
Fixpoint alternation and the Wadge hierarchy

Julian Bradfield

Laboratory for Foundations of Computer Science, University of Edinburgh

Jacques Duparc

Ecole des HEC, Université de Lausanne

Sandra Quickert

Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract: In [2] Bradfield found a link between finite differences formed by
Σ0

2 sets and the mu-arithmetic introduced by Lubarski [10]. We extend this
approach into the transfinite: in allowing countable disjunctions we show that
this kind of extended mu-calculus matches neatly to the transfinite difference
hierarchy of Σ0

2 sets. The difference hierarchy is intimately related to parity
games. When passing to infinitely many priorities, it might not longer be
true that there is a positional winning strategy. However, if such games are
derived from the difference hierarchy, this property still holds true. In the
second part, we use the more refined Wadge hierarchy to understand further
the links established in the first part, by connecting game-theoretic operations
to operations on Wadge degrees.

1 Introduction

Modal mu-calculus, the logic obtained by adding least and greatest fixpoint operators to

modal logic, has long been of great practical and theoretical interest in systems verifi-

cation. The problem of understanding alternating least and greatest fixpoints gave rise

to a powerful and elegant theory relating them to alternating parity automata and to

parity games, developed by many people including particularly Emerson, Lei, Jutla and

Streett. Meanwhile, mu-arithmetic, the logic obtained by adding fixpoints to first-order

arithmetic, made a brief appearance in the early 90s when Lubarsky studied its ordinal-

defining capabilities – curiously, the logic had not previously been studied per se even by

logicians. Then Bradfield used mu-arithmetic as a meta-language for modal mu-calculus,

in which to prove a theorem on alternating fixpoints. Subsequently, Bradfield looked

further into the analogies between mu-arithmetic and modal mu-calculus, and showed

Email addresses: jcb@inf.ed.ac.uk (Julian Bradfield), jacques.duparc@unil.ch (Jacques
Duparc), squicke1@inf.ed.ac.uk (Sandra Quickert).

1

a natural equation between arithmetic fixpoints and the finite difference hierarchy over

Σ0
2, corresponding to the equation between modal fixpoints and parity games. Once in

the world of arithmetic, it becomes natural to think about transfinite hierarchies. In this

paper, we study the transfinite extension of the connection between mu-arithmetic and

the effective difference hierarchy, and connect it to the Wadge hierarchy. We remark here

that already in [1] Barua had studied a relationship between automata and difference

hierarchies, showing that ω-regular languages over a finite alphabet are contained in the

(classical) difference hierarchy, and moreover their rank therein is computable.

PART I

In this part, we introduce the transfinite mu-calculus and its model-checking, relate it to

the difference hierarchy, and establish the existence of positional winning strategies for

the model-checking game.

2 The Transfinite Mu-Calculus

2.1 Syntax and Semantics of the Transfinite Mu-Calculus

The logic we are considering is an extension of the usual mu-arithmetic, as introduced by

Lubarski [10]. First, let us establish basic notation and conventions. ω is the set of non-

negative integers; variables i, j, . . . , n range over ω. The set of finite sequences of integers

is denoted ω∗; finite sequences are identified with integers via standard codings; the

length of a sequence s is denoted lh(s). The set of infinite sequences of integers is ωω. For

α ∈ ωω, α(i) is the i’th element of α, and α(<i) is the finite sequence 〈α(0), . . . , α(i−1)〉.
Concatenation of finite and infinite sequences is written with concatenation of symbols

or with a, and extended to sets pointwise. The usual Kleene lightface hierarchy is defined

on ω, ωω and their products: Σ0
1 = Σ1

0 is the semi-recursive sets, Σ0
n+1 = ∃x ∈ ω.Π0

n,

Πi
n = ¬Σi

n and Σ1
n+1 = ∃α ∈ ωω.Π1

n. The corresponding boldface hierarchy is similar, but

starts with Σ0
1 = Σ1

0 being the open sets.

Mu-arithmetic has as basic symbols the following: function symbols f, g, h; predi-

cate symbols P,Q,R; first-order variables x, y, z; set variables X, Y, Z; and the symbols

∨,∧, ∃,∀, µ, ν,¬,∈. The language has expressions of three kinds, individual terms, set

terms, and formulae. The individual terms comprise the usual terms of first-order logic.

The set terms comprise set variables and expressions µ(x,X). φ and ν(x,X). φ, where

X occurs positively in φ. Here µ binds both an individual variable and a set variable;

henceforth we shall often write just µX. φ, and assume that the individual variable is

the lower-case of the set variable. We also use � to mean ‘µ or ν as appropriate’. The

formulae are built by the usual first-order construction, together with the rule that if τ

is an individual term and Ξ is a set term, then τ ∈ Ξ is a formula.

The semantics of the first-order connectives is as usual; τ ∈ Ξ is interpreted naturally;

and the set term µX. φ(x,X) is interpreted as the least fixpoint of the functional X 7→
{m ∈ ω | φ(m,X) } (where X ⊆ ω).

To produce a transfinite extension, we add the following symbols and formulae. If we

have countably many recursively given Φi, i ∈ ω, whose free set variables are contained

in the same finite set of set variables, then we allow infinite countable disjunction
∨
i<ω Φi

2

and conjunction
∧
i<ω Φi. The restriction on free variables means that we can transform

any formula to a closed formula by adding finitely many fixpoint operators. The semantics

is obvious.

Any formula in the mu-calculus can be rewritten in a prenex normal form:

τn ∈ µXn.τn−1 ∈ νXn−1.τn−2 ∈ µXn−2 . . . τ1 ∈ �X1.Φ

For the transfinite mu-arithmetic we need an extension of this formulation.

Definition 1 By induction on the construction of the formula we say that a formula in

the transfinite mu-calculus is written in extended prenex normal form

. if it is a formula in the finite mu-calculus and written in prenex normal form, or

. if the formula is an infinite disjunction or conjunction of extended prenex normal form

formulae, or

. if it is some �X.Φ where Φ is in extended prenex normal form. /

Given formulae Φi for i < ω in the mu-arithmetic, we observe that the formula
∨
i<ω Φi

can be written in extended prenex normal form, simply by writing each Φi in prenex

normal form. Given an arbitrary formula of the extended arithmetic mu-calculus, an

easy proof on induction by the formula’s construction shows that it can be written in

extended prenex normal form. Furthermore, we can unfold its complexity and represent

it by a wellfounded tree on ω∗.

2.2 A Hierarchy of the Transfinite Mu-Calculus

The fixpoint alternation hierarchy of mu-arithmetic is thus: the first order formulae and

all set variables form the class Σµ
0 which is the same as Πµ

0 . For any natural number n

let Σµ
n+1 be generated from Σµ

n ∪Πµ
n by closing it under ∨,∧ and the operation µX.Φ for

Φ ∈ Σµ
n+1. Πµ

n+1 contains all negations of formulae and set terms in Σµ
n+1. In order to

extend the hierarchy we need to describe the limit step. We allow recursively countable

disjunctions and conjunctions, but we want to stay in the lightface hierarchy. Therefore

we extend the hierarchy to ωck
1 , the first non-recursive ordinal. Let λ be a recursive limit

ordinal. In Σµ
λ we collect all formulae of earlier stages and close under

∨
i<ω,∨ and ∧.

Observe that a formula in Σµ
λ is equivalent to a formula

∨
i<ω Φi where each Φi ∈ Σµ

αi

with αi < λ. Finally, we let Πµ
λ = ¬Σµ

λ. The transfinite successor stages are built in the

same way as the finite successor stages.

Later, this hierarchy will be linked to the effective version of the Hausdorff–Kuratowski

difference hierarchy of Σ0
2-sets: a set is in Σ∂

α iff it is of the form

⋃
ξ∈Opp(α)

Aξ \
⋃
ζ<ξAζ

where (Aξ)ξ<α is an effective enumeration of a ⊆-increasing sequence of Σ0
2-sets, α < ωck

1 ,

and Opp(α) is the set of ordinals < α and of opposite parity to α, where the parity of a

limit ordinal is even.

3

3 Model-Checking for the Transfinite Mu-Calculus

The aim of this section is to introduce a model checking game in which all runs are finite,

even for formulae of transfinite complexity. Let us assume that the formula to check has

set variables’ indices smaller than some recursive ordinal α.

We associate to every set variable Xξ for ξ < α a clock Aξ. Verifier will be in charge of

setting the clocks Aξ with odd index, while Refuter will be in charge of the clocks Aξ with

even index. Limit ordinals are considered to be even. Moreover, we follow the convention

that any variable under the scope of a minimal fixpoint operator is of odd parity, any

variable under the scope of a maximal fixpoint operator is of even parity. The rules of

the model checking game with clocks Gclock between the players Verifier and Refuter are

as follows:

At the very start, Verifier has the role of ∃-player and Refuter the one of ∀-player.

Verifier chooses for each odd clock Aξ some value αξ, and Refuter chooses for each even

clock Aξ some value αξ. Then the usual model checking game starts. Each time some

set variable Xξ is seen, the clock Aξ must be set by Verifier to a smaller value if ξ is

odd, or else it is Refuter’s task to lower the value of Aξ. At the same time, the clocks Aζ
with ζ < ξ can be reset to any value < ω1 by the respective players in charge of them.

More precisely, given a mu-arithmetic formula Φ and an assignment s to free individual

variables of Φ, the game Gclock(Φ, s) goes as follows:

. first move: Verifier plays (αξ | ξ < γ and ξ odd) with αξ < ω1.

. second move: Refuter plays (αξ | ξ < γ and ξ even) with αξ < ω1.

. third move: Verifier plays (Φ, s, (αξ | ξ < γ)).

. nth move: Assume the play is at the position (ϕ, s, (βξ | ξ < γ)) where ϕ is a subformula

of Φ. We need to consider several cases:

� ϕ = ϕ0 ∧/∨ ϕ1: ∀/∃-player chooses either (ϕ0, s, (βξ | ξ < γ)) or (ϕ1, s, (βξ | ξ < γ))

� ϕ =
∧
/
∨
β<γ ϕβ: ∀/∃-player chooses exactly one β0 < γ and plays (ϕβ0 , s, (αξ | ξ <

γ))

� ϕ = ¬ϕ0: ∃-player chooses (ϕ0, s, (βξ | ξ < γ)), Verifier and Refuter change their roles

as ∃-player and ∀-player

� ϕ = ∃/∀xϕ0: ∃/∀-player chooses some a for x and plays (ϕ0, s[a/x], (βξ | ξ < γ))

� ϕ = ν/µXϕ0: ∀/∃-player plays (ϕ0, s, (βξ | ξ < γ))

� ϕ = x ∈ P : the game stops. Verifier wins iff s ∈ P in case she is the current ∃-player,

and s /∈ P in case she is the current ∀-player

� ϕ = xξ ∈ Xξ with odd/even ξ: if αξ = 0, the game stops and Verifier/Refuter loses.

Otherwise, Verifier/Refuter needs to choose some β′ξ < βξ and for each odd/even

ζ < ξ some β′ζ < ω1. Refuter/Verifier chooses for each even/odd ζ < ξ some β′ζ < ω1.

