SOFTWARE PRACTICE AND EXPERIENCE
Softw. Pract. Ezper. 2003; 00:1-60 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

P#: A concurrent Prolog for P
the .NET Framework &

Jonathan J Cook

Laboratory for Foundations of Computer Science, University of Edinburgh, EH9 3JZ, UK.
Jon.Cook@ed.ac.uk

SUMMARY

We discuss P#, our implementation of a tool that allows interoperation between a
concurrent superset of the Prolog programming language and C#. This enables Prolog
to be used as a native implementation language for Microsoft’s .NET platform. P#
compiles a linear logic extension of Prolog to C# source code. We can thus create C#
objects from Prolog and use C#'’s graphical, networking and other libraries. We add
language constructs on the Prolog side that allow concurrent Prolog code to be written.
A primitive predicate is provided that evaluates a Prolog structure on a newly forked
thread. Communication between threads is based on the unification of variables contained
in such a structure. It is also possible for threads to communicate through a globally
accessible table. All of the new features are available to the programmer through new
built-in Prolog predicates. We discuss two software engineering tools implemented using

P.

KEY WORDS: Concurrency, Prolog, C#, .NET

INTRODUCTION

Microsoft’s .NET platform [1] offers an unparallelled opportunity to build systems based on a
number of interoperating languages. A list of the languages currently implemented for the .NET
platform can be found in Reference [2]. Logic programming is currently underrepresented, with
no direct support for the seminal logic programming language, Prolog. We add support for
Prolog to .NET by translating it to the core .NET language C+#. By translating Prolog to C#
we gain the ability to interoperate with C# and hence with the other languages available on
the .NET platform.

We would like such a compiler to generate code that executes efficiently and uses C#'s
language constructs idiomatically. We would also like our tool to exploit the rich features that
C#, being a modern programming language, possesses. The ideal would be to develop a tool
that produces code that is readable, well-structured and can easily be modified by a human.
Fully realizing this ideal is a long way off, but progress can be made toward it.

There already exist translators that translate from Prolog to C, see Reference [3], for example
GNU-Prolog [4, 5], Janus and Erlang. GNU-Prolog was formerly known as wamcc. There are

Copyright © 2003 John Wiley & Sons, Ltd.

2 JJCOOK

also many Prolog tools that are based on Java, such as Prolog Café [6, 7, 8, 9, 10], BinProlog
[11], B-Prolog [12] and the commercial product MINERVA [13]. The Prolog in C translators
have an emphasis on efficiency that leads them to produce unnatural code, in the case of
GNU-Prolog involving jumps into functions. However, Java is more restrictive in the way in
which flow of control can be programmed, for example it does not have a goto construct, and
so the output of Prolog Café is more readable than that of the Prolog to C translators. As
a consequence of the code being better structured, some runtime efficiency is lost, but the
ability to easily use Java’s libraries from Prolog is gained. With Prolog Café, Prolog code and
Java code interoperate in much the same way as any other foreign language interface [14].
However, the integration is closer and more easily programmed than with, for example, a C
to Java foreign language interface since in Prolog Café all of the Prolog types are internally
represented as Java Objects.

C# is a relatively new object-oriented programming language that has drawn on the
languages C++ [15] and Java [16, 17]. We now summarize the essential points of C#, see
References [18] and [19] for more details. Like Java, C# is compiled into an intermediate
language. C# shares with Java some features not found in C++4, such as garbage collection,
reflection, thread support, static inner classes, and the ability to add finally clauses to try
blocks. C# supports Java-style interfaces and abstract methods, and like Java does not allow
classes to be defined by multiple inheritance. The support for concurrency is similar to that
of Java, being based on locked regions and monitors. C# also shares features with C++ that
are not found in Java, such as operator overloading, namespaces, jumps, enums, preprocessing
directives and pointer arithmetic. Most of these are more restrictive in C# than they are in
C++. Event handling is implemented using delegates, a construct described in Reference [18]
as a “type-safe object-oriented function pointer, which is able to hold multiple methods”. C#
has extensive library support for XML and regular expressions. Like Java, it also has good
library support for networking.

C# attempts to combine the efficiency of C++ with the elegance and simplicity of Java.
So it seems natural to modify existing translators to translate from Prolog to C#. We hope,
in this way, to find a compromise between speed and readability that produces reasonably
efficient, well-structured code.

NET [1] is a framework developed by Microsoft to support the interaction of web services
and clients via XML, with a view to enabling these services to be called across languages and
platforms. C# and .NET are related, each being to some extent designed to work well with
the other. In order to facilitate the writing of web services, a framework has been developed
that allows a number of languages to work together by compiling them all down to a common
intermediate language. Arguably, XML Web services are likely to revolutionize the way users
interact with applications, with applications being invoked across the Internet. Thus, C# is
an important language.

Translating Prolog to C# provides a means of using Prolog within the .NET Framework,
as Prolog can then be translated first to C# and then to the .NET Intermediate Language,
MSIL. This enables us to take advantage of the close relationship between C# and .NET in
a way that would not be possible if, for example, we used GNU Prolog to translate Prolog to
MSIL via C.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 3

A functional logic language, called Mercury [20, 21, 22], is available for use with .NET.
Mercury, despite being reminiscent of Prolog, is a fully declarative language. Thus, the
developers of Mercury did not have to deal with issues arising from the use of Prolog cuts. The
basic syntax of Mercury is similar to that of Prolog, with added notation for mode declarations
and function declarations. Because Mercury is declarative, I/O has to be programmed by
passing a variable around that represents the current “state”. In many cases, it can be difficult
or tedious to translate existing Prolog applications to Mercury. This is because Mercury does
not support failure driven loops, user defined operators or difference lists; and the support for
cuts and I/0 is different from that of Prolog. These issues are dealt with in Reference [23].

Another way in which Prolog could be used within the .NET framework is by translating
Prolog directly to MSIL. However, if we translate through C#, the C# compiler will do much
of the optimization for us, and few languages, if any, are in a better position to produce well
optimized MSIL code than C#. This provides a strong incentive for generating code that is
as close as possible to code written by programmers the C# compiler should be better at
optimizing this code than at optimizing machine-generated code that is less idiomatic.

We developed P# [24] by porting and extending the Prolog to Java translator, Prolog Café.
We found that there was scope for interesting work on implementing for P# some of the
many existing extensions of Prolog. In particular it is useful to add support for concurrency
by taking advantage of the multi-threading constructs that C# shares with Java. Most Prolog
implementations are built on languages that do not have as good support for concurrency
as C#. In adding a form of concurrency to P# we wished to choose a design that would
focus on interoperation with C#. In designing our language features, we drew inspiration from
existing concurrent versions of Prolog, such as DeltaProlog [25] and FCP [26]. We wanted the
concurrency to be explicit, with the programmer explicitly stating in the Prolog source code
where it is to be used. In general we did not want to add features in such a way as to make it
difficult for programmers with experience of just the core of Prolog to use P#.

We wanted no non-concurrent P# Prolog program to be broken, provided that it happened
not to use predicate names that were to be given new meaning. In addition we wanted
programming multi-threaded operations to “feel like” programming in Prolog. Finally, we
sought a model that would naturally and efficiently integrate with the C# threading model.
That is, we wanted clean integration on the C# side as well as the Prolog side.

We achieved this by adding to P# several new built-in predicates, without changing the
Prolog syntax. These predicates approximately match the facilities for concurrency found in
C#: that is creating a thread, locking and more sophisticated functions of monitors such as
waiting and pulsing. Pulsing is the C# term for notification.

We retained a Prolog feel to these features by using shared variables as message channels
and unification as a means of sending messages, as with other concurrent forms of Prolog.

We also allow interaction between threads by providing a global database that all threads
are able to read and modify, while still associating with each thread a local database allowing
it to manipulate data imperatively without interference from other threads.

Having done this, it is possible for multiple P# threads and multiple C# threads to interact
with each other. In particular a C# thread may interact with a P# thread while it is running,
rather than having to wait for it to succeed or to fail.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

4 JJCOOK

We discuss two case studies, both of which are P# implementations of software engineering
tools. The first is a tool for querying the contents of an object-oriented library. The second is
a tool for viewing an object-oriented class hierarchy.

OBTAINING A TRANSLATOR TO C# FROM PROLOG CAFE

Prolog Café is a program developed by Mutsunori Banbara and Naoyuki Tamura. P# is based
on version 0.4.4, which was released in 1999. Since the work described in this paper was carried
out, version 0.6.1 has been released, which includes support for multithreading of a different
nature to ours. Prolog Café translates a linear logic extension of Prolog, called LLP, via a
linear logic extension of the WAM, namely the LLPAM [27], to Java. The linear logic features
that P# has inherited from Prolog Café are detailed with examples in the paper, Reference
[28]. For more information on linear logic, see References [29, 30].

For more information on the WAM (Warren Abstract Machine), a standard compilation
strategy for Prolog, see References [31, 32, 33]. For more information on the Prolog language,
see Reference [34].

