tracking whether
only one or both players have moved in the current relation. Play proceeds by
the player whose turn it is to move choosing a legal move. If no legal move is
available to this player, play ends and the other player wins (“you win if your
opponent can’t go”). The transformation returns true if Verifier has a winning
strategy, that is, she can win however Refuter plays.

Informally, each play begins by Refuter picking a top relation to challenge
and bindings for variables from the domains other than the kth and for any
variables that occur in the when clause (Row 1). Verifier may respond by finding
matching bindings from model k (Row 2) or she may counter-challenge a when

invocation (Row 3), effectively claiming that Refuter’s request for her to find
matching bindings is unreasonable because this top relation is not required to
hold at his chosen bindings. If she opts to provide matching bindings, Refuter will
attempt to challenge a where invocation (Row 4). Thus play proceeds through
the transformation until one player cannot move; e.g., if Verifier successfully
provides matching bindings and there is no where clause, it is Refuter’s turn but
he has no legal move, so Verifier wins the play.

Position Next position Notes

Initial (Verif., R,B, 1) R ∈ top(T) ; dom(B) = nonkvars(R) ∪ whenvars(R). B is
required to satisfy domain-local constraints on all domains
other than k.

(P,R,B, 1) (P ,R,B′, 2) B′ � B and dom(B′) = vars(R). B′ is required to satisfy
domain-local constraints on all domains.

(P,R,B, 1) (P , S,C, 1) S(e1 . . . en) is any relation invocation from the when clause
of R; ∀vi ∈ domainvars(S).C : vi 7→ eval(ei, B); dom(C) =
domainvars(S)∪nonkvars(S)∪whenvars(S). C is required to
satisfy domain-local constraints on all domains other than k.

(P,R,B, 2) (P , S,D, 1) S(e1 . . . en) is any relation invocation from the where clause
of R; ∀vi ∈ domainvars(S).D : vi 7→ eval(ei, B); dom(D) =
domainvars(S) ∪ nonkvars(S) ∪ whenvars(S). D is required
to satisfy domain-local constraints on all domains other than
k.

Fig. 1. Summary of the legal positions and moves of the game Gk over T : note that
the first element of the Position says who picks the next move, and that we write P
for the player other than P , i.e. Refuter = Verifier and vice versa. Recall that bindings
are always required to be well-typed.

2.2 Modal mu calculus

The modal mu calculus [5] is a long-established and well-understood logic for
specifying properties of systems, expressed as labelled transition systems. Besides
the usual boolean connectives, it provides

– modal operators: [a]φ is true of a state s if whenever s
a−→ t, φ is true of

state t, while 〈a〉φ is true of a state s if there exists s
a−→ t such that φ is

true of state t
– greatest and least fixpoints νZ.φ(Z) and µZ.φ(Z), which are formally co-

inductive and inductive definitions, but which are best understood as al-
lowing the specification of looping behaviour – infinite loops for greatest
fixpoints, and finite (but unbounded) loops for least fixpoints. The combi-
nation of both fixpoints with the modal operators allows the expression of
complex behaviours such as fairness.

Its semantics is most easily explained as a game between two players, Verifier
and Refuter. A position, in the game to establish whether (i, A, S,−→) satisfies
φ, is (ψ, s) where ψ is a subformula of φ and s ∈ S. The initial position is (φ, i).
The top connective of ψ determines which player moves; Verifier moves if it is ∨
(she chooses a disjunct), 〈a〉 (she chooses an a-transition) or a maximal fixpoint
or its variable (she unwinds the definition). Dually, Refuter moves otherwise. A
player wins if it is their opponent’s turn and the opponent has no legal move, e.g.
Refuter wins if the position is (〈a〉ψ, s) and there is no a-transition out of state
s. In an infinite play, the winner is the owner of the outermost variable unwound
infinitely often (i.e. Verifier if that is a maximal fixpoint variable, otherwise
Refuter).