Verifier/Refuter plays (Φ, s, (β′ζ | ζ ≤ ξ)a(βζ | ξ < ζ < γ))

Observe that by the requirement that each Xξ be in the scope of an even number of

negations, Verifier is always in the role of the ∃-player when encountering set variables.

Clearly, the game Gclock(K,Φ) is just like the usual model checking game G(K,Φ)

with the additional requirement that there are clocks which must be reset. This has an

important impact on the winning conditions: while it is possible to have infinite runs in

G(K,Φ), we will easily see that each run of Gclock(KΦ) is finite.

Claim 2 The payoff set for each player in Gclock(K,Φ) is clopen in the usual topology on

4

trees. In other words, the winner of each run of the game is decided after finitely many

moves.

Proof. If there was an infinite play, then we claim that there is a maximal ordinal ξ

such that Xξ is seen infinitely often, but only finitely many times propositional variables

with higher indices are seen. This claim is easily proved by induction on the formula’s

construction: assume that Φ =
∨
ξ<ζ Φξ where ζ is a countable limit ordinal and the

claim holds for any Φξ. At the very first step of the model checking game Verifier needs

to choose one of the formulae Φξ, and the model checking game after the choice will only

use subformulae from the chosen formula. Thus, the claim holds for Φ. All other induction

steps are similarly simple to check.

Let us fix such an Xξ provided by the claim. Along the play there is a point where

some propositional variable with higher index than ξ is seen for the last time. This is the

last time the clock Aξ can be reset. By well-foundedness of the ordinals, the clock must

reach 0 at some point, meaning that the play cannot be infinite.

Claim 3 For every Kripke structure K we have K |= Φ iff Verifier has a winning strategy

in Gclock(K,Φ).

Proof. It suffices to show that Verifier has a winning strategy in the usual model checking

game G(K,Φ) iff she has a winning strategy in Gclock(K,Φ).

Assume (M, s) |= Φ. Then Verifier has a winning strategy in the usual model checking

game G(K,Φ), i.e. she can guarantee that either the maximal priority seen infinitely often

is an even one in case of an infinite run, or that the run reaches a subformula involving

only propositional variables at some point s ∈ K where the subformula holds true. Let f

be her winning strategy. We will transform it to a strategy fc for the game Gclock.

For each odd ξ and each position p in the model checking game consistent with f let

T pξ be the set of all initial plays starting at p and being consistent with f such that Xξ

is not dominated. In the usual way, by exploiting the fact that Xξ is only seen finitely

often on any maximal branch in T pξ , we can attach a rank to the tree T pξ : all leaves and

all nodes where Xξ is seen for the last time (i.e. the cone of T pξ above the node does not

contain Xξ any more) get rank 1. Recursively each node whose cone of T pξ after removing

the cones of ranked nodes does not have any leaves gets rank of the supremum of all

nodes in its cone. Verifier sets the clock Aξ to the rank of the root of T pξ for each odd ξ

at the beginning of the game. The strategy fc is thus: Verifier simply follows strategy f ,

and in addition each time some odd Xξ is encountered, she computes the trees T pξ from

her actual position p and sets her clocks equal to the rank of the roots of these trees.

Moreover, each time some Xξ is encountered at some position p independently of the

parity, for each odd ζ < ξ Verifier computes the rank of the tree T pζ and sets Aζ to this

value. In doing so, she will always produce legal moves: if she encounters some even Xξ

at some position p, the rank of the root of T pξ is strictly less than the actual value of the

clock Aξ, because the latter was the rank of a tree containing T pξ .

Now it is easy to conclude that fc is a winning strategy for Verifier: we know already

that each play is finite. If the game ends when examining some propositional variable,

then Verifier wins since fc was derived from a winning strategy f for the usual model

checking game by just attaching a strategy for dealing with clocks. If the game ends

5

because some clock is set to 0, then it must be Refuter’s loss, because fc guarantees that

the minimal value played by Verifier is at least 1.

With the same arguments Similarly, we can easily show that Refuter has a winning

strategy in G(K,Φ) iff he has a winning strategy in Gclock(K,Φ). By determinacy, this

means that if Verifier has a winning strategy in Gclock(K,Φ), then she has a winning

strategy in G(K,Φ).

The ordinal clocks here are similar in spirit to the progress measures introduced by

Klarlund [8] for Rabin automata-theoretic properties.

4 Parity Games

The use of parity games in model checking has been described by many authors. A very

detailed survey is given by Niwiński [13]. Let us mention that we follow the convention

that if the maximal priority seen infinitely often is odd, then player I wins. When looking

at a formula in the transfinite mu-calculus, we need to play a parity game with infinitely

many priorities: for each set variable we need a distinct priority. If we take the binary tree

and attach to each node a priority in an arbitrary fashion, then, when playing a parity

game on this tree, we might end up having a “wild” payoff set for player I, and we might

also lose the nice property of having a memoryless winning strategy [6]. Furthermore, it

might be that there is no maximum among the priorities seen infinitely often, and infinite

runs might even meet each priority only finitely many times. However, as we will see, a

labelling derived from a model checking game of a transfinite mu-calculus formula avoids

all these undesired effects. Moreover, such a labelling describes some set of the transfinite

difference hierarchy
⋃
α<ωck

1
Σ∂
α and vice versa.

5 Connecting the Transfinite Difference Hierarchy and the Transfinite Mu-

Calculus

Our aim is to extend the following theorem of Bradfield [2]:

Theorem 4 For every natural number n the equality GΣ∂
n = Σµ

n+1 holds true.

Here G is the game quantifier, defined so that Gα.φ(x, α) is the set of x such that player I

has a winning strategy for the game with payoff set {α : φ(x, α)}. Informally, Gα.φ(x, α) =

∃a0.∀a1.∃a2.∀a3. . . . φ(x, a0a1a2a3 . . .).

The extension into the transfinite is our main result.

Theorem 5 For every recursive ordinal α the equality GΣ∂
α = Σµ

α+1 holds true.

Proof. Let α be a recursive limit ordinal, and let µXα+1.
∨
i<ω Φi ∈ Σµ

α+1, so in particular

each Φi is in some Σµ
β for some β < α. We need to find a game with payoff set in Σ∂

α

whose winning positions for player I are calculated by this formula.

Assume that the formula µXα+1.
∨
i<ω Φi describes a nonempty subset of ω, and choose

some witness n for this nonemptyness. Now consider the game tree which results from the

parity game played as a model checking game. We might think of it as a subtree in ω∗,
each node labelled with the position in the model checking game. In extending the tree

in an appropriate way we may assume that it does not contain finite maximal branches,

6

and in further simplifying the tree we may assume that each node marks a loop-back,

i.e. we see some Xβ at each node. This can be done because any infinite branch must hit

such nodes infinitely many times. In omitting which element n′ ∈ ω is inspected in the

model checking game, and in only keeping track on the index of the inspected subformula

Φi and the index of the set variable Xβ at a loopback we get a tree T which is simply

labelled by pairs (i, β) with i < ω and a successor ordinal β ∈ α ∪ {α + 1}. Thus, a

node s ∈ T is of the form s = s(0)s(1)s(2) . . . s(n) with s(k) = (i, β). Observe that the

labelling has the structure of a set in Σ∂
α+1. Let us describe the payoff set for player I.

For i < ω and a successor ordinal β ∈ α we define

Ai,β = {x ∈ [T] | ∃n∀m > n x(m)1 = i ∧ ∃n∀m > n x(m)2 ≤ β}

Clearly, each Ai,β ∈ Σ0
2. Let

Cβ =
⋃
i<ω

Ai,β

and

C =
⋃

β<α odd

Cβ \
⋃
ζ<βCζ .

Thus, C ∈ Σ∂
α. We have to show that C is the payoff set for player I.

Let x ∈ C. Fix some β < α such that x ∈ Cβ \
⋃
ζ<βCζ . Fix some i such that

x ∈ Ai,β \
⋃
ζ<βCζ . Since for j 6= k the sets Aj,ξ, Ak,ζ are disjoint, we obtain x ∈

Ai,β \
⋃
ζ<βAi,ζ . Thus, the path x ∈ [T] belongs to a run where the model checking game

eventually remains inside the subformula Φi and where β is the maximal ordinal seen

infinitely many often. Therefore, x belongs to the payoff set for player I.

To show the other inclusion, assume that x is a winning run for player I. Thus, α+ 1

is only seen finitely many often as second component. Therefore, there is some Φi which

will eventually only be inspected by the run. Being a winning run, x ∈ Ai,β \
⋃
ζ<βAi,ζ .

Again, by disjointness we obtain x ∈ C.

In classical descriptive set theory, the Hausdorff–Kuratowski theorem states that for

any n (or indeed any α < ω1), the difference hierarchy over Σ0
n up to level ω1 exhausts

the class ∆0
n+1. There is a natural effectivization of this result: the difference hierarchy

over Σ0
n up to level ωck

1 exhausts ∆0
n+1. Although natural, and ‘obviously right’, it is only

very recently that a proof has been published, by MedSalem and Tanaka [12]. Level 2

of this theorem, together with the result above, immediately give us the very attractive

result:

Corollary 6 Σµ

ωck
1

= G∆0
3

6 Nicely Behaving Labellings

When extending the mu-arithmetic into the transfinite we need to check whether we keep

key properties, namely the existence of positional winning strategies. This leads to

Definition 7 Let P be a parity game with priorities in some α < ω1. P is called max-

closed iff for every infinite run the set of all labels seen infinitely often is non-empty and

contains a maximum. /

7

Clearly, the rules of the model checking game ensure that the parity game derived from

a model checking game of a transfinite mu-calculus formula is max-closed.

Theorem 8 Each max-closed parity game admits a positional winning strategy for one

of the players.

Proof. We proceed by induction on the set of labels α. Of course, any set of countably

many labels can be relabelled by natural numbers, but max-closedness is not preserved

in general. In the sequel l will always denote the labelling function, l : α → V where V

is the set of vertices in the considered game graph.

Let us first consider the easier case, i.e. α is a limit ordinal. Assume player I has a

winning strategy f ; we need to find a positional winning strategy.

Let T be the tree of all possible plays. We define

A0 =
{
s ∈ T

∣∣ ∃β < α. ∀t ∈ T [s]. l(t) ≤ β
}

i.e. the cone of T above s is labelled with values up to β. Observe that by max-closedness,

A0 is dense in T . Otherwise, we could select a cone T [t] having an empty intersection

with A0, meaning that every subcone of this cone is labelled with values cofinal in α.

Since α is countable, there is a sequence (αi)i<ω with each αi < α and
⋃
i<ω αi = α. In

the cone T [t] it is easy to construct an infinite path x s.t. for each i there is some ni with

l(x(ni)) > αi, contradicting the max-closedness.

Although A0 is dense, it might be that the complement still contains infinite paths.