Prolog Café is an extension of jProlog [35], which uses a continuation passing style of
compilation referred to as binarization and described in Reference [36].

Prolog Café consists of a run-time system written in Java, which essentially simulates the
WAM derivative, and several Prolog/LLP files that implement:

e translation to Java,

e a Prolog interpreter,

e input/output, and

e the ability to call certain Java methods from Prolog.

These Prolog files are translated by Prolog Café into Java. Thus the compiler is bootstrapped,
in that it is able to compile that part of itself that is written in Prolog. Then, both these sets
of Java files are added to a Jar file.

The user is able to run this program as a normal, but limited, Prolog interpreter. In addition,
the program can be used to compile some other Prolog source files to Java. The resultant Java
files can be compiled with a standard Java compiler to produce class files that can be coupled
with the Prolog Café class files.

The Prolog source file will usually have an entry predicate, called main/0, say. Prolog Café
can then be told to run this predicate when started. It should be noted that the Java class files
of the run-time system of Prolog Café are essential. The class files generated from the Prolog
source can do nothing on their own.

Bootstrapping the translator

In developing P# from Prolog Café, the most fundamental modification was to the translator,
which is written in Prolog. Modifications needed to achieve the generation of naive C# were
straightforward, as the Java produced is simple and does not rely on libraries. The only
modifications needed were changes of syntax, for example, “extends” becomes a colon; and

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 5

plcs P#
LLPp ————— C# LLP ——— C#
plcs LLP intermediate Ci#t
LLP ——— C# LLP ————— C#
LLP Prolog Cafe Java
LLP ————————— > Java

Java

Figure 1: Obtaining a Bootstrapped Translator to C#

changes due to the fact that, unlike in Java, in C# one needs to be explicit about method
overriding.

The Prolog Café translator can, with minor modifications, be compiled by SICStus [37]
Prolog version 3.7.1. However, some of the other parts of Prolog Café that are written in Prolog
use linear logic resources in places, and so cannot be compiled by SICStus Prolog. Resources
are used in the interpreter and the input/output code. We were able to obtain a bootstrapped
compiler to C# written in C#, from Prolog Café, by running only Java programs. How this
was done will be explained in prose and with the aid of a diagram.

We will denote a program that compiles LLP to language D, which is itself written in
language E, by Pg . Thus we start with Pfgfg We denote the LLP to Java translation engine
by 7', and the modification that produces C# by 1". Essentially T = P{%%* and T’ = PLC L#P.
By running Pfgf;, on T we obtain a program that compiles LLP to C#, but which is written
in Java, that is szfa. By then running Pﬁjfa on T’ we obtain a program that compiles LLP

to C#, but which is written in C+#, that is sz

Finally, we apply this program to T” to verify that it is correctly bootstrapped, that is, sz
run on 1" yields sz

By writing A(B) to mean the source code output of the program with source code, A, run
on the source code of program B we can summarize this entire process by the equation:

Java C C C
(Psza (PLL#P)> (PLL#P) = Pcz

Figure 1 shows this process in the form of a T-diagram. Each T represents a program that
occurs at some point in the bootstrapping. At the bottom of each T the language in which
that program is written is printed. The top part of the T shows the language that the program
translates from and the language that is translates to. On the top of the arrow the name of the
program is written. The plcs program is the translator from LLP to C# that was obtained
by modifying the Prolog file that translates from LLP to Java in Prolog Café.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

6 JJCOOK

The runtime system

The above process produces the C# files corresponding to the translator. It does not, however,
produce a run-time system. This part had to be hand translated from Java to C#. On the
whole this was a straightforward process. The libraries of the two languages are similar, as are
the semantics. Some of C#’s keywords are semantically practically equivalent to those of Java,
and these could be changed by a search and replace procedure. For example: public final
class A extends B becomes public sealed class A : B.

Architecture

The basic unit of deployment for the .NET Framework is an assembly. An assembly consists of
a number of modules, metadata and possibly resources. An assembly may be a DLL (dynamic
link library) or an EXE (executable) file.

It was necessary to decide whether the core of P# should be placed in a DLL and the
user generated files in an executable file or vice versa. The two possibilities have different
advantages, and both seem to be sensible. It is easier for a user to generate an EXE file, which
can have a standard class to call the DLL incorporated into it. On the other hand, it is the
P# code that is called first, is in control, and calls the user’s code. Furthermore, the user may
wish to split their code across several .NET assemblies.

The P# interpreter uses reflection to locate the C# translations of Prolog predicates.
Reflection is also used to locate the main predicate when running a translated Prolog program.
Whether P#’s main code resides in a DLL or not, we need to locate classes in assemblies other
than the assembly containing the main P# code. This is because the main P# code needs to
be deployed as a unit to the user, who will then generate their own code in separate assemblies.
Thus, we added to P# a class storing a list of assemblies, and a predicate that loads a given
assembly. This predicate can be called both during an interpreter session and from Prolog that
has been compiled to C#. To dynamically find a class P# first looks in its own assembly and
then tries each of the assemblies in the assembly list.

We decided that it was important to protect the user from the issues involved in generating
a DLL and then having to make it visible to the executable program that uses it. Thus, the
P# runtime system and libraries were placed together in a DLL. The user, having used P#
to generate C# files for their predicates, then compiles their C# files together with a special
Loader class.

The Loader class simply calls the main method of P# in the DLL. This method discovers
which assembly called it, that is, the user’s assembly, and then adds that assembly to the list
of assemblies mentioned above. P# can now find the user’s main predicate by reflection and
call it. This process is summarized in Figure 2. Usually after the first two reflections have
occurred the predicates that are to be called can be determined statically, thus there is very
little overhead associated with the use of reflection. When a C# field is read or altered or a
C# method is invoked, however, we need to use reflection again. As with Prolog Café, some
of the more frequently required calls into the libraries are hard coded into built-in predicates.
This is the section of the DLL labelled “built-in library” in the figure.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 7

Q) |

built=in i rest of P#

library : Iibrary’ P# runtime system] DLL

T
user’s predicates I standard
. EXE
and resources ~» loader class

T

I

! . find

CNET i A DLL
libraries . C

I

I

|

T

I

I

I

|

T

I

I

I
namespace Psharp.Predicates namespace Psharp.Lang
namespace Psharp.Resourceg» namespace Psharp.Lang.Resource

Figure 2: Separation into a DLL and an EXE

Loader
(C#)

r 3
Prolog P# C# k C# user’'s
source compiler source compiler EXE file

N)

Figure 3: How the user generates their EXE file

It is necessary also to give the C# compiler a path to some copy of the DLL since the user’s
C+# files will contain references to classes in the DLL.

In some cases the user may wish to create two or more assemblies of their own to exploit
P#. In this case one of the assemblies can call the assembly load predicate to load the other
one. In addition we provide a trivial executable file that contains only a class similar to
the Loader mentioned above. This loader runs the DLL directly in interpreter mode. This
program therefore allows the interpreter to be run as a command line application. Thus, we
have essentially allowed P# to be used as either a DLL or as an executable application.

Figure 3 shows how the process by which a user is able to generate a stand-alone C#
application from a Prolog/LLP source file.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

8 JJCOOK

Use of C# features

We investigated whether value classes or delegates could be used to improve the efficiency of
the translated code.

P# inherits from Prolog Café a supervisor function scheme for continuation style code. The
supervisor function is of the following form:

Predicate code = <initial code>;
while(code '= null)
code = code.exec(engine);

Thus, each predicate call returns the Predicate object to execute next, the continuation. The
Predicate object is being used as a function pointer, so the same effect can be achieved using
delegates. Each Predicate class can be given a static field that stores a pointer to a static
exec() method, and these can be passed around instead of objects.

The delegate is defined as follows:

public delegate void PredicateCall(CallArray a);

where CallArray is a class containing a stack of Call objects, and a Call object is a class
or struct containing an instance of the PredicateCall delegate and some arguments to be
passed to the predicate (an array of Terms). Let the delegate field be named d.

The supervisor function now becomes:

CallArray ca = <initial stack of calls>;
while(true) {
next = ca.Pop();
if(next.d == null)
break;
next.d(ca);

Each predicate is compiled into code that pushes new predicate calls onto the stack ca that
it is passed.

A test program was written to make very many simple Prolog calls using the original scheme
and using the delegate scheme described above. In each case, the Prolog query a. was run with
the following program a large number of times.

a:-b, c, b, c.
b :- c.
C.

With the delegate scheme the CallArray variable was initialised to contain just a call to a.
The timings were taken by using the C# System.DateTime.Now.Ticks property.

It was found that the delegate scheme was marginally slower in the Release build and
somewhat faster in the Debug build. This difference is probably because the C# compiler is
good at optimising code that makes heavy use of objects, but is unable to optimise so effectively

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 9

Table 1. Experiments with structs and delegates

Constructs used time in seconds time in seconds
with Debug build with Release build

Objects only (original) | 13.2 5.2

Delegates 7.9 5.9

Delegates and structs 11.1 8.8

Interfaces 104 5.5

the less natural use of delegates. Although the methods pointed to by the delegates are static,
the call to the delegate is translated into a virtual call in the MSIL.