One may think of the difference between ν and µ in terms of defaulting to true
or false. In a (formal) sense, a µ formula is one where every positive claim has
to be demonstrated; whereas a ν formula holds unless there is a demonstrated
reason why not. See [1] for further explanation and background.

3 Connecting QVT-R and modal mu calculus

We will translate a QVT-R checkonly transformation instance into a modal mu
calculus model-checking instance. That is, given a QVT-R transformation T , a
tuple of models (m1, . . .mn) and a direction k, we shall build a mu calculus for-
mula tr(T) and an LTS lts(T,m1, . . .mn, k) such that (m1, . . .mn) is consistent
in the direction of the kth domain according to T iff lts(T,m1, . . .mn, k) satisfies
tr(T). Note that the LTS depends on the transformation as well as the models;
this is because we choose to encode as much as possible in the LTS, leaving only
the essential recursive structure to be encoded in the mu calculus formula. In
particular, the LTS will capture the features of the model tuple that matter,
ignoring the features that are irrelevant to this particular transformation.

Having defined our translation, we prove that this result holds for the re-
stricted class of transformations covered by the QVT-R game. This validates
the translation on the set of problem instances where a formal semantics already
existed, which makes it prima facie reasonable to use the translation as the se-
mantics of QVT-R on the full domain where it makes sense (which, as we shall
see, includes many but not all transformations with recursive when and where
clauses). We then propose an extension to the QVT-R game, such that the game
semantics and the mu calculus translation semantics coincide everywhere. We
then discuss the implications of doing so; what semantics does it assign to trans-
formations with complex when and where clauses and/or recursive when/where
structure? We will point out one decision point where two choices are possible,
giving different semantics to the transformation language.

3.1 The transition system

Apart from a distinguished initial node, nodes of the LTS we construct each
consist of a pair (R,B) where R ∈ rel(T) and B : vars(R) ⇀ Val is a set of

(well-typed, as always) bindings. In order to be able to handle cases where the
same relation may be invoked more than once in the when or where clause of
another relation, we begin by labelling each relation invocation in the static
transformation text with a natural number, so that an invocation R(e1, . . . , en)
is replaced by Ri(e1, . . . , en) for an i unique within the transformation; invoking
the relation at invocation i will be modelled by a transition labelled invokei.
Figure 2 defines the LTS formally. Note that the direction parameter k affects
the meaning of nonkvars.

3.2 The mu calculus formula

Mu calculus model checking is generally done on a version of the syntax that does
not include negation. The reason is that, if negation is permitted in the language,
the negation can be pushed inwards until it meets the fixpoint variables using the
duality rules such as ¬ [a]φ ≡ 〈a〉¬φ. A formula in the mu calculus with negation
is only semantically meaningful if doing this process results in all negations
vanishing (using the rule ¬¬X ≡ X); otherwise, the fixpoints are undefined.
(Technically, it is possible for a particular formula with non-vanishing negations
to be semantically meaningful, but this cannot in general be determined from
the syntax.)

As mentioned in Section 2.2, the semantics of a standard mu calculus formula
can be defined using a two-player model-checking game. If negation is left in
the language, it corresponds to the players swapping roles, just as happens in
the QVT-R game on a when invocation. Rather than define a version of the
mu calculus game involving such player swapping, we will translate a QVT-R
transformation into a mu calculus formula without negation. Our translation
function will carry a boolean argument to indicate whether roles have been
swapped an odd (false) or even (true) number of times.

The mu calculus formula does not represent the domain variables, the pat-
terns or the arguments to the relation invocations, so we ignore these in our
translation process: all that information is represented in the transition system,
already described, and the invokei transitions and modalities will connect the
LTS and formula appropriately. Figure 2 defines the translation process formally.

Note that tr2 is used to translate when and where clauses, building an envi-
ronment that maps relations to mu variables in the process. Relation invocations
are translated using the environment if the relation has been seen before, and
otherwise, using a new fixpoint.