Thus, we define by recursion:

Aβ =
{
s ∈ (T \

⋃
ζ<β Aζ)

∣∣ ∃ξ < α. ∀t ∈ (T [s] \
⋃
ζ<β Aζ). l(t) ≤ ξ

}
The process stops at some countable γ, and then

⋃
β<γ Aβ = [T] (since otherwise we can

construct a path with labels cofinal in α, contradicting maxclosedness). From these sets

we can easily determine the set of winning positions for player I. We let H0 be the set of

all elements in A0 such that player I can win the game starting at that position. Since the

labels in the cone of the game tree are bounded by some β < α, by induction hypothesis

player I has a positional winning strategy within H0. In particular, the game stays within

H0. In general we let Hβ be the subset of Aβ such that player I has a winning strategy as

long as the game stays within Aβ, and as soon as the game leaves Aβ, some Hβ′ is entered

with β′ < β. Again, within Hβ player I has a positional winning strategy. Analogously

to Section 5 the process stabilizes at some countable γ, and Hγ =
⋃
β<γ Hβ is the set of

all winning positions of player I, and it can be described by a formula of the transfinite

mu-arithmetic provided the set of labels does not exceed ωck
1 . It is fairly easy to describe

a positional winning strategy for player I: as long as the game takes place in some Hβ,

she follows the positional winning strategy within Hβ. It might be that player I cannot

force the game to stay inside Hβ, but if this set is left, then some Hβ′ is entered with

β′ < β, and from that moment on player I follows the positional winning strategy for

Hβ′ . Since all the Hβ are pairwise disjoint, the concatenation of all positional winning

strategies for the Hβ gives a positional winning strategy for all her winning positions.

Analogously, if player II has a winning strategy, then he has a positional winning

strategy as well.

8

Now let us consider the successor case. Assume α = β + 1 is odd, thus player I needs

to make sure that β is seen only finitely many times. Assume player I has a winning

strategy, we need to find a positional winning strategy.

Let H0 consist of those vertices s such that, starting from s, player I has a winning

strategy which never leads to any vertex labelled with β. Such vertices must exist, oth-

erwise player II has a winning strategy. In particular, being at such a node player I can

force the game to stay in H0. We claim that within H0 player I has a positional winning

strategy. Consider the game tree starting from s ∈ H0 and remove all nodes outside H0

together with the cones above those nodes. The remaining tree is labelled with values

smaller than β, and by induction hypothesis on this subtree (and the corresponding sub-

graph) player I has a positional winning strategy. This positional winning strategy is

clearly a winning strategy for the whole game. Constructing Hγ analogously to the limit

case yields a positional winning strategy for the whole game.

Now assume player II has a winning strategy. This means that either he can manage

to see β infinitely often, or, if player I keeps the occurrence of β finite, he wins the induced

subgame. A positional strategy is described as follows: if a vertex belongs to player II’s

winning region, and if he has a winning strategy which guarantees him to reach some

vertex labelled with β, then he plays in a way that he never leaves his winning region and

after finitely many steps he will reach β. Clearly, to reach some node within the winning

region labelled with β is an open condition, thus there exists a positional strategy for

achieving that goal. If, after reaching β, player II can still reach another β within his

winning region, he goes for it. At some point it might be that he still has a winning

strategy, but he cannot make sure that β is seen again. At this stage consider the subgraph

S which consists of all nodes in player II’s winning region with labels smaller than β –

the edge relation restricted to S stays the same. Observe that by being a winning region

player I can only leave the subgraph S in moving to a vertex which is still in player II’s

winning region, but from where player II can reach β memoryless again while remaining

in his winning region. As long as the run stays in S, by induction hypothesis player II has

a positional winning strategy. Thus, in concatenating the positional winning strategies

for the different regions we obtain a positional winning strategy for the whole game.

The remaining case, α = β+1 even, is handled similarly. We can construct a positional

winning strategy for player I as in the odd case for player II and vice versa.

Corollary 9 For any formula in the transfinite mu-arithmetic, model checking with par-

ity games admits positional winning strategies.

PART II

In this part we will examine the result from a set theoretic angle. In examining Wadge

degrees we will gain a better understanding of the link between the game operator G and

the difference hierarchy. The first two instances of the result are Σµ
1 = GΣ0

1, Σµ
2 = GΣ0

2,

but then, Σµ
n = GΣ0

n fails for n > 2, and must be replaced with Σµ
n = GΣ∂

n−1. At first

glance it seems there is no logic behind this. However, the effective Wadge hierarchy, a

refinement of the effective difference hierarchy, gives the solution.

The reader may find most of the basic material in [7]. The effective Wadge hierarchy

is studied in [9]. For the reader unfamiliar with the Wadge hierarchy we will recall basic

definitions and facts.

9

7 The Wadge Ordering

A natural improvement of the Hausdorff–Kuratowski hierarchy was induced by Wadge’s

[15] work based on a reduction relation defined in terms of continuous functions. That is,

a natural way to compare the topological complexity of sets A and B was to say A ≤W B

– intuitively meaning A is topologically less complicated than B – if the problem of

knowing whether x belongs to A reduces to knowing whether f(x) belongs to B for some

simple function, where simple meant continuous. The effective version deals with recursive

functions instead:

A ≤W B iff ∃ recursive f : Σω
A → Σω

B . f
−1B = A

The Wadge ordering (≤W) induces the strict ordering (<W) and the Wadge equiva-

lence (≡W):

A <W B iff A ≤W B ∧B 6≤W A

A ≡W B iff A ≤W B ≤W A

When restricted to Borel sets, or in the effective case, Kleene pointclasses, this ordering

becomes a quasi-well-ordering, i.e. it is well-founded, and has antichains of length at most

two. Moreover, if A and B are incomparable, then A ≡W B{. The reason for this is that all

these properties derive from Borel Determinacy [11]. Indeed, Wadge defined the relation

A ≤W B in terms of the existence of a winning strategy in a suitable game: the Wadge

game.

Definition 10 (The Wadge game) Let A ⊆ Σω
A , B ⊆ Σω

B , W(A,B) is an infinite

two-player game where players (I and II) take turn playing letters in ΣA for I, and in

ΣB for II. Unlike I, player II is allowed to skip any finite number of consecutive moves

(that is, she plays no letter), though she must eventually move. Thus a run of the game

has the form (ΣAΣ∗AΣB)ω, and its projections to ΣA and ΣB are ω-words.

I

II

:

:

x0 x1

y1

xn

ym

xn+1

ym+1y0

x3

y2

x4x2

At the end of a run (in ω moves), I has produced an ω-word x ∈ Σω
A and II has

produced y ∈ Σω
B . The winning conditions are:

II wins W(A,B) iff (x ∈ A⇔ y ∈ B)

Notation: In general, we consider sets A,B over different alphabets ΣA,ΣB; however,

in order to reduce notational clutter, we will wherever possible assume a fixed alphabet

and suppress the subscript on Σ . /

Now a winning strategy for II is nothing more than a function which given input

x ∈ A (resp. A{) produces a y ∈ B (resp. B{), using only finitely many letters of x to

determine each successive letter of y, i.e. a continuous function f such that A = f−1B.

Hence II wins W(A,B) iff A ≤W B. Conversely, a continuous reduction yields a winning

strategy.

10

Let us define the equivalence relation ∼ by

A ∼ B iff A ≡W B or A ≡W B{ or A ≡W 0B ∪ 1B{

Quotiented by ∼, and using determinacy, the Wadge ordering ≤W turns into a well-

ordering (denoted by ≤/∼) whose minimal elements are all clopen sets. This induces the

notion of the Wadge degree defined inductively:

d◦A = 0 iff A is clopen

d◦A = sup{d◦B + 1 : B </∼ A}
where </∼ stands for the strict Wadge ordering <W quotiented by ∼.

8 Multiplication by ωck
1 or by ω1

Now, given a topological class, that is a class closed under pre-image by recursive functions

(such as Σ0
1, Σ∂

n), a set A is complete for the class if it reduces all sets in it. As usual, a

complete set is a set of maximal complexity, therefore of maximal Wadge degree. In other

words, the Wadge degree of a complete set of a given class is a measure of the topological

complexity of this class.

If we look at the sequence of Wadge degrees of complete sets for respectively Σ0
1,

Σ0
2 = Σ∂

1 , Σ∂
2 , Σ∂

3 ,. . . , we find 1, ωck
1 , (ω

ck
1)2, (ωck

1)3, Surprisingly, the progression is

precisely multiplication by ωck
1 .

In the boldface hierarchy Duparc [4], extending Wadge’s [15] definition on self-dual

sets, defined an operation which increases the Wadge rank of a given set by the factor

ω1. Namely,

A • ω1 = (Σ ∪ {a+, a−})∗a+A ∪ (Σ ∪ {a+, a−})∗a−A{

for a+, a− two different letters not in Σ . Intuitively, a player (either I or II) in charge of

A • ω1 in a Wadge game is exactly like the same player being in charge of A with the

extra possiblity to erase all his moves and decide to start all over again being in charge of

A{ instead of A, and erase everything again and switch from A to A{, and so on. Playing

a+ or a− takes care of both the initialization of the play, and the choice between A and

A{. A word containing infinitely many a+ or a− is not in A •ωck
1 , so eventually the player

must settle down to a genuine Wadge game.

This operation preserves the Wadge ordering

A ≤W B ⇒ A • ω1 ≤W B • ω1

and satisfies:

d◦(A • ω1) = d◦(A) · ω1.

Thus, this operation is the set theoretic counterpart of multiplication by ω1. Now,

turning back to the lightface hierarchy where the mu-calculus lives, can we find a similar

operation transforming a set A with d◦A = α < ωck
1
ω

into a set B whose Wadge rank

relatively to the lightface hierarchy is d◦B = α · ωck
1 ?

The answer is indeed yes, and luckily, it is the same operation. Let us denote the

operation • ω1 with • ωck
1 if restricted to the lightface hierarchy.

11

Lemma 11 Let A be a set of the lightface hierarchy with Wadge degree d◦A = α < ωck
1
ω

where the Wadge degree is computed relatively to the lightface hierarchy. Then A • ωck
1

is in the lightface hierarchy, too, and d◦A = α · ωck
1 .

To see that the same operation works for the lightface hierarchy, we need a result of

Selivanov’s [14]. A slight rephrasing of his result is:

Lemma 12 Let A be a set of the lightface hierarchy with Wadge degree d◦A = α <

(ωck
1)ω, and let α = (ωck

1)m0α0 + . . . + (ωck
1)mkαk be the unique canonical representation

of α with base ωck
1 . Then in the boldface hierarchy d◦A = ωm0

1 α0 + . . .+ ωmk
1 αk.

Thus, the initial segment of the Wadge hierarchy of the lightface hierarchy up to

(ωck
1)ω is embeddable in the initial segment of the boldface hierarchy up to (ω1)

ω in a

very intuitive way.

It is an easy exercise to show that if A is hyperarithmetical with d◦A = α < (ωck
1)ω

in Σω, then A • ωck
1 is hyperarithmetical in {Σ ∪ {a+, a−}}ω. Let α = (ωck

1)m0α0 + . . . +

(ωck
1)mkαk. By Lemma 12, in the boldface hierarchy d◦A = ωm0

1 α0 + . . .+ ωmk
1 αk. By [4],

d◦A • ω1 = d◦A • ωck
1 = (ωm0

1 α0 + . . .+ ωmk+1
1 αk) · ω1 where the rank is computed in the

boldface hierarchy. Again by Lemma 12, d◦A • ωck
1 = α · ωck

1 , establishing Lemma 11.