We also measured the effect of using a struct to store the data for a predicate call. We
found that the use of structs was far less efficient than the use of objects.

We also investigated the efficiency of a scheme where a Predicate interface was used instead
of predicates being subclasses of a Predicate superclass.

Table I shows the results of the experiment.

We concluded that delegates, structs and interfaces should not be used in this way in P#.

We decided that it was desirable for a P# project to be free of unmanaged code. Thus
we took a design decision not to make any use of unsafe code blocks. In so doing we had to
sacrifice a potential improvement in runtime performance as for example the use of pointers
may have improved the efficiency of the Prolog stacks of P#.

C# has adopted the Visual Basic ability to declare property setters and getters. This practice
allows fields to be accessed and assigned to as though they were variables, when in fact they are
properly encapsulated in their own class and accesses go through methods that the programmer
specifies using a special syntax. This is a pattern that occurs frequently in Prolog Café, and
indeed most object-oriented code, so where possible setters and getters were used in P#.

It is possible to call other .NET languages from C#, and for other languages to call C+#.
Thus, by going via C#, it is possible for P# Prolog code to interoperate with other .NET
languages.

C# is a typed language and Prolog is an untyped language. However, in Prolog, terms may
be one of integers, atoms, structures, lists, variables and in P#, also C# objects. As in Prolog
Café, Prolog integers map to the int type, Prolog symbols map to strings and Prolog lists map
to arrays of objects. In the implementation of P# integers are represented by objects of the
class IntegerTerm, which encapsulates a C# integer. Implementing types in this way, with
each P# Prolog type implemented as a C# type, promotes interoperation between Prolog and
C#.

We define a new predicate : /2, which is used as an infix operator for calling C# methods.
For example the Max method in System.Math, which takes two integer arguments and returns
their maximum, can be called in the following way:

’System.Math’:’Max’(3, 4, M).

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

10 JJCOOK

This call will instantiate the variable M to 4. A method can be called on an object as follows,
for example:

Object:’Method’ (InArgl, InArg2, InArg3, Out).

The colon is usually used in Prolog to separate a module name from a predicate in the
module. This usage is analogous to our use of the colon, which separates a C# class or object
from a method defined therein.

The C+# libraries contain methods that compile C# source code to either an executable file
or to an assembly that resides in memory. This enabled us to define a plcomp/1 predicate that
compiles a given Prolog file into memory.

Example code generated by P#

Figure 4 shows a simple Prolog predicate, chosen to illustrate the way in which both
conjunction and disjunction are compiled, and Figure 5 shows part of the C# class into which it
is compiled. Figure 6 shows the WAM code produced by GNU Prolog for this Prolog predicate.
The try and trust WAM instructions can be seen in both the C# code and the WAM code.
The execute WAM instruction is implemented in C# by adding a predicate call object to the
continuation. The allocate and deallocate WAM instructions are implemented by the P#
runtime system.

The C# code is directly comparable to the Java code produced by Prolog Café, with the
main difference being the use of namespaces. The predicates are run by a supervisor method.
This method calls each predicate, which returns the predicate that is to be called next (the
continuation), and then calls the next predicate. The exec() method of A_1 generates a
choice point frame by constructing a Predicate that models the operation of the try WAM
instruction. This calls A_1_1 first, which executes the first clause of the Prolog predicate a/1.
If this fails or more solutions are requested it then calls A_1_sub_1, which in turn calls A_1_2.
This executes the second clause of the predicate. The exec() methods of A_1_1 and A_1_2
both construct a chain of Predicates to be executed in sequence. Thus after A_1_1.exec () has
been called, the Predicate object created by new Predicates.B_1(al, pl) will be called,
and so on.

CONCURRENT P#: FEATURES AND EXAMPLES

In order to be able to create new threads, we add a primitive called fork/1. The fork predicate
takes a structure as an argument and then forks a new thread, which evaluates the structure.

A fork/2 primitive is also available. This predicate forks the first argument and returns a
Prolog representation of a C# object representing the new thread. This object can then be
returned to the C# part of the program where it can be used to stop that thread. A predicate,
named stop/1 is provided, which can be used to stop a thread from the Prolog side.

Having called fork with a structure containing an uninstantiated variable, anywhere in the
syntax tree of the structure, a thread can use that variable to interact with the newly forked
thread.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

SRE A CONCURRENT PROLOG FOR .NET 11

X) :=b(X), cC2).
a(X) :—d(XxX), e(X, Y).
Figure 4: A simple Prolog predicate

namespace JJC.Psharp.Predicates {

using JJC.Psharp.Lang;

using JJC.Psharp.Lang.Resource;

using Predicates = JJC.Psharp.Predicates;
using Resources = JJC.Psharp.Resources;

public class A_1 : Predicate {
static internal readonly Predicate A_1_1 = new Predicates.A_1_1();
static internal readonly Predicate A_1_2 = new Predicates.A_1_2();
static internal readonly Predicate A_1_sub_1 = new Predicates.A_1_sub_1Q);

public Term argl;

public A_1(Term al, Predicate cont) {
argl = al;
this.cont = cont;

}
public A_10O{}
[... code to set the arguments ...]

public override Predicate exec(Prolog engine) {
engine.aregs[1] = argl;
engine.cont = cont;
return call(engine);

}

public virtual Predicate call(Prolog engine) {
engine.setBOQO);
return engine.jtry(A_1_1, A_1_sub_1);

}
[... code to return the arity and string representation ...]
}
Figure 5: C# code
Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60

Prepared using speauth.cls

12 J J COOK SRE

sealed class A_1_sub_1 : A_1 {

public override Predicate exec(Prolog engine) {
return engine.trust(A_1_2);

}

sealed class A_1_1 : A_1 {
static internal readonly IntegerTerm sl = new IntegerTerm(2);

public override Predicate exec(Prolog engine) {
Term al;
Predicate pi;
al = engine.aregs[1].dereference();
Predicate cont = engine.cont;

pl = new Predicates.C_1(sl, cont);
return new Predicates.B_1(al, pl);

sealed class A_1_2 : A_1 {

public override Predicate exec(Prolog engine) {
Term al;
Predicate pi;
al = engine.aregs[1].dereference();
Predicate cont = engine.cont;

pl = new Predicates.E_2(al, engine.makeVariable(), cont);
return new Predicates.D_1(al, pl);

}
}
}
Figure 5 (continued): C# code
Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60

Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 13

predicate(a/1,1,static,private,user, [
try_me_else(1),
allocate(0),
call(b/1),
put_integer(2,0),
deallocate,
execute(c/1),

label(1),
trust_me_else_fail,
allocate(1),
get_variable(y(0),0),
put_value(y(0),0),
call(d/1),
put_value(y(0),0),
put_void(1),
deallocate,
execute(e/2)]).

Figure 6: WAM code produced by GNU Prolog

Communication between threads

The wait_for predicate takes as an argument a variable that is shared with an already forked
thread. It then waits until one of the threads instantiates that variable and succeeds with
the given instantiation. Except for this the instances of variables on different threads do not
interact.

Consider the following program:

a(2, 7).

and(Y) :-
fork(a(1, Y)), fork(a(2, Y)), fork(a(3, Y)),
wait_for(Y).

Three threads are forked, each calling the predicate a/2 with different values of the first
argument. Only the second will instantiate Y, the second argument to 7. wait_for (Y) will
wait until this happens and then and/1 will succeed with Y = 7. It is also acceptable for a
forked thread to wait for the thread which forked it or for forked threads to fork more threads.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

14 JJCOOK

The following example shows that forking integrates with backtracking.

alpha(’a’). guess(Z) :-
alpha(’b’). alpha(X),
alpha(’c’). fork(correct(X, Z)),
alpha(’d’). fail.
guess(Z) :-

correct(X, Y) :- wait_for(Z).

\+ var(X), % prevent cheating

X ="'1c’,

Y = X.

The guess/1 predicate knows that the correct answer is ’a’, ’b’, ¢’ or ’d’. However
it can only find out which by calling correct(X, Y) with the correct letter as X, in which
case Y is instantiated to that letter. The guess/1 predicate forks a thread for each letter and
waits for one of them to succeed. The variable Z correctly retains its concurrent information
on backtracking, as it comes into existence as soon as guess(Z) is called.

The following example is similar to the last, except that tail-recursion is used instead of
backtracking. The user enters a square integer between 0 and 202. The program forks 21
threads to try each of the possible square roots, and then waits for one of them to signal that
the answer has been found.

sqroot(S, R) :-
sqroot_threads(S, R, 0),
wait_for(R).

sqroot_threads(S, R, 21) :-
I,

sqroot_threads(S, R, N) :-
fork((S=:=Nx*xN, R=N)),
N1 is N + 1,
sqroot_threads(S, R, N1).