It is easy to check that for any environment E and relation R

Lemma 1.
tr2E(R, false) = ¬tr2E(R, true)

2

3.3 Correctness of the translation w.r.t. the original QVT-R game

Let Mk(T,m1, . . . ,mn) be the model-checking game played on tr(T) and
lts(T,m1, . . . ,mn, k). We need to establish that, if we start with a QVT-R

Input: Transformation T defined over metamodels Mi, models mi : Mi, direction k.
Output: Labelled transition system lts(T,mi, k) = (Initial, A, S,−→)
Nodes:
S = {Initial} ∪ {(R,B) : R ∈ rel(T), B : vars(R) ⇀ Val}
Labels:
A = {challenge, response, ext1, ext2} ∪ {invokei : i ∈ N}
Transitions:
Initial

challenge−→ (R,B) if R ∈ top(T) and dom(B) = whenvars(R) ∪
nonkvars(R)

(R,B)
response−→ (R,B′) if dom(B) = whenvars(R)∪nonkvars(R) andB′ � B

and dom(B′) = vars(R)

(R,B)
ext1−→ (R,B′) if dom(B) = domainvars(R) and B′ � B

and dom(B′) = domainvars(R) ∪ whenvars(R) ∪
nonkvars(R)

(R,B)
ext2−→ (R,B′) if dom(B) = domainvars(R) ∪ whenvars(R) ∪

nonkvars(R) and B′ � B and dom(B′) = vars(R)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

where clause of R with arguments ei, dom(B) =
vars(R) and dom(B′) = domainvars(S) with ∀i ∈
domainvars(S).B′ : vi 7→ eval(ei, B)

(R,B)
invokej−→ (S,B′) if S is invoked at the invocation labelled j in the

when clause of R, with arguments ei, dom(B) ⊇
whenvars(R) and dom(B′) = domainvars(S) with
∀i ∈ domainvars(S).B′ : vi 7→ eval(ei, B)

LTS definition

Input: Transformation T . Output: tr(T) given by:
tr(T) =

V
Ri∈top(T) tr1(Ri)

tr1(Ri) = [challenge] (〈response〉(tr2∅(where(Ri), true)∨
tr2∅(when(Ri), false))

tr2E(φ, true) = φ
tr2E(φ, false) = ¬φ
tr2E(e and e′, true) = tr2E(e, true) ∧ tr2E(e′, true)
tr2E(e and e′, false) = tr2E(e, false) ∨ tr2E(e′, false)
tr2E(e or e′, true) = tr2E(e, true) ∨ tr2E(e′, true)
tr2E(e or e′, false) = tr2E(e, false) ∧ tr2E(e′, false)
tr2E(not e, b) = tr2E(e,¬b)
tr2E(Ri(e1 . . . en), true) = 〈invokei〉E[R] if R ∈ domE
tr2E(Ri(e1 . . . en), true) = 〈invokei〉νX. ([ext1]

(〈ext2〉tr2E[R 7→X](where(R), true)∨
tr2E[R 7→X](when(R), false))

otherwise

tr2E(Ri(e1 . . . en), false) = [invokei] (¬E[R]) if R ∈ domE
tr2E(Ri(e1 . . . en), false) = [invokei]µX. (〈ext1〉

([ext2] tr2E[R 7→¬X](where(R), false)∧
tr2E[R 7→¬X](when(R), true))

otherwise

Mu calculus formula definition

Fig. 2. Definition of the translation

transformation that conforms to the constraints accepted in [7], we have indeed
achieved our aim of giving equivalent semantics. Therefore let T be a transfor-
mation in which the when–where graph is acyclic; no relation ever invokes itself,
either directly or transitively. Suppose also that all when and where clauses in
T consist of conjunctions of relation invocations only. We will call such a trans-
formation basic.