For the full transfinite extension of the mu-calculus we need the extension of Seliv-

anov’s result [14] for higher ranks to prove that the operation •ωck
1 still works. However,

this has not (yet) been shown.

9 Division by ωck
1 or by ω1

For inductive proofs on the degree of sets, an inverse operation, division of the Wadge

degrees by ωck
1 or ω1 respectively, is needed. It must be a set theoretical counterpart of

division by ωck
1 or ω1 respectively: given any set A the set A/ω1 must satisfy:

(1) A ≤W B ⇒ A/ω1 ≤W A/ω1

(2) d◦A = α · ωck
1 ⇒ d◦A/ω1 = α

We will only deal with the boldface class and introduce an operation how to decrease

the Wadge degree by ω1. The reason for this is the following: Our construction uses in a

crucial way a structural theorem of [4]. The effective version is not proved. Again, however,

for degrees less than (ωck
1)ω it follows from Selivanov’s result [14] that the effective version

holds true. We are confident that the result can be extended for the whole effective

hierarchy. However, this requires a nontrivial and probably somewhat cumbersome proof.

The aim of this section is to show the main technique of how to decrease degrees.

In fact, there is a whole theory to develop how to decrease the Wadge degree by

division. We will concentrate on what we need, the case of division by ω1 for the boldface

hierarchy, but we will indicate how variants of our technique may yield division by other

ordinals.

We will obtain our result in two steps: First, we will define an operation turning a set

A into A/wω1 such that

d◦A = α · ω1 ⇒ d◦A/wω1 = α + 1

Then we set an easy operation on non self dual sets A 7−→ (A−1) that satisfies:

d◦A = α + 1 ⇒ d◦ (A−1) = α

12

Finally, combining both operations gives the result.

10 Question Trees

We will start with the general framework needed for both operations. We shall define an

extended form of game, in which a player may ask the opponent whether they will play

within a particular specified tree. The opponent must either agree to play within the tree,

or declare that they will play outside it, specifying the route out.

Let us fix a finite alphabet Σ with { 0, 1 } ∈ Σ . We now define three constructions on

the sets on which Wadge games are played:

Definition 13 Let A,B ⊆ Σ .

We denote [A ∨B] for any set equivalent to 0A∪1B. Furthermore, we denote �→ A

for any set equivalent to 0∗1A, and �{ → A for any set equivalent to 0ω ∪ 0∗1A.

Playing on the set [A ∨B] corresponds to a game in which the player starts by choosing

whether to play the main game in A or B. It is clearly Wadge equivalent to the stronger

of A and B, if A and B are Wadge comparable. If A and B are not comparable, B ≡W A{

holds, therefore [A ∨B] ≡W
[
A ∨ A{

]
which is (up to Wadge equivalence) the least set

above A and B. Moreover,
[
A ∨ A{

]
is self-dual. (A set A is self-dual with respect to

Wadge equivalence iff A ≤W A{ iff A{ ≤W A, and so A is non-self-dual iff A 6≤W A{.)

Playing on � → A corresponds to being allowed to defer (for a finite time) actually

entering A, while the opponent plays normally; playing on �{ → A adds the possibility

to defer for ever.

These two constructions give us the following useful property:

Lemma 14 A set A is non-self-dual iff (A ≡W �{ → A ∨ A ≡W �→ A).

Proof. It follows from the definitions that A is non-self-dual iff player I has a winning

strategy in the games W(A,A{) and W(A{, A). Consider the game W(A{, A). In the run

of this game in which II keeps on skipping (which violates the rules, and so guarantees

she loses), I’s winning strategy defines an infinite word x. Since the strategy is winning,

at any point in the play, I can still win even if II starts playing real moves instead of

skipping.

Firstly, suppose that x ∈ A{, and consider the game W(A{,� → A). I can win this

game, by playing the following strategy: as long as II plays 0 or 1, or skips, play the next

letter of x. As soon as II starts playing from Σ , play according to the winning strategy

for W(A{, A) from the current position in that game, and win. So I wins W(A{,�→ A),

meaning that A{ 6≤W �→ A, and so A ≡W �→ A.

On the other hand, if x /∈ A{, consider instead the game W(A{,�{ → A). I can win

this game, by playing the same strategy as before. If II ever does switch into playing

on Σ , then we win by the same argument as before; and if II plays 0 for ever, then we

have played x (/∈ A{) against 0ω (∈ �{ → A) and so won the play. Therefore we have

A ≡W �{ → A

The converse arguments also go through.

Definition 15 We define the degree d◦ of certain sets by: d◦� = 1;

if A is a non self-dual set, then d◦A = sup{d◦B : B <W A and B non self-dual};
if A is a non-self-dual set, then d◦

[
A ∨ A{

]
= d◦A = d◦A{. /

13

Note that in contrast to the official definition of a Wadge rank we define the rank only

on non self-dual sets and on self-dual sets of the form
[
A ∨ A{

]
. Note further that since

we work with a finite alphabet, the space is compact, and any infinite limit of non-selfdual

sets is non-selfdual. Thus, in this case the rank is defined for all Borel sets.

The next step is to define subtraction and division operators in terms of the games

and question trees. However, for technical reasons, we shall first have to define some weak

versions of the operations.

The idea behind the definitions of both (A−1) and A/wω1 is the same: a player in a

Wadge game in charge of A/wω1 or (A−1) is like a player being in charge of A ⊆ Σω

but having his opponent asking him questions whether or not the infinite word x he is

actually constructing step by step, will remain in a certain tree Ti ⊆ Σ∗. The player must

either say he will not stay in Ti, and specify how he will move out of it; or say he will

stay in Ti. The opponent is allowed to ask questions about as many trees as he wants as

long as the player answers no. Once the player answers yes and agrees to stay in the tree,

no more questioning is allowed.

Different conditions posed on these trees will give different strengths for reducing the

Wadge degree. We will present two variants, one for the operation (A−1), and one for

the operation A/wω1. Clearly, this is the right place to play with other variants to obtain

other kinds of reducing the rank.

The precise definition is as follows. A pruned tree is one with no terminal nodes, and

[T] ⊆ Σω denotes the set of infinite branches of T . Given x ∈ Σω, we write xeven for the

word x(0)x(2)x(4)

Definition 16 A qtree T on Σ is a non-empty pruned tree that satisfies the following

properties for any u ∈ T and any integer n < lh(u):

if n is even: then u(n) ∈ Σ (these are the nodes that correspond to the main run), and

if n is odd: then u(n) is an auxiliary move with three different options. To understand

the meaning of these options, let u′ = u(0) . . . u(n− 1). In the tree T , the position u′

has various immediate successors, of which u(n) is one. If no question is asked after

u′, then u(n) is the only successor of u′, and has the form 〈−〉, meaning ‘no question’.

Otherwise, the question is put: ‘will you stay in a certain tree in the main run?’, and

an answer is given. The answer is either 〈no, v〉, meaning ‘no, and v is the way I will

proceed outside the tree’, or 〈yes〉, meaning ‘yes, I will stay in this tree (my commitment

tree)’. In the case of a ‘no’ answer, an explicit witness v is included in the node u(n); in

the case of a ‘yes’ answer, the commitment tree is implicitly given as the complement

of all the witnesses in the ‘no’ siblings of u(n).

Option 〈−〉: this is the ‘no question’ case. Formalizing the description above, we

require T to satisfy:

if (u � n) 〈−〉 ∈ T then (u � n) 〈yes〉 6∈ T and for any v ∈ Σ ∗ (u � n) 〈no, v〉 6∈ T .

Option 〈no〉: in this, the ‘no’ case, u(n) = 〈no, v〉 for some v ∈ Σ ∗ and ueven ⊆ v. Then

v is the witness to the promise to stay out, and formalizing the description above, we

require that any position w in T that extends u must satisfy weven ⊆ v or v ⊆ weven.

In addition, we require that all the ‘no’ siblings of u(n) are independent of it, i.e. that

T satisfies the following condition: if (u � n) 〈no, v′〉 belongs to T with v′ 6= v, then

14

both v′ ⊆ v and v ⊆ v′ must fail. Or, to say it differently, T must satisfy the

condition:(
u ∈ T ∧ u 〈no, v〉 ∈ T ∧ u 〈no, v′〉 ∈ T

)
⇒ v = v′ ∨ v⊥v′.

Option 〈yes〉: in this case u(n) = 〈yes〉. This is a commitment to stay in the tree

defined by the complement of all the ‘no’ siblings. Formally, this means that any w

in T that extends (u � n) 〈yes〉 must satisfy

v ⊆ weven fails for any v such that (u � n) 〈no, v〉 ∈ T .

/

The previous definition is set up in a way that we get

Lemma 17 If for two branches x, y ∈ [T] we have xeven = yeven, then x = y.

Proof. This follows immediately from the additional conditions posed on options 〈no〉
and 〈−〉.

If at position u ∈ T the player chooses u 〈yes〉, he commits himself to stay in the

tree defined by avoiding all the ‘no’-witnesses he could have played at that point. Each

‘no’-witness v defines an open (and indeed clopen) subtree of T ; hence avoiding all of

them means staying in a closed subtree. This commitment tree Cu〈yes〉 is alternatively

describable as

Cu〈yes〉 = [Tu〈yes〉]

where

Tu〈yes〉 = {w ∈ Σ∗ : v ⊆ w fails for any v such that u 〈no, v〉 ∈ T }.

Equally, when a player gives a no answer, he avoids the closed tree Cu〈yes〉. In what

follows, avoid refers to avoiding commitment, i.e. only taking no and − choices.

Definition 18 We call u ∈ T an avoiding branch if for all n with 2n + 1 ≤ lh(u) we

have u(2n+ 1) 6= 〈yes〉.
For such an avoiding branch, we denote by Av u the union of all closed sets avoided:

Av u =
⋃

2n+1≤lh(u)

C(u�2n)〈yes〉

where by convention, C(u�2n)〈yes〉 = � in case (u � 2n) 〈yes〉 /∈ T .

The same definition applies to an infinite branch y ∈ [T] (with lh(u) = ω). /

Clearly, Av u is closed, being a finite union of closed sets, while Av y is a Σ0
2-set.

We will use this framework to define both (A−1) and A/wω1, by imposing appropriate

additional conditions on the tree T .

Definition 19 Given a set A, we call any set C A-trivial if it satisfies C∩A = � ∨ C ⊆
A). If A is clear from context, we will simply say that C is trivial. /

Definition 20 Given a set A ⊆ Σω, and a qtree T on Σ , the pair 〈A,T 〉 is called

−1-weak if for all branches u ∈ T the two following conditions hold:

15

(1) Along the way exactly one question is asked, i.e.