Note that the double brackets in the fork are necessary as the fork takes only one argument,
which in this case is a structure with functor ,/2. This provides a way of writing the code to
be forked “in-line”.

Queueing of multiple solutions

It may be that the programmer wishes to use a concurrent variable more than once, indeed if
he or she cannot, then some algorithms will require unnatural implementations.

If a bound concurrent variable is later unbound by backtracking, and then bound again to
the same or a different value, then that new binding is enqueued on the queue of messages to
be consumed.

Thus, a producer can give multiple bindings to a concurrent variable, possibly composing a
set of solutions; and a consumer can repeatedly call wait_for to take each binding.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 15

The wait_for predicate can be called repeatedly by using the usual repeat/0 predicate,
however wait_for also creates a choice-point and will yield the next solution on backtracking.

The following code creates two threads, a producer and a consumer. The producer generates
integer values from 0 up to 10 and the consumer consumes each produced value, doubles it
and outputs the corresponding result. The producer uses a predicate pulse/2, which makes a
binding and then undoes it straight away. The first clause of pulse makes the binding, and
then fails. This failure causes backtracking to the last choice-point, which undoes the binding
we made in the first clause and then executes the second clause which succeeds. Thus, the
predicate call succeeds having made no lasting binding. This allows us to imperatively give
successive bindings to the same variable.

main :- prod(X) :-
fork(prod(X)), enum(X, 0).
cons(X).
enum(_, 11) :-
cons(X) :- 1.
wait_for(X), enum(X, N) :-
X2 is X * 2, pulse(X, N),
write(X2), N1 is N + 1,
nl, enum(X, N1).
fail.
cons(X). pulse(X, N) :-
X =N,
fail.

pulse(_, _).

When it is detected that all of those threads that have a copy of a concurrent variable are
waiting for that variable, then all of those calls to wait_for fail. Thus, in the example above
both of the threads eventually terminate, and in the square root example above, if the user
asks for the root of a non-square integer the query will fail. If all of the forked threads with
a variable succeed or fail having sent no message then a call to wait_for on the remaining
thread will fail. However, care must be exercised. If we had defined main to fork both the
producer and the consumer, then the main thread running under the interpreter would still
have a copy of the variable X although it would never use it. This would stop the consumer
thread from terminating. It is still possible to fork both threads by forking a thread which
itself first forks the producer thread and then runs the consumer code. In this case the variable
X is introduced on the consumer thread, not the interpreter thread.

IMPLEMENTATION OF CONCURRENCY
Making P# thread safe

The version of Prolog Café that we modified has no direct support for concurrency.
The necessary stacks for the LLP/Prolog engine are encapsulated in an engine object.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

16 JJCOOK

Unfortunately, creating two or more such objects, and running the resultant engines
simultaneously, resulted in chaos because various static fields were shared between the engines.

The first task in the pursuit of adding concurrency to P# was to find these problematic
fields, and to alter P# so that different threads no longer interfered with each other. Changes
of this nature tend to degrade performance, because it is quicker to find static fields than it is
to find instance fields. For this reason, we had to plan our changes with efficiency in mind.

When we searched for problematic static data in the runtime system, we found three
problems:

Firstly, there was a problem with the choice point frame stack which is a stack of entries
representing choice points. This stack is stored as an array in Prolog Café. The object
representing an entry contained a static field, which was used to optimize the operation of
this stack. This problem was solved by moving the static field into the stack object, where
it became an instance field. This field is passed as an argument to the entry objects when
necessary.

Secondly, an integer timestamp is used to identify a VariableTerm. A VariableTerm object
represents a Prolog variable. The next value to be allocated is stored in a static field. This
field needed only to be protected by a mutex.

Finally, we synchronized access to the hash-table storing Prolog symbols.

Having made these changes, multiple engines were still unable to execute concurrently. There
remained a problem with the Predicate objects. Each Prolog predicate is translated into a C#
class that contains methods for setting the arguments and for actually calling the predicate.
In the case of a predicate with more than one clause, each clause after the first is compiled
into a subclass of the first.

Every Predicate object has an instance field for the engine currently running the predicates,
and another instance field for the continuation, that is the Predicate to run next. Predicates
that have more than one clause have static fields that are statically, and finally, initialised to
object instances of subclasses of the Predicate in question. Two threads running one of these
subclass Predicates will be working with the same object that was statically created. Thus,
when two or more threads tried to manipulate the engine and continuation fields of such an
object, they interfered with one another.

There are two possible solutions to this problem. The first is instead of relying on these
static fields, to create a new object every time one is required. This solution would have been
inefficient. A better solution is to redesign the storage of the engine and continuation data.

The engine field is only used in the exec () method of the Predicate. This method is always
called by the engine. In the original code a method that initializes the engine value was called
just before a call to the exec () method. Instead we added an argument to the exec () method,
whereby the engine could pass a reference to itself to each call to exec().

When the continuation field is used in a main Predicate class there is no problem, as each
thread will create a separate object. The continuation field in a subclass of this is initialised
at the beginning of the exec() method by retrieving a value recorded in the engine. Before,
this overwrote the superclass continuation field. However, there is no need for this. Instead of
using the object field we create a new local variable and initialize the new variable from the
engine.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 17

There are also fields that store the arguments to the predicate, but these are already dealt
with in a manner similar to our modified treatment of the continuation field. Thus, we did not
have to worry about the arguments to a predicate interfering with those of the same predicate
running on a different thread.

Finally a problem arose with the implementation of first call optimization (FCO).

FCO is used when a predicate has clauses that have the property that their first body
goal has the same functor as their head goal. For example, consider the second clause of the
following predicate.

member (X, [XI_1).
member (X, [_|IL]) :- member(X, L).

When the second clause is executed, a new choice point need not be created, instead we make
a note of the last choice point when the predicate member/2 is called and re-use this choice
point when the second clause calls member/2. Thus FCO, allows the first body goal to call
the predicate without consuming an unnecessary choice point. FCO is discussed in Reference
[38]. When the Predicate class representing the first clause was entered, a reference to this
Predicate object was stored in the static field of the Predicate class, called entry_code. A
subclass representing a later clause could then use this value to call the first clause again. It
seemed that we needed to move this data into the engine. We could not, however, place it in
a simple variable in the engine to be retrieved when needed. This was because between the
storing of the value and its recall, another predicate that also uses FCO could be called and
wish to store its entry_code. Given that usually only one such code need be stored, and never
more than one per predicate in the source Prolog program, our solution was to use a hash-
table in the engine that maps Predicate classes, that is, the type of the Predicate object,
to Predicate objects, that is, the current entry_code for that predicate.

Having made all of these changes, multiple engines could run different, or the same, Prolog
programs concurrently, without interference.

Forking threads and the global table

When a fork is called on a structure a deep clone of that structure is created. In the most part
this is just a copy, however, in the case of VariableTerms we wish to maintain links between
copies of the same variable on different threads, so that they can act as message channels.

For each variable in a forked structure, we create a ConcurrentVariable object, which
records which of those threads with a copy of that variable are still running. Each
VariableTerm object of a concurrent variable keeps a reference to its ConcurrentVariable
object. If two VariableTerms are unified, and one is concurrent, then the other is made
concurrent, by copying this reference across.

The cloning process is recursive so that any VariableTerm that can be reached from the
predicate call’s arguments is correctly cloned in this way. The entire cloned structure is then
built in a new Prolog engine, and executed.

Each forked thread is equipped with a private database that it can use in the normal
way. In addition we provide a global database, which is shared between all the threads.
Accesses are automatically protected by a mutex. The database can be modified by primitives

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

18 JJCOOK

global_assert/1, global_retract/1 and so on. To query the database a global_call/1
predicate is provided.

If one thread places a term in the global table, and another retrieves it, then that term
passes from one engine to another. Whenever a term does this it must be rebuilt in the new
engine, since VariableTerms make use of the engine’s trail. As a general solution, we provide
a special engine for the global table. When a term is globally asserted it is first built on the
global table engine, then the Prolog assertion code is run on the global table engine. We do not
wish to create a new thread every time this occurs, so the assertion code is run on the global
table engine, but on the thread that called global_assert. Thus, a call to global_assert
does not exit until this has happened.

At the lowest level, all of the above is implemented by using a new internal predicate called
$run_on_global_engine, which given a structure, executes it on the current thread, but on
the global engine. The arguments are cloned onto the global engine before the call. All of the
solutions to the query are cloned back and asserted on the calling engine. The global_call
predicate is implemented so that it then executes these solutions on the calling engine by
calling this internal predicate. This is implemented in such a way that global_call creates a
choice point and each solution can be retrieved in the usual way.

The definitions of the global predicates all call the normal assertion predicates wrapped
in a call to $run_on_global_engine. $run_on_global_engine can only be executed by one
thread at a time.