Notice that in this restricted case no fixpoint variable actually occurs inside
the body of the corresponding µ or ν, so that (a) there is no need for the trans-
lation to retain the environment (as it will never be used) and (b) all fixpoints
in the translation can be discarded. That is, we may replace νX. φ and µX. φ by
φ (which we can be sure does not contain X free) without changing the mean-
ing of the formula. Thus the translation tr yields a mu calculus formula which
is equivalent to a Hennessy–Milner Logic (HML) formula in which boxes and
diamonds correspond directly to challenges and responses. As required, all plays
are finite, and the only winning condition is “you win if it is your opponent’s
turn but they have no legal move”.

Theorem 1. If T is basic, then Verifier has a winning strategy for the model-
checking game Mk iff she has one on the QVT-R game Gk.

Proof. (Sketch) The game graphs are essentially isomorphic: every position where
a player of Gk has a choice corresponds to a position where the same player of
Mk has a choice, these are the only choices in Mk, and the available choices cor-
respond in turn. We only have to say “essentially” because several consecutive
positions in a play of Mk (beginning with one whose formula has an “invoke”
modality as the top connective) can correspond to just one position in Gk. Every
position in such a sequence, except the last, has exactly one legal move from it,
however, so this is unimportant. Since there are no infinite plays, every play ter-
minates when the player whose turn it is to move has no available legal moves;
the same player will win a play in Gk and the corresponding play in Mk. 2

3.4 Top relation challenges

The translation we have given is faithful to [6, 7] but readers may be wonder-
ing why we treated top relations so specially. Why is the initial challenge to a
top relation so different from the invocation of a relation in a when or where
clause, and why do we need two different pairs of labels in our transition system,
challenge and response, and ext1 and ext2? The reason is that [6] is unequiv-
ocal that in the initial challenge to a top relation, the non-k domain variables
(domainvars(R) ∩ nonkvars(R)) are bound (chosen) at the same semantic point
as the other variables in whenvars(R)∪nonkvars(R). By contrast when a relation
is invoked from a when or where clause, the values of all the domain variables of
the invoked relation are fixed (by the choices made for variables of the invoking
relation) before values are chosen for any other non-k variables of the invoked
relation. That is, in the initial challenge to a top relation, there never is a point
at which the domain variables, but no others, have been bound (unless there are
no others).

An alternative semantics, and one which might be considered preferable for a
future language structured like QVT-R, would have Refuter challenge by picking
a top relation and bindings for domainvars(R) ∩ nonkvars(R) only, and would
then have Verifier respond by picking a binding for the kth domain variable.
Then play would proceed just as though from a relation invocation with those
bindings for the domain variables.

Our intuition that this might be preferable is based on the observation that
a consistent pair of models would have a simpler notion of matching than in
standard QVT-R. In this variant, if Verifier has a winning strategy, then given
bindings for the non-k domain variables of a top relation (that is, an initial
challenge by Refuter) there must be a binding for the kth domain variable (that
is, a Verifier response) that matches; Verifier’s choice at this initial stage must
not depend on Refuter’s choices of other bindings in the relation, so the matching
is simpler and, perhaps, easier for a human developer to comprehend.

That this would, indeed, give different semantics for the same QVT-R trans-
formation is demonstrated by the following relation:

top relation R

domain m1 v1:V1 {}

domain m2 v2:V2 {}

when { S(v1,v2) }

}

Suppose we use a transformation with this as its only top relation, on model
m1 in which there is some model element of type V1, and model m2 in which
there is no model element of type V2, in checkonly mode in direction m2. In
the QVT-R semantics, this will return true. The reason is that Refuter will
be unable to pick valid bindings for nonkvars(R) ∪ whenvars(R) since there is
no valid binding for v2 ∈ whenvars(R) (the top level “for all valid bindings...”
statement will be vacuously true). In the alternative semantics, it would return
false, since Refuter would initially challenge with any valid binding for v1 and
Verifier would be unable to match. It would be easy to modify everything in
this paper to support this alternative semantics, if desired; in fact this would
simplify the translation.