(∃n ∈ N (u(2n+ 1) = 〈yes〉 ∨ u(2n+ 1) = 〈no, v〉) =⇒ ∀k 6= n u(2k + 1) = 〈−〉)

with v ∈ Σ∗ and

∃n ∈ N (y(2n+ 1) = 〈yes〉 ∨ y(2n+ 1) = 〈no, v〉)

(2) On each infinite avoiding branch y, the set Av y of queried commitments (which is

closed, because there is at most one queried commitment) is A-trivial. That means

that as soon as we make a commitment, we are forced either to end up in A or to

end up in A{. /

Definition 21 Given a set A ⊆ Σω and a qtree T on Σ , the pair 〈A,T 〉 is called

ω1-weak if it satisfies both:

(1) ∀k ∀n > k x(2k + 1) = 〈yes〉 ⇒ x(2n+ 1) = 〈−〉.
That is, if the player takes option 〈yes〉, thereby agreeing to remain in the given

closed set until the end of the game, then no further questions are allowed. Hence,

until the end of the game, only the main run counts, together with the fact that it

must remain in the closed set C(x�2k+1).

(2) for all infinite avoiding branches y ∈ [T], the intersection of the complement of

the union of all the closed sets avoided with A is clopen, i.e. A ∩ (Av y){ ∈ ∆0
1.

In the special case of A ⊆ Av y we say the branch y is �ω1-weak, and in the

special case of A{ ⊆ Av y we say the branch y is �{ω1-weak. If in a tree every

avoiding branch is �ω1-weak, we call the tree �ω1-weak. If every avoiding branch is

�{ω1-weak, then we call the tree �{ω1-weak. /

In both cases we restrict the possibilities of when questions are allowed to be asked,

and further we demand a simple relationship between A and Av y. The reason will become

clear in what follows: for every A there is a canonical set B with d◦A = d◦B, and for

every such B there is a natural question tree TB such that BTB has its rank decreased

in the intended way. The restrictions we put on the question trees make sure that the

canonical tree TB is ‘legal’ and has maximal impact on the reduction of the rank among

all ‘legal’ trees.

Finally, we are able to define the operations we are after.

Definition 22 Let A ⊆ Σω, and T be a qtree on Σ ,

(1) AT = {x ∈ [T] : xeven ∈ A}
(2) (A−1) = a ≤W -minimal element in {AT : T a −1-weak qtree on Σ}
(3) A/wω1 = a ≤W -minimal element in {AT : T a ω1-weak qtree on Σ}
(4) A/ω1 = (A/wω1−1) /

We need to show that these operations decrease the Wadge rank in the intended way.

16

11 Subtraction by 1

We will start with the less complex operation −1-weak.

The main idea is as follows: Given a non self-dual set A with d◦A = α + 1, there

is a non self-dual set B with either A ≡W � →
[
B ∨B{

]
or A ≡W �{ →

[
B ∨B{

]
.

Let us assume A ≡W � →
[
B ∨B{

]
. The question tree on � →

[
B ∨B{

]
simply asks

whether the player will always play 0’s. The delay of the answer is exactly what gives

us the increase in rank if we compare B with � →
[
B ∨B{

]
. Thus, the question tree

takes away this extra power, and after finitely many steps the player finds himself being

in charge of either B or B{ or has committed himself to playing only 0’s. The rank of the

payoff set is α, and this is what we wanted. We will use continuous mappings to argue

that −1-weak question trees do the same job for A.

Again, for notational convenience we fix an alphabet Σ . Let A ⊆ Σω, B ⊆ Σω, and

A ≤W B. We need to show the following propositions:

Proposition 23 Given TB any −1-weak qtree on Σ , there exists a −1-weak qtree TA on

Σ such that ATA ≤W BTB . Moreover, if for all branches y ∈ TB we have Av y ∩ B = �,

then for all branches x ∈ TA we have Av x ∩ A = �. Equally, if for all branches y ∈ TB

we have Av y ⊆ B, then for all branches x ∈ TA we have Av x ⊆ A.

Proposition 24 Up to Wadge equivalence, there exists only one ≤W -minimal element

in {AT : T a −1-weak qtree on Σ}.

Proposition 25 The operation X 7−→ (X−1) preserves the Wadge ordering:

A ≤W B ⇒ (A−1) ≤W (B−1)

Proposition 26 d◦A = α + 1 ⇒ d◦ (A−1) = α

Proof of Proposition 23. Let σ be a winning strategy for II in the game W(A,B),

and σ∗ be the continuous function induced by σ. This function σ∗: Σω 7−→ Σω satisfies

σ∗−1
B = A.

We will use σ∗ to derive from TB a suitable TA, a −1-weak qtree on Σ . The preimages

under σ∗ of closed sets questioned in TB will become the closed sets questioned in TA.

To be more precise, let us define TA recursively by:

. TA � 1 = Σ .

. Assume TA � 2n + 1 is defined. Let u ∈ TA be of length 2n + 1. Lemma 17 provides

us with a unique initial path s in TB with seven = σ(ueven). If s 〈−〉 ∈ TB, then set

TA[u] = {u 〈−〉}. If there is some k < 2n + 1 with σ(u � k) = s, then set as well

TA[u] = {u 〈−〉}. Otherwise, set TA[u] = {u 〈yes〉} ∪ {u 〈no, v〉 | σ(v)Σ∗A ∩ Av s =

� and v minimal}. Finally, let us define TA � 2n+ 2 =
⋃
{TA[u] | u ∈ TA � 2n+ 1}.

. Assume TA � 2n+ 2 is defined. If there is some odd k < 2n+ 2 with u(k) = 〈no, v〉 and

lh(u) < lh(v), then let TA[u] = {uav(2n+ 2)}. Otherwise, let TA[u] = uΣ . Finally, set

TA � 2n+ 3 =
⋃
{TA[u] | u ∈ TA � 2n+ 2}.

17

Observe that since σ∗ is continuous, we know that the closed set of Av u = σ∗−1
(Av s)

is A-trivial: If Av s ⊆ B, then Av u = σ∗−1
(Av s) ⊆ σ∗−1

(B) = A. Moreover, if Av s∩B =

�, then Av u ∩ A = σ∗−1
(Av s ∩B) = �. Thus, TA is a −1-weak qtree on Σ .

It remains to show that player II has a winning strategy in the Wadge game W(ATA , BTB).

However, this is easy: on the even moves which correspond to the main run player II sim-

ply follows σ. On the odd moves she may be confronted with a question about a closed

set. If so, she answers “yes” if player I answered the same way, and if player I answered

with u 〈no, v〉, player II’s next move will be σ(u) 〈no, σ(v)〉.

Proof of Proposition 24. We need to show that up to Wadge equivalence there exists

only one ≤W -minimal element in {AT : T a −1-weak qtree on Σ}.
We first prove the following claim, which uses Lemma 14’s characterization of non-

self-dual sets.

Claim 27 Let A be non-self-dual and T be a −1-weak qtree on Σ . If A ≡W �{ → A

and for every avoiding branch y we have Av y ∩ A = �, then AT ≡W A. Consequently,

questions outside A do not let us decrease the rank. If A ≡W � → A and for every

avoiding branch y we have Av y ⊆ A, then AT ≡W A. Thus, if (A−1) <W A, then (A−1)

is not created by those trees.

Proof. Let A be non self-dual with A ≡W �{ → A, and let T verify Av y ∩ A = � for

every avoiding branch y. Proposition 23 yields some tree T ′ with (�{ → A)T ′ ≤W AT

and Av x ∩ (�{ → A) = � for every avoiding branch x ∈ T ′. In particular, the sequence

0ω /∈ Av x. Since Av x is closed, there is some k such that 0k{0 ∪ Σ}∗ ∩ Av x = �. Now

consider the Wadge game W(A, (�{ → A)T ′). In this game the following is a winning

strategy for player II: start with playing only 0’s until a question about some closed set

C000...0 is asked, answer with
〈
no, 0k

〉
for an appropriate k, and then just copy player

I’s moves from the very start. Thus, we get A ≤W (�{ → A)T ′ ≤W AT ≤W A. An

analogous argument yields the second part of the claim.

We now prove a second result.

Claim 28 Let A be non self-dual, and both AT ′ and AT ′′ be ≤W -minimal in {AT :

T a −1-weak qtree on Σ}, then

AT ′ ≡W AT ′′

Proof. Towards a contradiction, we assume AT ′⊥ AT ′′ . As a first case we assume further

that A ≡W � → A. Because of incomparability it must be the case that the rank is

decreased, i.e. (A−1) <W A, because trivially AT ≤W A is always true for any question

tree T ; they cannot be incomparable.

By the previous claim, we know that for every avoiding branch y in both T ′ and T ′′

we have Av y ⊆ A. By finiteness of the alphabet Σ both trees T ′ and T ′′ can only ask

questions about finitely many closed sets Av y: if one identifies nodes u 〈no, v〉, u 〈no, v′〉
inside the question trees, both trees become compact. Since only one question per branch

is allowed, there is only room for finitely many questions. Thus, C =
⋃
{Av y | y ∈

[T ′]} ∪
⋃
{Av y | y ∈ [T ′′]} is closed with C ⊆ A. Let T be the −1-weak qtree on

18

Σ which asks one question about C on every path at height 1. It is easy to see that

AT ≤W AT ′ : player II simply copies the moves of player I on even moves as long as

possible. On odd moves there is nothing to do unless player II reaches the only odd

position with a question. By that time player I must already have answered his question

about a closed set Av y. If the answer was 〈no, v〉, then because of
⋃
{Av y | y ∈ [T ′]} ⊆ C

and the incompatibility requirement on answers how to leave a closed set there is some

v′ v v such that II can answer with 〈no, v′〉. Afterwards she simply continues copying

player I’s moves. If the answer was 〈yes〉, player II answers with 〈yes〉 as well. II may not

be able any more to copy player I’s moves. However, since C ⊆ A, player I will produce

a sequence in AT ∩ A, while player II will produce a sequence in AT ′ ∩ A.

Analogously, one proves AT ≤W AT ′′ , contradicting the minimality of both AT ′ and

AT ′′ which were supposed to be incomparable. By symmetric arguments, in taking the

intersection of all involved closed sets, one shows the same for the case A ≡W �{ → A,

which gives the complete proof of the claim.

So far we have proved that any two ≤W -minimal elements in the set

{AT | T a −1-weak qtree on Σ}

are Wadge equivalent in case A is non self-dual. It remains to show that the result holds

in case A is self-dual and of the form
[
B ∨B{

]
for some non self-dual B.

Let A be self-dual, and let B be non self-dual such that A ≡W
[
B ∨B{

]
. Let TB

be ≤W -minimal in {BT : T a −1-weak qtree on Σ}, and T(B{) be ≤W -minimal in

{(B{)T | T a −1-weak qtree on Σ}. Let T be the unique −1-weak qtree on Σ defined

by [
BTB ∨ (B{)

T
(B{)

]
=
[
B ∨B{

]T
Proposition 23 yields some TA, a −1-weak qtree on Σ , satisfying ATA ≤W

[
B ∨B{

]T
.

Claim 29 Up to Wadge equivalence TA is the unique ≤W -minimal element in the set

{AT : T a −1-weak qtree on Σ}.

Proof. Let T ′ be any −1-weak qtree on Σ . We show that ATA ≤W AT ′ . Again by

Proposition 23, one obtains T ′′ a −1-weak qtree on Σ that satisfies[
B ∨B{

]T ′′
≤W AT ′ .