The wait_for predicate

When a concurrent variable is bound to a term, this is detected and a call to global_assertz
is made, asserting the fact that the relevant variable has been bound to the relevant term.
We use global_assertz as it asserts the fact at the end of the database so that the facts
will form a queue and be retrieved in the order that they were asserted. In addition, the
ConcurrentVariable object of that variable is pulsed to notify any waiting thread of the new
instantiation.

The call to global_assertzis inserted into the stack of calls to be made at the first available
opportunity after the binding has occurred. It is necessary to ensure that this call involves no
cuts as this would destroy the logic of the code currently running at that time.

The wait_for predicate is built on top of global_call. It looks in the global table to see if
an un-consumed instantiation has occurred, and if so it consumes it by calling global_retract,
and succeeds having made the equivalent binding on its own thread. If not, it waits for a
notification of an instantiation and when this occurs, it tries again.

Since the set of assertions in the global table for a variable are specific to that variable, the
assertions for different variables do not interfere with one another.

Monitors

Our system includes two further primitives to ensure mutual exclusion among executing
threads, namely, lock/1 and unlock/1. Both of these take as an argument any Prolog term,

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 19

and respectively acquire or release a monitor lock on the C# object representing that term.
In the case of a concurrent variable, we lock on its ConcurrentVariable object.

On this implementation side, we are greatly helped by the fact that in C#, unlike in Java,
a monitor can be entered or exited at any time by a library method call.

A backtrackable_lock/1 predicate is also provided. This creates a variable and then binds
it to an arbitrary term, setting a field in the corresponding VariableTerm object to indicate
that this variable represents a lock. The monitor is then entered. The backtrackable_lock
predicate creates a choice-point before making this binding, to ensure that on backtracking
the variable will be unbound. When this un-binding is detected, the monitor is exited. The
effect of calling backtrackable_lock is that everything deeper down the proof tree forms a
critical region.

The P+# runtime system keeps track of each lock and unlock operation and maintains a
variable, which stores the current depth of locking. When the P# Prolog thread terminates all
of its locks are automatically released. This semantics mirrors that of the C# lock keyword,
where a finally clause releases the monitor when the critical region is exited. Thus, if the
thread is aborted, all of its locks are released.

Interoperation with C#

The locks dealt with by lock and unlock are C# locks on C# objects. Similarly fork initializes
and starts a new C# thread, unification calls the PulseAll() method on an object and
wait_for calls the Wait () method on an object, although they do far more besides this.

A C# program that calls a P# Prolog predicate may wrap such a call with a fork. Any
variables passed to the predicate then become concurrent, allowing communication between
the C# code and the P# Prolog before the Prolog terminates.

A P# Prolog predicate can call a C# method in the following way:

’System.Console’:’WriteLine’ (’Hello World!’, _).

The middle argument consists of the method name and any actual arguments. These C#
arguments may include uninstantiated variables, in which case the C# will be passed a
VariableTerm object. Thus, a concurrent variable can be passed from the P# Prolog side
to the C+# side. This time the use of : /2 should be wrapped in a fork, for example:

run_cs_method(In, Out, ObjectToCall) :-
fork(ObjectToCall:’CsThreadStart’(In, Out)).

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

20 JJ COOK

This code would be matched on the C# side by code of the following form:

public object CsThreadStart(VariableTerm vt) {

// send message
vt.Send(new IntegerTerm(7));

// or await a message
int msg = (int) (vt.Receive().toCsObject());

return ...

The Send () and Receive () C# methods use a temporary P# engine to respectively perform
a unification and execute the wait_for predicate. Each undoes any existing binding of the
concurrent variable that it is given first, and thus may be called repeatedly from the C# code.
Such repetition must, however, be matched by backtracking on the P# side.

SEMANTICS OF CONCURRENCY

Figure 7 shows the control flow logic of the unification and wait_for operations. The symbol
=# indicates the unification symbol = as used in P#, and the symbol = in the diagram represents
unification as in standard Prolog. The figure, therefore, indicates that in P# unification first
performs a standard Prolog unification and then in the case of unification with a concurrent
variable, sends a message to a waiting thread.

The wait_for predicate invokes the global_call predicate to search for messages in the
global table.

If it is successful, the message is consumed and then code deeper in the Prolog proof
tree is executed without the lock being released. This deeper code consists of the code
executed after the wait_for predicate succeeds and up until there is backtracking back
through the call to wait_for. When wait_for is re-executed on backtracking the lock on
the ConcurrentVariable object is still held, and is held until wait_for can no longer be
re-executed.

In general the way in which backtracking in predicates with side effects is handled is that
there is no un-doing, see Reference [39]. Thus on backtracking the side effect is performed
again. The only exception to this is the backtrackable_lock predicate, which releases the
lock on backtracking. It is the backtrackable_lock predicate that allows the lock to be held
throughout the execution of deeper code.

If the call to global_call fails, then we wait until a message appears, or in the case that
all of the threads are waiting, the call to wait_for will fail. For each concurrent variable,

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 21

associated with each Prolog thread, there are two Boolean flags, namely the waiting flag and
the awaiting release flag. The waiting flag indicates whether the thread is currently waiting on
the appropriate concurrent variable. The awaiting release flag is set when all of the threads are
waiting and indicates that all the threads should be released and all of the calls to wait_for
for that variable should fail.

EXAMPLE: DISCONNECTED SHARED DATABASE

We now give an example that illustrates the usefulness of our concurrency support in Prolog.
Suppose that we have a central database that stores a generic set of facts. Several users are
able to connect to this database, and to alter its facts. Each user can, at any time, disconnect
from the database and manipulate their private copy. When they reconnect, their private copy
must be synchronized with the shared database and with those of all the other connected
parties.

Synchronization of two databases consists of determining which, if any, facts conflict; and in
this case asking the user which fact to use. Much of the work in solving this problem occurs at
the Prolog level, and concurrency is useful here. While a user is trying the decide which fact is
correct, we want to be checking other facts for consistency. Interoperation with C# is useful
as we require network communication between the agents, and we would like a, possibly web
based, graphical user interface.

Each predicate can be considered separately. The user can mark some predicates as being
only allowed to have one fact: detecting inconsistencies here is trivial. Also the user can mark
one or more of the arguments of a predicate as being key fields. In this case there cannot be
two facts for that predicate that share the same key. The front-end can take care of what the
facts are supposed to mean.

The central database runs as a server on a Linux machine. This is possible as P# runs
on Mono version 0.26. Mono is an “open source implementation of the .NET Development
Framework”, which runs on Windows and several implementations of Linux.

On starting, the server is passed an XML file, which details the list of predicates allowed, and
for each predicate which fields are key fields. Having stored this data in the Prolog database,
it waits for connections from clients.

Each agent runs as a client on a separate Windows machine. The client is able to send
messages to and receive messages from the server by using SSH port forwarding. The user is
able to connect to and disconnect from the server by selecting appropriate menu items. When
disconnected, facts may be asserted in the local copy of the database. On connecting all these
facts are united with the facts on the server, and then conflicts are detected. For each conflict,
the connecting agent asks the user which one of the set of conflicting facts should be used.
When the user has specified this fact, all of the other facts in the conflicting set are retracted.
Finally, the new database is broadcast to all the currently connected agents.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

22 J J COOK

SRE

>
1]
#*
(o8]

lock

global assert

pulse

(D=t

unlock

succeed

Iy

wait_for(X)

no

wait

declare
this not
waiting

this
waiting

pulse

all
waiting?

YeSI' declare
all

awaiting
release

this not
waiting

awaiting
release

backtrack

global
retract

awaiting
release’

clear this
awaiting
release

pulse

unlock

Figure 7: Control flow logic of unification and wait_for

unify X

Copyright © 2003 John Wiley & Sons, Ltd.

Prepared using speauth.cls

Softw. Pract. Ezper. 2003; 00:1-60

A CONCURRENT PROLOG FOR .NET 23

Conflicts are found as follows. For each predicate we first look to see if there are any conflicts
by searching until the first is found. If there are no conflicts, we move on to the next predicate.
If there are conflicts, then a new thread is forked to form a complete list of conflicts and to
ask the user to choose between the conflicting facts.

Recall that a wait_for call detects when all the remaining threads are waiting for a certain
variable. We exploit this by passing a variable to all forked threads and then waiting for that
variable on the main thread. This ensures that the main thread waits until all conflicts have
been resolved before it broadcasts the new database to the agents.

The code to maintain the database and to detect and resolve conflicts is written in Prolog.
The code to manage the GUI and the socket communication is written in C#. The Prolog
and C# code interact using the scheme inherited from Prolog Café. That is, the C# code can
call a Prolog predicate by using a method provided in the P# runtime system, and the Prolog
can call an arbitrary C# method by using the :/2 predicate or equivalently the cs_method
predicate.

EXISTING CONCURRENT PROLOG DERIVATIVES

Concurrent Prolog derivatives can be classified into those with explicit concurrency constructs
and those with implicit parallelism. With explicit concurrency constructs, the programmer
must direct how the concurrency is to be exploited. With implicit parallelism the concurrency
is exploited automatically by the evaluator. The survey paper, Reference [40], gives examples
of both types of language.