4 Extending the QVT-R game

Since not everyone will enjoy using a formal semantics of QVT-R in terms of mu
calculus, we next extend the rules of the QVT-R game to match the translation.
The extension to permit recursive transformations modifies only the winning
conditions. To permit complex when and where clauses we need some new posi-
tions and moves.

4.1 Complex when and where clauses

Lines 3 and 4 in Figure 1, showing the moves that involve challenging a when
or where clause, are removed and replaced by the moves shown in Figure 3.

Source position Mover Target position Notes

(P,R,B, 1) P P to show
when(R) under
B

This simply indicates that player
P is challenging the when clause
of relation R, which is when(R),
in the presence of bindings B.

(P,R,B, 2) P P to show
where(R) under
B

This simply indicates that player
P is challenging the where clause
of relation R, which is where(R),
in the presence of bindings B.

P to show Ψ1 and Ψ2

under B
P P to show Ψi

under B
i = 1, 2 : the other player chooses
which conjunct P should show

P to show
Ψ1 or Ψ2 under B

P P to show Ψi

under B
i = 1, 2 : this player chooses which
disjunct to show

P to show
not Ψ under B

− P to show Ψ
under B

there is exactly one legal move, so
it does not matter which player
chooses

P to show S(e1 . . . en)
under B

P (P, S,C, 1) ∀vi ∈ domainvars(S).C :
vi 7→ eval(ei, B); dom(C) =
domainvars(S) ∪ nonkvars(S) ∪
whenvars(S). C is required to
satisfy domain-local constraints
on all domains other than k.

P to show φ under B − − P wins the play immediately if
eval(φ,B) = true and loses the
play immediately otherwise.

Fig. 3. Extensions to the moves of Gk to permit complex when and where clauses

After a player (as before) chooses to challenge a clause, we enter a sub-play,
with a different form of position, to determine which relation, if any, we move to
and which way round the players will be then. The positions within the subplay
are of the form “P to show Ψ under B” where Ψ is a subformula of the when
or where clause (recall the BNF given earlier) and B (which remains unaltered
within the subplay, but is needed at the end of the subplay) is the set of bindings
in force at the point where the clause was challenged. Within the subplay, as is
usual in logic games, one player chooses between conjuncts, the other between
disjuncts, while negation corresponds to the players swapping roles. Notice that
in the simple case where when and where clauses were simply conjunctions of
relation invocations, all we have done is to split up what would have been a
single move according to Line 3 or 4 of Figure 1 into a sequence of moves – all
by the same player who would have chosen that single move – leading eventually
to the same position that was the target in the original game.

4.2 Recursive transformations

Our translation can be applied to QVT-R transformations in which a relation
does, directly or indirectly, invoke itself recursively. However, because the trans-
lation introduces negations, in certain cases it will result in an ill-formed mu
calculus formula, as remarked earlier. We need a criterion that can be applied
directly to the original QVT-R transformation which will ensure that the target
mu calculus formula is well-formed. Fortunately this is easy.

Definition 1. A recursion path in a QVT-R transformation is a finite sequence,
whose elements may be relation names, “when”, “where” or “not”, such that:

1. the first and last elements of the sequence are the same relation name
2. any subsequence R . . . S, where R and S are relation names and no interven-

ing element is a relation name, corresponds to S being invoked from a when
or where clause of R in the obvious way. That is, the intervening elements
can only be:
– “when” followed by some number i ≥ 0 of “not”s, if S is invoked in R’s

when clause and the invocation is under i negations; or
– “where” followed by some number i ≥ 0 of “not”s, if S is invoked in R’s

where clause and the invocation is under i negations.

Definition 2. A QVT-R transformation is recursion-well-formed if on every
recursion path the number of “not”s plus the number of “when”s is even.