Moreover, this construction yields T0 and T1 two −1-weak qtrees on Σ such that[
B ∨B{

]T ′′
=
[
BT0 ∨ (B{)T1

]
.

Now, by ≤W -minimality,

BTB ≤W BT0 and (B{)
T

(B{) ≤W (B{)
T1
.

Therefore, it is easy to see that[
B ∨B{

]T
≤W

[
B ∨B{

]T ′′
.

19

Hence,

ATA ≤W
[
B ∨B{

]T
≤W

[
B ∨B{

]T ′′
≤W AT ′ .

This claim completes the proof of the proposition. 24

Proof of Proposition 25. We need to show that the operation X 7−→ (X−1) preserves

the Wadge ordering.

Let A ≤W B. We let TB be a −1-weak qtree on Σ that satisfies

BTB ≡W (B−1) .

Proposition 23 yields some TA a −1-weak qtree on Σ that satisfies

ATA ≤W BTB .

By minimality, one obtains

(A−1) ≤W ATA ≤W BTB ≤W (B−1) .

Proof of Proposition 26. Finally, we need to show that the operation X 7−→ (X−1)

decreases the Wadge rank by one in case the rank is a successor ordinal.

As in the previous proposition, the main work is to show the claim for non self-dual

sets. Thus, let A be non self-dual, d◦A = α+1 for some α > 0. There is some non self-dual

set B with d◦B = α such that either A ≡W �→
[
B ∨B{

]
, or A ≡W �{ →

[
B ∨B{

]
.

These cases are symmetric, so we only consider A ≡W �→
[
B ∨B{

]
.

Firstly, we have to show that d◦ (A−1) ≤ α. It suffices to find TA a −1-weak qtree

on Σ that satisfies

ATA ≤W
[
B ∨B{

]
.

Indeed, let TA be the tree that asks on second move “will you stay inside 0∗ or not?”

That is, the closed set about which the player must answer is 0ω. It is clear that a “no”

is a best answer, but then, the player is like in charge of B or of B{ depending on his

answer.

Secondly, we have to show that α ≤ d◦ (A−1). Let T be any −1-weak qtree on Σ .

We will show that it satisfies

B ≤W AT or B{ ≤W AT .

Since B is non self-dual, we know that B{ ≡W �{ → B{ or B ≡W �{ → B. By symmetry,

we assume B ≡W �{ → B. For this assumption it is enough to show that for any −1-weak

qtree on Σ , T the following holds

B ≤W (�→
[
(�{ → B) ∨B{

]
)T .

A winning strategy for player II in W(B, (�→
[
(�{ → B) ∨B{

]
)T) consists in:

. playing 0000 . . . as long as no question is asked (hence remaining in the � part).

20

. At some point, the question about a closed set C arises. Since A ≡W � → A, we

may assume C ⊆ A, because otherwise the rank would not be decreased by Claim 27.

Thus, C ⊆
(
�→

[
(�{ → B) ∨B{

])
, which by definition does not contain 0ω. Hence,

II answers “no” indicating how she will exit C by some sequence 0k for some k long

enough. Then player II will never have to answer any other question, and finds herself

in charge of
(
�→

[
(�{ → B) ∨B{

])
which easily reduces B.

This proves that d◦ (A−1) = (d◦A) − 1, in case 1 < d◦A is successor and A is non

self-dual. We need to show that the same holds true for self-dual sets.

Note that, by combining proofs of previous items, we indeed showed that given any

non self-dual set B, ([
B ∨B{

]
−1
)
≡W

[
(B−1) ∨

(
B{−1

)]
.

Thus, we get

d◦
([
B ∨B{

]
−1
)

= d◦
[
(B−1) ∨

(
B{−1

)]
= max

(
d◦ (B−1) , d◦

(
B{−1

))
= d◦ (B−1) = (d◦B)− 1 = d◦

[
B ∨B{

]
− 1.

12 Division by ω1

We will now use the technique of question trees to reduce the Wadge rank of a set by the

divisor ω1. Of course, in general it is impossible to define a division for ordinal arithmetic,

since, e.g., 5 ·ω1 = 3 ·ω1, there is no inverse element. However, given an ordinal α = β ·ω1,

there is a smallest γ with α = β · ω1 = γ · ω1. This smallest γ is what we are after. An

easy inductive proof shows that γ itself is of the form (ω1)
δ for some ordinal δ. Thus, α

is of the form α = (ω1)
δ+1. Sets of such a Wadge rank have a very nice representation, as

it was proved in [4]. We will use this representation in a crucial way.

As previously, let us assume a single alphabet Σ to reduce notational complexity.

In some of what follows, it will be helpful to have a way of dealing with pay-off sets

that include finite sequences as well as infinite sequences, which then allows us to neglect

self-dual sets in our proofs. Following [4], a conciliatory set is a set A ⊆ Σ∗ ∪ Σω.

The Wadge hierarchy can be extended to conciliatory sets, by allowing I to skip as well

as II. In this conciliatory Wadge hierarchy, it turns out that there are no self-dual sets;

and if conciliatory sets are converted to usual Σω sets by padding the finite sequences

with ‘blank’ symbol, the conciliatory Wadge hierarchy coincides with the usual Wadge

hierarchy. In fact, it can be shown (see [4, Theorem 3]) that a usual set A ⊆ Σω is non-self-

dual iff it is Wadge equivalent to the padding of a conciliatory set on the same alphabet.

We shall assume these facts where helpful. For precision, the definition of padding is:

Definition 30 Let A ⊆ Σ∗ ∪Σω. Let b be some symbol not in Σ . The padding Ab of A

is defined by

Ab = {x ∈ (A ∪ { b })ω | x�Σ ∈ A}
where x�Σ is the projection of x to Σ∗ ∪ Σω. /

21

Let A ⊆ Σω be a Borel set, and let � be a new symbol called ‘back space’. Let

Σ� = Σ ∪ {�}; we will define a new set A∼ ⊆ Σω
�, simply being the set of all infinite

sequences with the property that the result of executing all the back space symbols in

the sequence yields an element of A. More formally, we define

Definition 31 The execution operation " is inductively defined by:

. 〈〉" = 〈〉

. for x finite with lh(x) = k > 0:

(xa〈a〉)"=x"a〈a〉 if a 6=�

(xa〈�〉)"=x" � k − 1

. for x infinite: (x)" = limn<ω(x � n)"

For a set A ⊆ Σω we define A∼ = {x ∈ Σω
� | x" ∈ A}.

/

Essentially, the operation A 7→ A∼ is the Borel counterpart of exponentiation by ω1.

From [4] we need Lemma 37:

Lemma 32 Let A be a Borel set, d◦A = λ+ n. Then d◦A∼ = (ω1)
λ+n.

The representation of a set of rank (ω1)
δ+1 as a set with lower degree enriched with

an eraser will be a powerful tool for the sequel.

Definition 33 Let A ⊆ Σω, B ⊆ Σω. A ≈ B stands for A ≡W B or A ≡W B{. Thus,

A ≈ B iff d◦A = d◦B. /

Similar to the case of subtraction by 1, the main idea is as follows: There is a set S

such that A ≡W S • ω1. The question tree on S • ω1 simply asks whether the player will

never again play a+ or a−, the two symbols increasing the complexity of S by the factor

ω1. If the answer stays no, we’ll know that the player has to play infinitely many a+, a−,

thus missing the payoff set. If the player makes a commitment, he’ll be in charge of either

S or S{. Overall, the rank is decreased in the desired way. Via continuous mappings we

can argue that ω1-weak question trees do the same job for A. However, depending on the

structure of S we will need to look into different cases.

Let A ⊆ Σω, B ⊆ Σω, and A ≤W B. We need to show the following propositions:

Proposition 34 Given TB any ω1-weak qtree on Σ , there exists a ω1-weak qtree on Σ

such that ATA ≤W BTB .

Proposition 35 The operation X 7−→ X/wω1 preserves the Wadge ordering up to ≈:

A ≤W B ⇒ A/wω1 ≤W B/wω1 or A/wω1 ≈ B/wω1.

Proposition 36 Let α be some power of ω1.

d◦A = α · ω1 ⇒ d◦A/wω1 = α + 1.

22

In contrast to the operation X 7→ (X−1) it is not the case that for any two trees T ′,

T ′′ reducing to the minimal degree we have AT ′ ≡W AT ′′ ; they can be incomparable.

For instance, let B be any complete difference of two Σ0
2 sets, and A be

[
B ∨B{

]
, then

{AT | T a ω1-weak qtree on Σ} contains two minimal elements C and C ′, where C is

Σ0
2-complete, and C ′ is Π0

2-complete.

Proof of Proposition 34. Let A ≤W B and let TB be some ω1-weak qtree on Σ . We

need to construct some TA, a ω1-weak qtree on Σ , with ATA ≤W BTB .

This is the same idea as in the proof of Proposition 23, where the question tree TB for

B was transformed into a question tree TA for A with the aid of a continuous function

σ∗ given by the fact that A ≤W B. Moreover, the winning strategy for player II in the

game W(A,B) was enriched to a winning strategy for II in the game W(ATA , BTB). It

only remains to show that for every avoiding branch x ∈ [TA] the set A∩Av x is clopen.

Let x ∈ TA be an avoiding branch, and let y ∈ TB be an avoiding branch with

yeven = σ∗xeven.

We know that

B ∩ Av y{ ∈ ∆0
1.

Thus,

Av y =
⋃
n∈N

C(y�2n)〈yes〉

Av x =
⋃
n∈N

σ∗−1
C(y�2n)〈yes〉 = σ∗−1

⋃
n∈N

C(y�2n)〈yes〉 = σ∗−1
Av y

Since B ∩Av y{ is clopen, we obtain σ∗−1
(B ∩Av y{) clopen, hence A∩Av x{ clopen.

Proof of Proposition 35. We need to show that the operation X 7−→ X/wω1 preserves

the Wadge ordering up to ≈:

A ≤W B ⇒ A/wω1 ≤W B/wω1 or A/wω1 ≈ B/wω1

Moreover, in case A/wω1 6≤W B/wω1, this is only because there is no minimal element up to

≡W in {AT | T a ω1-weak qtree on Σ}, but rather two non self-dual ones incomparable

for ≤W , namely A/wω1 and some C such that C ≡W B/wω1. Thus we can make a choice

for A/wω1 such that indeed A ≤W B ⇒ A/wω1 ≤W B/wω1.

The result follows easily from Proposition 34, because if A ≤W B, then given TB

such that BTB = B/wω1, there exists TA such that ATA ≤W BTB = B/wω1. So either

A/wω1 ≤W ATA , or A/wω1 ⊥ ATA .

Proof of Proposition 36. Given A with d◦A = α · ω1 where α = ωδ1, we need to show

that d◦A/wω1 = α + 1. This will occupy us until the end of the article.

First, we need to do some preparatory work in form of several claims. Let B be

any conciliatory set. We recall that (B∼) • ω1 = (Σ� ∪ {a+, a−})∗a+B
∼ ∪ (Σ� ∪

23

{a+, a−})∗a−(B∼){, i.e. that the last a played decides whether the player is in charge of

the set B∼ or (B∼){. If infinitely many such a’s are played, then the word is rejected.