Explicitly concurrent languages can be divided into those that have explicit message passing
primitives, for example DeltaProlog, those that have a shared blackboard for communication
and those that make use of guards or committed choice, for example Parlog. The concurrent
logic languages Parlog, Guarded Horn Clauses and Concurrent Prolog are discussed in Part I
of Reference [41].

DeltaProlog [25] is an extension of Prolog based on CSP [42]. And-parallelism is achieved
via a “fork goal”. Communication is via special event goals, which come in several different
flavours depending on whether the goal is backtrackable and whether it is synchronous.

SICStus MT [39] is an multithreaded extension of SICStus Prolog. SICStus MT has a
predicate that spawns a thread, named spawn/2, which is similar to our fork predicate.
Messages can be sent from one thread to another thread, by specifying in the call to the
send/2 predicate the destination thread’s identifier. This message can then be received by
calling receive/1 on the thread that is the destination of the message. The other primitives
provided are the self/1 predicate that returns an identifier for the currently executing thread,
a predicate that waits for a period of time, similar to our sleep predicate, and finally a
predicate that kills a thread, similar to our stop predicate.

Jinni also has support for concurrency, based on Linda blackboards. Terms can be read from
and written to the shared blackboard. Our global table is similar to this, however blackboards
also provide a synchronization facility as attempting to retrieve a term can block if there is no
term to retrieve.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

24 JJ COOK

Languages that have implicit parallelism can be divided into or-parallel languages, such
as Aurora, independent and-parallel languages such as &-Prolog and dependent and-parallel
parallel languages such as Andorra, the latter being related to committed choice languages.
The paper, Reference [43], is a recent survey of languages with implicit parallelism.

Aurora [44] is an or-parallel Prolog, well suited to the parallel programming of parallel
processors. This means that a predicate that is marked as parallel can have its clauses evaluated
in parallel. Parallelism in Aurora is implicit.

Aurora provides two types of database modification primitive. With one, the alteration to
the database can occur concurrently, asynchronously, anywhere in the proof tree. The other
blocks until it is in the leftmost branch of the search tree, adding some degree of determinism.
In Aurora, and also the language MUSE, this behaviour is extended to other extra-logical
predicates allowing these languages to mimic the semantics of sequential Prolog.

The aims of Aurora are very different from those of P#. We were interested instead in
building a concurrent Prolog based on C#’s concurrency primitives. Or-parallelism does not
seem to make sense in this setting. We use a construct similar to the asynchronous assert.

The parallel Prolog language &-Prolog automatically parallelises standard Prolog code.
However, it also allows explicit parallelism. A conjunction of goals can be executed in parallel by
separating them with the & operator. In addition &-Prolog has predicates that wait for variables
and acquire and release locks on terms. The &-Prolog language is an independent and-parallel
language. This means that when conjoined goals are evaluated in parallel there can be no
variable conflicts. Both strict and non-strict independent and-parallelism are supported. With
strict and-parallelism goals performed in parallel do not share variables. Built-in predicates are
provided, which can be used to control the use of memory and multiple processors. A construct
called the Conditional Graph Expression (CGE) is added to the language. This allows a set of
goals to be either executed in parallel or sequentially depending on whether a given condition
succeeds or fails. The source code is translated by the compiler into PWAM (Parallel Warren
Abstract Machine) code. The run-time system consists of one or more PWAMs executing in
parallel.

Flat Concurrent Prolog (FCP) [26] is a stream-based parallel logic language. Communication
is via shared variables. Each clause is guarded by goals. The clause that is executed is one of
those whose guard succeeds. If more than one succeeds, any of those may be executed. This
is “don’t care non-determinism”. The guards may only contain predefined predicates, hence
“flat”, for efficiency reasons.

FCP is and-parallel. This means that conjoined goals in a clause can be evaluated in parallel.
Communication via variables is facilitated by the ability to mark variables as read only with a
question mark: such a variable will await an instantiation from another goal. Thus a producer
can be coupled with a consumer as follows, see Reference [40]:

?- prod(X), cons(X7).

FCP has, from our point of view, a serious disadvantage. This disadvantage is that it is very
unlike Prolog. Indeed it is non-trivial even to simulate Prolog programs in FCP. It is for this
reason that while we use variables to communicate we do not make use of guards in P#.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 25

Parlog [45] is similar to FCP. Instead of read-only annotations, each predicate is given a
mode declaration, which indicates which variables are input variables and which are output.
As with FCP, communication is via unification of shared variables.

FCP, Parlog and FGHC (Flat Guarded Horn Clauses) are examples of committed choice
languages [46]. In general, programs written in these languages consist of guarded Horn clauses.
A guarded Horn clause consists of a set of ask guard goals, tell guard goals and body goals. The
difference between ask guards and tell guards is that ask guards can only match arguments,
whereas tell guards can make variable bindings. The term “committed choice” refers to these
language’s use of “don’t care” nondeterminism.

Our wait_for predicate is reminiscent of the and-parallelism used in FCP and of the forking
and event sending used in DeltaProlog. As with FCP, the messages passed in P# can be any
Prolog term. Thus, it would be possible, for example, to pass a predicate call to be evaluated.
This style of message passing is very different from that used in the new version of Prolog Café,
whose runtime system contains a class that can be instantiated to act as a message channel.

Andorra is a dependent and-parallel Prolog derivative. Such languages tackle the problem
of avoiding redundant computation when executing two goals in parallel where there is a
dependency between the variables used in the two goals. This problem is solved by ensuring
that one of the goals, the consumer, cannot bind the dependent variable. The other, which
can, is referred to as the producer.

The Prolog system, CIAO Prolog [47] also has support for concurrency consisting of
a extensive choice of predicates for spawning new threads and for occasioning cuts or
backtracking on the created threads. There are also predicates for locking and unlocking on an
atom and a predicate that can be used to assert that a given predicate is concurrent allowing
it to be used for communication and synchronization between threads. CIAO Prolog uses
a Prolog database for communication in the same was as a blackboard, an idea proposed in
Reference [48]. P# also uses a Prolog database in this way, namely the global table, as message
sending by unification and the wait_for predicate use the global table to pass messages. The
paper, Reference [49], proposes a wait predicate that waits until a variable is bound, together
with a range of forking primitives.

CASE STUDIES

In this section, we consider two case studies, which illustrate the use of P#: an object-oriented
assistant and a class hierarchy viewer.

Object-Oriented assistant

When a programmer begins learning to use a new C# namespace or Java package, they have
to investigate how the classes interoperate. Often, having constructed an object, they need
to find how to use it. They wish to know, for example, which methods it can be passed to,
or which methods can be invoked upon it. Alternatively, they discover that they require an
object of a certain type and need to find out how to obtain one: either by using a constructor
or by invoking a method that returns an object of that type.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

26 JJ COOK

We discuss our implementation of a tool that allows a programmer to issue queries on a set of
C# namespaces or Java packages. P#’s principal intended use is to couple a Prolog back-end
to a C# front-end. The back-end, in this case, searches a database representing a namespace:
a classic use of Prolog. The front-end consists of a graphical user interface: a standard use of
C#.

If the tool was to be used to investigate only the C# namespaces, then we could use reflection
to search for the fields and for the methods. We want, however, to develop a generic tool that
can be used for multiple object-oriented languages; in particular we want the tool to search
Java packages as well as C# namespaces.

First, we compile the C# namespace data or Java package data into a file containing a set
of Prolog predicates representing the types of the methods and the fields. Two such programs
are required: one for C# and one for Java. Both of these use reflection and are written in
C# and Java respectively. Then, for efficiency reasons, this flat database must be converted
into a tree structured database. Next, these facts are compiled into a set of C# classes, and
these classes are compiled into a Windows DLL. Each namespace or package is compiled into
a separate DLL. Finally, the graphical front-end is executed and the user enters a query. The
DLLs corresponding to the required namespaces are loaded using load_assembly and a Prolog
thread is spawned to execute the search. This thread passes solutions back to the user interface,
which displays a list for the user to select from. The solutions are passed via a synchronized
queue. When the user has selected a field or method to investigate, an instance of Internet
Explorer is spawned, which displays the documentation for that method or field. A screen-shot
of the object-oriented assistant is included as Figure 8.

The concurrency features of P# were exploited in order to improve efficiency by loading
and then priming the databases on starting the application. As soon as the application starts
the namespace databases are loaded one at a time. When they are all loaded, they are each
primed by issuing a query that has no solution. This querying process has the effect of causing
all the C# classes in the database to be JIT compiled as each has to be accessed to ascertain
that there is no solution. Because this process takes several minutes, each namespace database
is separately locked by a mutex. When a query is issued by the user, this mutex is grabbed by
that process and locked until the query is completed. Thus, if a query is issued the priming
process temporarily stops and then resumes when the query is completed. This optimisation
has little effect in cases where the user issues a query localized to a single namespace. If the
query is over the entire C# API, however, there is a significant speed improvement as a result
of the priming process. In the case of the query shown in the screen-shot, if the query is entered
as soon as the application is started it takes roughly two minutes, and in the case that we wait
for the databases to be primed first it takes two seconds. As a result of this scheme, the time
when a query is not being executed is not wasted.