Since every not, every when, and nothing else, causes the boolean flag in the
translation function to be flipped, the recursion-well-formed QVT-R transfor-
mations are precisely those that result in well-formed mu formulae.

Having decided which transformations that may lead to infinite plays to
permit, we need to specify which player will win which infinite plays. In an
infinite play, one or more relation names must occur infinitely often in positions
of the play, that is, as the second element of a 4-tuple like those in Figure 1. Of
these, let R be the one that occurs earliest in the play not counting the positions
before the first when/where invocation (because the initial challenge to a top
relation is different, as discussed in Section 3.4). Look at any 4-tuple involving
R (after the first invocation). If the first element is Verifier and the last is 1,
or the first element is Refuter and the last is 2 (i.e. the players are “the usual
way round”), then Verifier wins this play; otherwise Refuter wins. We will get
a consistent answer regardless of which position we examine, because otherwise
the transformation would not have been recursion-well-formed, i.e., would have
been excluded on monotonicity grounds.

Theorem 2. The QVT-R game as modified in this section is consistent with
the translation semantics.

Proof. (Sketch) Again, the games map one-to-one onto the standard model-
checking games for the mu-calculus formulae of the translation.

Remark: we could have assigned the infinite plays exactly oppositely; this would
correspond to swapping µ and ν in the translation. If we did both, we would still
get Theorems 1,2. This is a choice for the language designer.

5 Examples and consequences

Element

next

0..1

1

x:Element y:Element

next

next

Fig. 4. Metamodel M and model m for examples

Consider a transformation on models conforming to the metamodel shown
in Figure 4, having as its only relation the following:

top relation R {

domain m1 e1:Element {}

domain m2 e2:Element {}

where {(e1.next is not null and e2.next is not null)

and R(e1.next,e2.next)}

}

Let us play the extended game in the direction of m2. Refuter picks an element to
bind to e1. Verifier must match by finding an element e2. Refuter will challenge
the where clause, so the new position is “Verifier to show (e1.next is not

null and e2.next is not null) and R(e1.next,e2.next) under B” where
B records the bindings to e1 and e2 that the players have just made. ((e1.next
is not null and e2.next is not null) ∈ Constraint, abbreviated φ.) Be-
cause the top level connective of the formula in the new position is and, Refuter
chooses a conjunct, giving new position either p =“Verifier to show φ under B”
or “Verifier to show R(e1.next,e2.next) under B”. In the first case, Verifier
wins the play unless, in fact, e1.next or e2.next was null. Thus in choosing
bindings for e1 and e2 we see that it is in Refuter’s interest to choose an e1

with no next if there is one – in that case he has a winning strategy – and in
Verifier’s interest to avoid such a choice for e2. In fact, Refuter can win by even-
tually driving play to position p (with some bindings B) iff either there is some
Element e in m1 with e.next == null (in which case, he may as well choose it
immediately) or there is no loop in the next graph of m2, i.e. every element e

eventually leads, by following next links, to some element e’ with e’.next ==

null. What should happen, however, if Refuter never has the chance to drive
play to a position p, because every element e from m1 has non-null next and
there is some loop in m2 that Verifier can use to match? (Or, indeed, if he could,
but does not choose to?) Refuter can repeatedly choose the “Verifier to show
R(e1.next,e2.next) under B” position, and play will continue for ever. We
consider it natural that Verifier should win such a play, and under our extended
rules this is what happens; e.g. position (Refuter, R,B, 2) recurs.