Recall that an avoiding branch y is called �ω1-weak, if B ⊆ Av y, and if a tree consists

of only avoiding �ω1-weak branches, then the tree is called �ω1-weak. If B{ ⊆ Av y, then

the branch or tree respectively is called �{ω1-weak.

Similar to the operation of subtraction by 1, we have

Claim 37 Given any ω1-weak qtree T on ΣB∼ ,

If T is �ω1-weak, and B ≡W �{ → B, then (B∼)T ≡W B∼.

If T is �{ω1-weak, and B ≡W �→ B, then (B∼)T ≡W B∼.

Proof. Both cases are symmetric, we only prove the first one. It is enough to show that

B∼ ≤W (B∼)T . Since (�{ → B)∼ ≡W B∼, Proposition 34 yields some �ω1-weak qtree

T ′ with ((�{ → B)∼)T ′ ≤W (B∼)T . Thus, it is enough to show B∼ ≤W ((�{ → B)∼)T ′ .

We will show that in W(B∼, ((�{ → B)∼)T ′) player II has a strategy to reach a

position such that no auxiliary questions within the tree are asked any more, but where

the complexity of the remaining game is still of complexity d◦B∼ for II.

The strategy for player II is as follows, as long as no position is reached yet where no

questions are asked any more:

For moves at position with even length (i.e. the moves dealing with the underlying

Wadge game), II plays accordingly to her promises.

On the auxiliary moves, if the actual closed set C she is asked about satisfies there is

a sequence v that exits this closed set, then II answers that she will, by playing this v.

After fulfilling this promise she plays sufficiently many back space symbols� to initialize

the whole play. If in the meantime, before reaching the end of the whole sequence of v and

�’s she is asked a question about another closed set, she answers as if she had already

reached this position. In other words, although her formal promise is just to play v, she

promises to play va � . . .�.

Otherwise, II agrees to stay in C which means she cannot exit C anyway. In particular,

after playing the finite sequence of v’s and �’s she may have promised previously she is

free of any promise and can play what she wants. Thus, she has reached a position where

no questions will be asked any more, and where the game is initialized. Thus, it is legal

and winning from that position on to simply play 1 followed by copying all player I’s

moves from the beginning.

It remains to show that player II cannot answer auxiliary questions with no infinitely

many times. Assume she can, and let y be a witness. By following the outlined strategy

in initializing the game after making promises we know that y" = � ∈ (�{ → B)∼.

However, T ′ is �ω1-weak, thus (�{ → B)∼ ⊆ Av y, thus y /∈ (�{ → B)∼ which is

impossible.

Claim 38 Let T be a ω1-weak qtree on ΣB∼ .

(1) If T is �ω1-weak, and B ≡W �→ B, then (B∼){ ≤W ((B∼) • ω1)
T .

(2) If T is �ω1-weak, and B ≡W �{ → B, then B∼ ≤W ((B∼) • ω1)
T .

24

(3) If T is �{ω1-weak, and B ≡W �{ → B, then (B∼){ ≤W ((B∼) • ω1)
{T .

(4) If T is �{ω1-weak, and B ≡W �→ B, then B∼ ≤W ((B∼) • ω1)
{T .

Proof. All four cases are symmetric, we only prove the first one. From B ≡W � → B

we can easily derive

(�{ → B{)∼ ≡W (B{)∼ ≡W (B∼){.

Since (B∼){ <W (B∼) • ω1, by the above and Proposition 34 there exists some ω1-weak

qtree T ′ on ΣB∼ such that(
(�{ → B{)∼

)T ′

≤W ((B∼) • ω1)
T .

Moreover, in applying the construction used in the proof of Proposition 34, we can make

sure that T ′ is �ω1-weak. By Claim 37, T ′ applied to (�{ → B{)∼ does not decrease

the Wadge rank. Thus,

(B∼){ ≤W (B{)∼ ≤W (�{ → B{)∼ ≤W
(

(�{ → B{)∼
)T ′

≤W ((B∼) • ω1)
T .

This finishes the proof of the claim.

Let us state

Claim 39 For any concilatory set B

(B∼) • ω1 ≡W (�→
[
B ∨B{

]
)∼ ≡W (�→ (�→

[
B ∨B{

]
))∼ (1)

((B∼) • ω1)
{ ≡W (�{ →

[
B ∨B{

]
)∼ ≡W (�{ → (�{ →

[
B ∨B{

]
))∼ (2)

Proof. It is easy to construct winning strategies for player II in the corresponding Wadge

games to verify these equalities. We will omit the proof.

After these preparations we are ready to show the proposition. First, we will only

consider non self-dual sets. Thus, let A be non self-dual, d◦A = α · ω1 with α = ωδ1.

Therefore, for any non self dual set S of degree precisely ωδ1 we know

A ≡W S • ω1 or A ≡W (S • ω1)
{.

These two cases are symmetric, so we assume that A ≡W S • ω1.

We discuss A/wω1 depending on the cofinality of δ. First, suppose the cofinality of δ

is 1.

Thus, A ≡W (B∼) • ω1 = (Σ� ∪ {a+, a−})∗a+B
∼ ∪ (Σ� ∪ {a+, a−})∗a−(B∼){. If

infinitely many such a’s are played, then the word is rejected.

By non self-duality, B ≡W �→ B or B ≡W �{ → B. The two cases are symmetric,

so w.l.o.g. we assume B ≡W �→ B.

Moreover, since δ is successor, then B∼ ≡W C • ω1 or B∼ ≡W (C • ω1)
{ for any non

self dual set C of degree ωδ−1. If B ≡W �→ B, then it is easy to come up with a winning

25

strategy for player II in the game W(C •ω1, (�→ B)∼): Whenever player I plays one of

the letters a+, a−, then player II erases all her moves until she obtains a finite sequence

of 0’s, and she adds another 0 to that sequence, followed by 1. Otherwise, player I is in

charge of C or C{, and player II follows a winning strategy for these sets reducing to B.

Thus, C • ω1 ≤W B∼, which means B∼ ≡W C • ω1.

Similarly easily one can show that if B ≡W �{ → B, we have B∼ ≡W (C • ω1)
{

instead.

So we have

A ≡W (B∼) • ω1 ≡W ((C • ω1) • ω1).

We will show that we get d◦A/wω1 = α = ωδ1. We will start with d◦A/wω1 ≤ α.

Claim 40 There exists a ω1-weak qtree T on Σ((C•ω1)•ω1) such that

((C • ω1) • ω1)
T ≤W (C • ω1)

{.

Proof. To be precise, we characterize Σ((C•ω1)•ω1):

Σ((C•ω1)•ω1) = ΣC ∪ {a+, a−, b+, b−}
((C • ω1) • ω1) = (C • ω1) ∪ Σ∗((C•ω1)•ω1)a+(C • ω1) ∪ Σ∗((C•ω1)•ω1)a−(C • ω1)

{

where (C • ω1) is the subset of Σω
(C•ω1) = (ΣC ∪ {b+, b−})ω defined by

(C • ω1) = C ∪ Σ∗(C•ω1)b+C ∪ Σ∗(C•ω1)b−C
{.

We define T as the �ω1-weak qtree on ΣC ∪ {a+, a−, b+., b−} that repeatedly asks

the following questions:

(1) If the play is in a position that contains no a+ nor a−, or if the last letter in {a+, a−}
that was played is a+, then

Will you never again play any letter in {a+, a−, b+., b−} ?

If the player answers yes to this question, then one easily sees that he agrees to

be in charge of either C or C{ depending on whether any b+, b− was played, and if

so, depending on the last letter in {b+., b−} that was played.

(2) If the play is in a position such that the last letter in {a+, a−} that was played is

a−, then

Will you never again play any letter in {a+, a−} ?

If the player answers yes to this question, then one easily sees that he agrees to

be in charge of (C • ω1)
{.

Note that for any avoiding branch y we get (C •ω1)•ω1 ⊆ Av y: only a commitment to

stop playing {a+, a−, b+., b−} can give a path in (C•ω1)•ω1. Thus, T is a �ω1-weak qtree

on ΣC∪{a+, a−, b+., b−}, being a special case of a ω1-weak qtree on ΣC∪{a+, a−, b+., b−}.

Finally, putting all this together, one gets:

((C • ω1) • ω1)
T ≤W �→

[[
C ∨ C{

]
∨ (C • ω1)

{
]
≤W �→ (C • ω1)

{ ≤W (C • ω1)
{.

Since d◦C • ω1 = d◦(C • ω1)
{, this gives d◦A/wω1 ≤ α, concluding the claim.

26

Continuing in the case cf(δ) = 1, it remains to show that α ≤ d◦A/wω1. Let T be

�ω1-weak. Recall that Claim 38 gives us

If T is �ω1-weak, and B ≡W �→ B, then (B∼){ ≤W ((B∼) • ω1)
T .

Thus, (C • ω1)
{ ≤W ((C • ω1) • ω1)

T , which shows α ≤ d◦A/wω1.

Now let T be �{ω1-weak. Recall that Claims 37 and 39.1 give us:

(1) If T is �{ω1-weak, and B ≡W �→ B, then (B∼)T ≡W B∼.

(2) (B∼) • ω1 ≡W (�→
[
B ∨B{

]
)∼ ≡W (�→ (�→

[
B ∨B{

]
))∼

Thus, we get (C • ω1)
{ ≡W (B∼){ <W B∼ • ω1 ≡W (� → (� →

[
B ∨B{

]
))∼ ≡W

[(�→ (�→
[
B ∨B{

]
))∼]T ≡W ((C • ω1) • ω1)

T . Again, this shows α ≤ d◦A/wω1.

Finally, let us turn to an arbitrary ω1-weak tree. By definition, for any avoiding path

y we know that A ∩ (Av y){ is clopen. In other words, after finitely many steps on an

avoiding path the cone of T looks like �ω1-weak or like �{ω1-weak. Thus, an arbitrary

ω1-weak tree cannot decrease the Wadge rank more than a �ω1-weak tree or a �{ω1-weak

tree. Therefore, for any ω1-weak tree T we have (C • ω1)
{ ≤W ((C • ω1) • ω1)

T , hence

α ≤ d◦A/wω1, in the case cf(δ) = 1.

Now suppose the cofinality of δ is ω1. This case means (see [5]) that A ≡W (B∼ • ω1)

where

�→ B∼ ≡W �{ → B∼ ≡W B∼.

Thus, by the previous claims we get for any �ω1-weak qtree on ΣB∼ that (B∼)T ≡W
B∼. Moreover, for any �{ω1-weak qtree on ΣB∼ we get (B∼)T ≡W B∼. Therefore, since

any ω1-weak qtree on ΣB∼ will look like some �ω1-weak qtree or some �{ω1-weak qtree

in any cone whose stem is long enough, we get (B∼)T ≡W B∼.

In other words, there is no ω1-weak qtree on ΣB∼ that can lower the degree of B∼.

By symmetry, the same holds true for (B∼){. We need to keep that fact in mind while

discussing this case.