Class hierarchy viewer

We discuss an implementation of a tool, which operates as follows. The user is asked to provide
a single class from the C# or Java class hierarchy and is then provided with a graphical
inheritance diagram having their chosen class at the centre. In this application the Prolog
back-end determines a suitable subset of the inheritance tree and then computes coordinates

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

SRE A CONCURRENT PROLOG FOR .NET 27

7 Object Oriented Assistant [C#] M=1E3

Find (" static (" instance either static or instance

|ir|t long
in class(es) | in namespace(s) |
Add namespace: | j
with a limitof [50 results. Search | Clear Results |
Results:

method: 5 T
Results so far: 3|static method: System.Convert. ToString(System. Imt&4, System.Int 32)

Figure 8: Screen-shot of Object-Oriented Assistant

for each of the lines and text labels. The back-end then calls C# methods that render these
graphically.

We need an algorithm to lay out the tree on the screen. The paper Functional Pearls:
Drawing Trees [50] gives an SML program for drawing trees in an aesthetically pleasing
manner. The MLj homepage [51] includes full source code and an online demonstration of this
program. We first translated the SML program into Prolog by hand. This task was surprisingly
straightforward, because of similarities between the functional and logical paradigms.

For example the SML type declaration

datatype ’a Tree = Node of ’a * (’a Tree list)
might have as an instance

Node(5, [Node(4, []), Node(3, [1) 1).
which could be represented in Prolog as

node(5, [node(4, []1), node(3, [1) 1).
and the SML function declaration

fun movetree (Node((label,x), subtrees), x’:real) =
Node((label, x+x’), subtrees)

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

28 JJ COOK

can be translated into the Prolog

movetree(node(pair(Label, X), Subtrees),
Xprime,
node(pair(Label, Xsum), Subtrees)) :-
XSum is X + Xprime.

We considered various contrived schemes for deciding which nodes to draw. The simplest
sensible approach that does not lead to an immense tree always being drawn is to draw the
tree below the class of interest down to a certain depth, and to show the path to the Object
class above the class of interest. We then position the scrollbars so that the class that we are
interested in is central on the screen. If the user clicks on a class in the tree, the tree is redrawn
with that class in the centre.

PERFORMANCE

We benchmarked concurrent P# against the Java-based Prolog systems Jinni 8.48 [52],
MINERVA 2.4 and Prolog Café 0.4.4, and against the non-concurrent version of P#, as shown
in Table II.

The bottom row of the table indicates where appropriate the geometric mean average over
the tests of the ratio of the time taken to execute the benchmark with P# to the time taken
to execute the benchmark with the tool heading the column. This is a measure of the speed
of each tool relative to P+#.

Some of the original benchmarks supplied with Prolog Café ran too quickly on our machine
for the time to be measured. These benchmarks were replaced by identical benchmarks with
the main code of the benchmark being run repeatedly by a tail recursive loop. The second
column of the table indicates, where this was done, how many runs of the benchmark the
timing was taken over.

We used Sun’s JVM (Java Virtual Machine), version 1.4.0 for Windows for the tests. The
tests were carried out on a 2 GHz Pentium 4 machine with 512 Mb of memory running Windows
XP Professional. All times are in milliseconds.

The results indicate that, on these benchmarks, P# has a speed comparable with Jinni and
MINERVA and roughly double the speed of Prolog Café.

There is a small loss of performance due to the addition of concurrency support. This
penalty is, in our opinion, acceptable, given the greatly enhanced possibilities for interoperation
with C#, some of which we have presented in this paper. Prolog programs that do not
involve concurrency experience a relatively small overhead from these changes. In a concurrent
program, the most significant overhead is due to extra work that must be done when a
unification involves a concurrent variable. In particular, fields of the VariableTerm objects
involved may need to be updated, and a call to global_assertz made. On the consuming
side, after a wait has been woken it must check the other threads to see if a binding has
occurred. It is, in our opinion, acceptable for there to be an extra overhead when a unification
occurs, as the programmer knows that the unification will lead to a message being passed
between threads.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET

29

Table II. Comparison of P# with other tools

Benchmark

repeat | P# Jinni MINERVA Prolog non
factor | time time time Cafe concurrent
time P# time

boyer 2870 2370 844 3766 2792
browse 1380 1640 724 1052 1130
chat_parser x10 1042 391 104 2932 1062
crypt x10 68 47 120 250 78
fast_mu x40 156 52 140 297 99
meta_qgsort x10 245 312 239 531 224
mu x 80 135 67 120 266 115
nreverse 57 172 94 120 31
poly_10 146 110 146 475 146
prover x40 125 78 94 401 109
gsort %20 47 47 99 130 31
queens (8 all) 78 52 167 151 68
queens (10 all) 1703 1177 1386 818 1443
queens (16 first) 1036 594 2198 500 891
query %10 161 58 125 500 157
reducer 282 130 130 1078 380
tak 406 521 1474 495 365
zebra x10 469 427 229 589 458
average speed, with P# 1.00 136 1.12 0.55 1.13

normalised to 1.00

We also investigated the relative sizes of the Java class files and C# executable file. There
was little point comparing the size of the Java and C# source files as they are very similar.
The class files produced by Prolog Café were on average 1.5 times larger than the executables
produced by P#. The Prolog Café Jar file, which contains the compiled class files for runtime
system, and library is roughly 3 Megabytes in size. The corresponding file for P#, the DLL,

is roughly 1 Megabyte in size.

FUTURE WORK

Generating more idiomatic C# and mode inference

Both the runtime system, which is written in C#, and the translator, which is written in
Prolog, of P# contain code that translates Prolog names to C# names. The same algorithm

Copyright © 2003 John Wiley & Sons, Ltd.

Prepared using speauth.cls

Softw. Pract. Ezper. 2003; 00:1 60

30 JJCOOK

is used: but tail recursive in the Prolog and iterative in the C#. We wrote the Prolog version
first, and manually translated it to idiomatic C#. We felt that in this case the translation to
an iterative version was fairly mechanical. In future work, we hope to modify the translator so
that it can detect instances where such a translation can be used to automatically translate
Prolog to more idiomatic C#. As with similar projects, such as HAL [53] and Mercury, we
may support this by allowing the Prolog code to be annotated with mode declarations. In this
case the renaming predicate would have one input and one output parameter.

The current compilation scheme leaves open the possibility of compiling a predicate, and
all predicates deeper than it in the tree, into more idiomatic C#. Thus, if we could detect
instances where this improvement would be possible, it may be the case that much more
efficient C# could be generated.

In particular tail recursive predicates that involve no cuts could be compiled into while
loops. For example consider the usual Prolog code for finding the length of a list:

len([1, Z, Z).

len([_ITI, A, Z) :-
Al is A + 1,
len(T, A1, Z).

len(List, Length) :-
len(List, O, Length).

This Prolog code could be compiled into:

a = 0;

while(!list.isEmpty()) {
list = list.tail();
at++;

}

return a;

A number of stages would be involved in such a compilation, for example mode inference to
determine that Length is an output parameter of 1len/2 and a liveness analysis to determine
that a should be incremented by one in each iteration of the loop.

In fact much tail recursive code can be characterized as conforming to the following general
pattern:

pC ..., Z, Z). % base 1
pC ..., Z, Z). % base 2
% base i
pC ..., A, Z) = ..., pC ..., A1, Z). 7 step 1
Z) :- ., pC ..., AL, Z). % step 2

pC ..., A,
% step j

It would be possible, though maybe quite involved, to detect code that looks like this and
then to translate it into iterative code. However, it is not clear that the code would run

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 31

significantly faster since much of the translated code is the same as it was before. In the list
length example above, we are still calling the method that returns a list’s tail. Nevertheless
making the generated code more idiomatic should ensure that we are working with the C#
compiler’s optimizer rather than against it.

Related projects, such as Mercury [22] and HAL [53], support mode declarations. A
mode declaration provides extra information to the compiler regarding which arguments of
a predicate are input arguments and which are output arguments. Providing such information
can be optional, only being used to provide more efficient compiled code when some mode
declarations have been provided.

Notwithstanding backtracking, as the program runs forwards variables change from being
uninstantiated to instantiated. Together with any mode data, we can then infer some of the
modes that have not been provided.

Even if only the external interfaces to the Prolog program are given mode declarations, a
large number of modes could be inferred.

Initial experiments suggest that compiling to more idiomatic code could speed up the
execution of tail recursive predicates by an order or magnitude. These experiments involved
manually modifying the C# generated by P# to more idiomatic code that a compiler could
conceivably generate.