(R, e1 7→ x)

(R, e1 7→ y)

(R, e1 7→ x, e2 7→ x′)

(R, e1 7→ x, e2 7→ y′)

(R, e1 7→ y, e2 7→ x′)

(R, e1 7→ y, e2 7→ y′)

invoke
invoke

challenge

challenge

response

response

response

response

ext1,ext2

ext1,ext2

ext1,ext2

ext1,ext2

Initial

Fig. 5. Labelled transition system for example

Next we demonstrate how this example works under the translation. The
translation of the transformation is

[challenge] 〈response〉(φ ∧ 〈invoke〉νX. [ext1] 〈ext2〉(φ ∧X))

whose formal semantics corresponds closely to the above description. Specifi-
cally, if models m1 and m2 are both taken to be copies of m from Figure 4
(distinguished by m2 having x′, y′), the LTS is that shown in Figure 5. Any play
of the model-checking game leads to one of the four right-hand LTS nodes, and
then as the fixed point is repeatedly unrolled, loops between that node and the
one connected to it by an invoke transition. Since our translation used a max-
imal fixpoint, unrolling the fixed point infinitely often is allowed and Verifier
wins any play, so she has a winning strategy and our semantics says that the
transformation returns true.

5.1 Expressiveness

In principle, a QVT-R transformation can have arbitrarily deep nesting of when
and where clauses. A natural question is whether this actually adds expressivity,
or whether every transformation could actually be re-expressed using at most n
nestings, for some n. The corresponding question for the modal mu calculus is
whether the alternation hierarchy is strict, which it is (see ([1] for details). That
is, in the modal mu calculus, allowing more (semantic) nesting always does allow
the expression of more properties. However, thus far we only have a translation
from QVT-R to mu calculus; it could be that the image of this translation was
a subset of mu calculus in which the alternation hierarchy collapsed. In fact,
constructing a suitable family of examples enables us to show (see proof in
Appendix of [2]):

Theorem 3. There is no n such that every QVT-R transformation is equivalent
to one with when and where clauses nested to a depth less than n.

Clearly we inherit upper-bound complexity results also from the mu calculus;
however, the complexity of mu calculus model checking is a long-open problem.
It is known to be in the class NP ∩ co-NP but is not known to be in P. The
problem instance size is the size of the model checking game graph; the run-
ning time of well-understood algorithms involves an exponent which depends on
the alternation depth of the mu calculus formula. This is of mostly theoretical
interest, however, since in practice alternation depths are typically small.

6 Conclusion

We have given a semantics to recursive checkonly QVT-R transformations with
complex when and where clauses by first translating the checking problem into
a modal mu calculus model checking problem, and then using this to discover a
corresponding change to the rules of our earlier defined QVT-R game. Thus we
end up with a semantics which is simultaneously formal and intuitive, requiring
no formal training beyond the ability to follow the rules of a game. Our semantics
can be instantiated with any desired metamodelling and expression languages,
not just MOF and OCL.

Acknowledgements

We thank the referees for their constructive suggestions, including some that
could not be implemented in this version for space reasons. The first author is
partly supported by UK EPSRC grant EP/G012962/1 ‘Solving Parity Games
and Mu-Calculi’.

References

1. J. C. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. van Benthem,
and F. Wolter, editors, Handbook of Modal Logic, volume 3, pages 721–756. Elsevier,
2007.

2. Julian Bradfield and Perdita Stevens. Recursive checkonly QVT-R transformations
with general when and where clauses via the modal mu calculus. Technical Report
EDI–INF–RR–1410, University of Edinburgh, 2012. Includes Appendix.

3. Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification and val-
idation of declarative model-to-model transformations through invariants. Journal
of Systems and Software, 83(2):283–302, 2010.

4. Object Management Group. Object constraint language, version 2.0, formal/2006-
05-01, May 2006.

5. D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–
354, 1983.

6. OMG. MOF2.0 query/view/transformation (QVT) version 1.1. OMG document
formal/2009-12-05, 2009. available from www.omg.org.

7. Perdita Stevens. A simple game-theoretic approach to checkonly QVT Relations.
Journal of Software and Systems Modeling (SoSyM), 2011. Published online, 16
March 2011. DOI 10.1007/s10270-011-0198-8.