Claim 41 There exists a ω1-weak qtree T on Σ(B∼•ω1) = ΣB∼ ∪ {a+, a−} such that

(B∼ • ω1)
T ≤W �→

[
B∼ ∨ (B∼){

]
.

Thus, d◦A/wω1 ≤ α + 1.

Proof. This is the �ω1-weak qtree T on Σ(B∼•ω1) that repeatedly asks

Will you never again play any letter in {a+, a−}?
If the player keeps on rejecting the offer, then he will necessarily produce a rejected

sequence. If he agrees to never play a+ nor a−, then he agrees to be in charge of B∼ or

of (B∼){, which proves the claim.

Claim 42 For any ω1-weak qtree T on Σ(B∼•ω1) we have:

27

�→
[
B∼ ∨ (B∼){

]
≤W (B∼ • ω1)

T .

Thus, α + 1 ≤ d◦A/wω1.

Proof. Firstly, if T is a �{ω1-weak qtree, the result is obvious since

�→
[
B∼ ∨ (B∼){

]
≤W (B∼ • ω1) ≡W (B∼ • ω1)

T .

Secondly, if T is a �ω1-weak qtree, we describe a winning strategy for player II in

the game

W(�→
[
B∼ ∨ (B∼){

]
, (B∼ • ω1)

T).

As long as player I plays only 0’s (that is, it is as if he is in charge of �), then

. either the question asked is about a closed set that player II cannot exit (it is the whole

space from the actual position), II answers yes and easily wins the whole game, because

every position is allowed, so it’s like she’s really in charge of (B∼ • ω1).

. or there is a sequence v that II can play so she exits the actual closed set she is asked

about. In this case, II exits the closed set with v a+.

If player I decides to stop playing 0’s and decides to switch from being in charge of

�→
[
B∼ ∨ (B∼){

]
, then II waits until I decides if he wants to be in charge of B∼ or of

(B∼){. But in both case, II has a winning strategy since

. if I decides to be in charge of B∼, then since B∼ ≤W (B∼ •ω1) , we know that for any

�ω1-weak qtree T ′ there exists a �ω1-weak qtree T ′′ such that

(B∼)T ′′ ≤W (B∼ • ω1)
T ′ .

But since B∼ ≡W �{ → B∼ we know that

B∼ ≡W (B∼)T ′′ ≤W (B∼ • ω1)
T ′ .

So, we let T ′ be the trace of T from the actual position. This gives a winning stratey

for II.

. if I decides to be in charge of (B∼){, then since the Wadge rank of (B∼){ cannot be

lowered by any question tree neither, II has a winning strategy by the same arguments

as in the previous case.

So, combining the two results we obtain for any ω1-weak tree T :

(B∼ • ω1)
T ≤W �→

[
B∼ ∨ (B∼){

]
.

Thus, the two claims give us d◦A/wω1 = α + 1, concluding the case cf(δ) = ω1.

Lastly, suppose the cofinality of δ is ω. Then

A ≡W S • ω1 or A ≡W (S • ω1)
{

with S of Wadge degree precisely ωδ1. Moreover, from [5] we know that such a set is

up to Wadge equivalence of the form supn∈NBn
∼ =

⋃
n∈N

0n(Σ r {0})Bn
∼, or of the form

(supn∈NBn
∼){. Here (Bn)n∈N is strictly increasing for the Wadge ordering.

28

So, it is immediate to see that (supn∈NBn
∼){ ≡W (supn∈NBn

∼) ∪ {0ω}.

Claim 43 Given any ω1-weak qtree T on Σ((supn∈N Bn
∼)•ω1):

sup
n∈N

Bn
∼ ≤W

((
sup
n∈N

Bn
∼
)
• ω1

)T

Proof. The proof goes in two steps:

. If T is a �{ω1-weak qtree, the result is obvious since

sup
n∈N

Bn
∼ ≤W

((
sup
n∈N

Bn
∼
)
• ω1

)
≡W

((
sup
n∈N

Bn
∼
)
• ω1

)T

. if T is a �ω1-weak qtree, we describe a winning strategy for player II in the game

W(supn∈NBn
∼,

((
sup
n∈N

Bn
∼
)
• ω1

)T

)

� As long as I keeps on playing only 0’s, then

either the question asked is about a closed set that player II cannot exit (it is

the whole space from the position we’re in), II answers yes and easily wins the

whole game, because every position is allowed, so it’s like he’s really in charge

of ((supn∈NBn
∼) • ω1).

or there is a sequence v that II can play so he exits the actual closed set he is

asked about. In this case, II exits the closed set with v a+.

� If player I decides to stop playing 0’s and plays a letter different from 0, then depend-

ing on the number n of zeros that he’s been repeatedly playing since the beginning,

he finds himself in charge of Bn
∼. At that point, II has been initializing his payoff

set again and again, exiting the many closed set he’s been asked about. So he is in a

position that is equivalent to the initial one.

To obtain the result it is enough to remark that given any �ω1-weak qtree, T ′, II

has a w.s. in the game

W(Bn
∼,

((
sup
n∈N

Bn
∼
)
• ω1

)T ′

)

Because, setting, T ′ is the trace of T at the acual position of II in the game

W(supn∈NBn
∼,

((
sup
n∈N

Bn
∼
)
• ω1

)T

)

will bring the result.

But this comes from the fact Bn
∼ <W Bn+1

∼ which implies both Bn
∼ ≤W Bn+1

∼

and (Bn
∼){ ≤W Bn+1

∼.

By definition, (Bn
{)∼ ≡W (Bn

∼){. So now the argument goes :

either �{ → Bn ≤W Bn,

29

or �{ → (Bn){ ≤W (Bn){

These two cases are symmetric, so w.l.o.g. we assume �{ → Bn ≤W Bn. (If �{ →
Bn 6≤W Bn, consider Bn+2 instead of Bn+1).Since T ′, is a �ω1-weak qtree, it follows

that:

there exists some �ω1-weak qtrees T ′′, T ′′′ T ′′′′ such that

B∼n ≤W
(
�{ → Bn

)∼
≤W

((
�{ → Bn

)∼)T ′′′

≤W (Bn+1
∼)T ′′ ≤W

((
sup
n∈N

Bn
∼
)
• ω1

)T ′

So, this implies

B∼n ≤W
((

sup
n∈N

Bn
∼
)
• ω1

)T ′

which gives a w.s. for II in the underlying Wadge game.

Thus we have proved the claim in both cases.

Claim 44 There exists a �ω1-weak qtree T on Σ((supn∈N Bn
∼)•ω1) such that:((

sup
n∈N

Bn
∼
)
• ω1

)T

≤W sup
n∈N

Bn
∼

Proof. We simultaneously describe the �ω1-weak qtree T and a w.s. for II in the un-

derlying Wadge game.

The �ω1-weak qtree T repeatedly asks the question

Are you going to never play again a+ nor a− ?

As long as the answer is ”no”, II keeps on playing 0’s. If there is a positive answer, then

it means that I indicates the set Bn
∼ he wants to be in charge of (in the main run). But

then II chooses to be in charge of the same and applies a winning strategy.

This concludes our discussion of the case cf(δ) = ω.

Finally, let A be self dual. Since we work in a compact space, we know that A ≡W[
B ∨B{

]
for some suitable non-selfdual B.

Here we finally use the fact that a ω1-weak qtree T on Σ has the property

A ∩ Av y{ ∈ Σ0
1 ∩ Π0

1.

Note that for selfdual sets we only needed �ω1-weak trees and �{ω1-weak trees.

Let TB and TB{ be two ω1-weak qtrees with B/wω1 = BTB and B{/wω1 = (B{)T
B{ .

We define

TA = 0 〈−〉TB ∪ 1 〈−〉TB{ .

It is easy to see that TA is a ω1-weak qtree. In particular, A ∩ Av y{ ∈ Σ0
1 ∩ Π0

1.

Moreover, one easily verifies that ATA ≡W
[
BTB ∨B{TB{

]
. Thus, A/wω1 = ATA , thereby

at last establishing the proposition. 36

To finish this section, let us sum up our results about non self-dual sets:

If A ≡W S • ω1 with d◦A = ωδ1 · ω1:

30

(1) if δ is successor, then d◦A/wω1 = ω1
δ and A/wω1 is unique (up to Wadge equivalence)

and it is non self-dual

(2) if δ is limit of cofinality ω1, then d◦A/wω1 = ω1
δ + 1 and A/wω1 is unique (up to

Wadge equivalence) and it is non self-dual and satisfies

�→ A/wω1 ≡W A/wω1

(3) if δ is limit of cofinality ω, then d◦A/wω1 = ω1
δ and A/wω1 is unique (up to Wadge

equivalence) and it is non self-dual and satisfies

�→ A/wω1 ≡W A/wω1

References

[1] R. Barua The Hausdorff–Kuratowski hierarchy of ω-regular languages and a hierarchy of
Muller automata Theoretical Computer Science, 96:345–360, 1993.

[2] J. Bradfield. Fixpoints, Games and the Difference Hierarchy. Theoretical Informatics and
Applications, 37:1–15, 2003.

[3] J. Bradfield and C. Stirling. Modal Logics and mu-calculi: An Introduction. In J. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 293–329. Elsevier Science
B.V., 2001.

[4] J. Duparc. Wadge Hierarchy and Veblen Hierarchy, Part I: Borel sets of finite rank. Journal
of Symbolic Logic, 66:56–86, 2001.

[5] J. Duparc. Wadge Hierarchy and Veblen Hierarchy, Part II: Borel sets of infinite rank. .
Submitted.

[6] E. Grädel and I. Walukiewicz. Positional determinacy of games with infinitely many priorities.
Logical Methods in Computer Science 2(4:6), 2006. DOI: 10.2168/LMCS-2(4:6)2006

[7] A. Kechris. Classical descriptive set theory. Springer Verlag, 1995.
[8] N. Klarlund. Progress Measures and Finite Arguments for Infinite Computations. Ph.D.

dissertation. Cornell University, 1990.
[9] A. Louveau. Some results in the Wadge hierarchy of Borel sets. In A. Kechris, D. Martin, and

Y. Moschovakis, editors, Cabal Seminar 79-81, Lecture notes in Mathematics, pages 28–55.
Springer, 1983.

[10] R. S. Lubarski. µ-definable sets of integers. Journal of Symbolic Logic, 58:291–313, 1993.
[11] D. Martin. Borel determinacy. Annals of Mathematics, 102:336–371, 1975.
[12] M. O. MedSalem, K. Tanaka. ∆0

3-determinacy, comprehension and induction. J. Symbolic
Logic, 72(2):452–462, 2007.

[13] D. Niwiński. Fixed point characterisation of infinite behavior of finite state systems.
Theoretical Computer Science, 189:1–69, 1997.

[14] V. Selivanov, Wadge degrees of ω-languages of deterministic Turing machines Theoretical
Informatics and Applications, 37:67–83, 2003.

[15] W. W. Wadge, Reducibility and Determinateness on the Baire Space. Ph.D. dissertation.
University of California at Berkeley, 1984.

Version Control: main2.tex:1.61.

31