Other possible extensions

One of the main innovations of GNU Prolog was to exploit a feature of a dialect of C to allow
very fast indirect branching. Indirect branching refers to those WAM instructions that branch
to a location stored in a register. Essentially the idea was to jump into functions, thereby
avoiding the overhead of function calls. Delegates and gotos may be useful in obtaining fast
direct and indirect branching, indeed invoking a delegate closely models an indirect branch.

It should be possible to eliminate all object creation of Predicates, but not Terms, by
storing pointers to static exec () methods in delegates. Initial experiments suggest, however,
that this change would not improve efficiency as it seems to defeat optimizations that are
performed by the C# compiler or JIT compiler on code that involves frequent object creation.
This observation strengthens our view that attempting to produce code “as a human would
write it” could bring efficiency benefits.

The goto construct in C# is only able to jump to a label in the same block and certainly
could not be used for jumping into the middle of methods. It may be useful, however, to have
the ability to jump within methods generated for clauses. Considerable importance is placed
on the issue of jumps in the existing literature on Prolog implementation.

We may be able to exploit operator overloading to obtain more readable code. For example,
the = sign might be used for unification and the == sign might be used for equality of terms,
as in Prolog.

We also intend to add a module system, probably based on that of SICStus Prolog. This
addition will allow us to deal with those predicates that are internal to P# in a more natural
way. Modules would be translated into C# namespaces.

In the object-oriented assistant case study above, we manually translated ML to Prolog. We
intend to investigate the automation of such translations.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

32 JJCOOK

CONCLUSION

Prolog is, as a language, particularly suited to solving problems involving logical deduction
from a set of facts. There are many cases where a program such as this requires a modern user
interface or sophisticated networking capabilities. By allowing interoperation between Prolog
and C#, this can be easily achieved.

The reader may wish to obtain our tool, which is available from

http://www.lfcs.ed.ac.uk/psharp

We have implemented a concurrent version of Prolog that is well suited to interoperation
with C#. Our approach, like DeltaProlog, retains a Prolog feel and retains Prolog as a subset.
Our use of forking and event sending is similar to that of DeltaProlog, except that the sending
mechanism is closer to FCP. We do not use guards in any way as this would lead to a language
too far removed from Prolog. All of the new features are implemented by defining new built-in
predicates. There are no syntactic changes to the language.

With Prolog, complex programming possibilities arise as a consequence of a simple
underlying set of rules. It is interesting to observe that as a consequence of this, our simple
changes to these rules have yielded many new possibilities. Examples of these are the way
in which a conjunction of goals can be passed to a fork, and the fact that a message may
consist of any Prolog term. The higher order and type-less nature of Prolog afforded a freedom
that allowed many of the features mentioned in this paper to be easily implemented partly in
Prolog.

We have given two examples where a Prolog back-end is coupled with a graphical C# front-
end. These demonstrate that P# is a useful tool for Prolog-C+# interoperation. It is possible
in addition to exploit other features of C# in this way, such as its rich support for networking.

ACKNOWLEDGEMENT

T would like to acknowledge Mutsunori Banbara and Naoyuki Tamura, the authors of Prolog Café,
the tool on which ours is based.

I would also like to acknowledge the kind advice and assistance of Stephen Gilmore; and the support
of the EPSRC.

The helpful comments of the anonymous referees are gratefully acknowledged.

REFERENCES

—_

. ‘The Microsoft developer .NET home page’. http://msdn.microsoft.com/net.

. *.NET languages’. http://www.jasonbock.net/dotnetlanguages.html.

3. B. Demoen and G. Maris. ‘A comparison of some schemes for translating logic to C’. In ‘ICLP Workshop:
Parallel and Data Parallel Execution of Logic Programs’, 79-91 (1994).

4. ‘GNU Prolog home page’. http://pauillac.inria.fr/~diaz/gnu-prolog/.

5. P. Codognet and D. Diaz. ‘WAMCC: Compiling Prolog to C’. In ‘International Conference on Logic

Programming’, 317-331 (1995).

N

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

A CONCURRENT PROLOG FOR .NET 33

6.

7.

10.
. ‘BinProlog home page’. http://www.binnetcorp.com/BinProlog/.
12.
13.
14.

15.
16.

17.
18.

19.
20.

21.

22.
23.

24.
25.

26.

27.
28.

M. Banbara and N. Tamura. ‘Java implementation of a Linear Logic Programming language’. In
‘Proceedings of the 10th Exhibition and Symposium on Industrial Applications of Prolog’, 5663 (1997).
M. Banbara and N. Tamura. ‘Compiling resources in a Linear Logic Programming language’. In
‘Proceedings of Post-JICSLP’98 Workshop on Parallelism and Implementation Technology for Logic
Programming Languages’, (1998).

. M. Banbara and N. Tamura. ‘Translating a Linear Logic Programming language into Java’. Electronic

Notes in Theoretical Computer Science, 30 (1999).

. J. S. Hodas, K. M. Watkins, N. Tamura and K.-S. Kang. ‘Efficient implementation of a Linear Logic

Programming language’. In ‘IJCSLP’, 145-159 (1998).
‘Prolog Café home page’. http://pascal.cs.kobe-u.ac.jp/ banbara/PrologCafe/index~-jp.html.

‘BProlog home page’. http://www.cad.mse.kyutech.ac.jp/people/zhou/bprolog.html.

‘MINERVA home page’. http://www.ifcomputer.com/MINERVA/.

R. Bagnara and M. Carro. ‘Foreign language interfaces for Prolog: A terse survey’. Newsletter of the
Association for Logic Programming.

B. Stroustrup. The C++ Programming Language. Addison Wesley (2000).

J. Gosling, B. Joy, G. Steele and G. Brancha. The Java Language Specification, Second Edition. Addison
Wesley (2000).

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley Longman Inc., 2nd
edition (1999).

B. Albahrari. ‘A comparative overview of C#’. http://genamics.com/developer/csharp_comparative.
htm.

J. Liberty. Programming C#. O’Reilly (2001).

R. Becket. ‘Mercury tutorial’. http://www.cs.mu.oz.au/research/mercury/information/
documentation.html.

F. Henderson et al. The Mercury Language Specification. http://www.cs.mu.oz.au/research/mercury/
information/documentation.html.

‘The Mercury home page’. http://www.cs.mu.oz.au/research/mercury/.

T. Conway et al. The Prolog to Mercury Transition Guide. http://www.cs.mu.oz.au/research/mercury/
information/documentation.html.

‘P# home page’. http://www.lfcs.ed.ac.uk/psharp.

L. M. Pereira et al. ‘Delta-Prolog: A distributed logic programming language’. In ‘Intl Conf 5th Gen
Comp Sys’, (1984).

C. Mierowsky. ‘Design and implementation of Flat Concurrent Prolog’. Technical Report TR CS84-21,
Weizmann Institute (1984).

N. Tamura and Y. Kaneda. ‘Extension of WAM for a Linear Logic Programming language’ (1996).

N. Tamura and Y. Kaneda. ‘A compiler system of a Linear Logic Programming language’. In ‘Proceedings
of the IASTED International Conference on Artificial Intelligence and Soft Computing, Banff, Canada’,
180-183 (1997).

. J.-Y. Girard. ‘Linear logic’. Theoretical Computer Science, 50, 1-102 (1987).
. J.-Y. Girard. ‘Linear logic: Its syntax and semantics’. In J.-Y. Girard, Y. Lafont and L. Regnier, editors,

‘Advances in Linear Logic (Proc. of the Workshop on Linear Logic, Cornell University, June 1993)’, Number
222. Cambridge University Press (1995).

. H. Att-Kaci. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT press (1999). Out of print,

available from http://www.isg.sfu.ca/ hak.

. D. H. D. Warren. ‘An abstract Prolog instruction set’. Technical Report 309, SRI International, Menlo

Park, CA. (1983).

. D. H. D. Warren. ‘Implementation of Prolog’ (1988). Tutorial No. 3, 5th International Conference and

Symposium on Logic Programming, Seattle, WA.

. W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, 4th edition (1994).
. ‘jprolog home page’. http://www.cs.kuleuven.ac.be/~bmd/PrologInJava/.
. P. Tarau and M. Boyer. ‘Elementary logic programs’. In P. Deransart and J. Maluszynski, editors,

‘Proceedings of Programming Language Implementation and Logic Programming’, 159-173. Springer,
LNCS 456 (1990).

. ‘SICStus Prolog home page’. http://www.sics.se/sicstus/.
. J. Freire, T. Swift and D. S. Warren. ‘Beyond depth-first strategies: Improving tabled logic programs

through alternative scheduling’. Journal of Functional and Logic Programming, 1998 (1998).

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60
Prepared using speauth.cls

34 J J COOK
SRE
39. J. Eskilson and M. Carlsson. ‘SICStus M'T — A multithreaded execution environment for SICStus Prolog’.

40.

41.

43.

44.

45.

46.

47.
48.

49.

50.

Lecture Notes in Computer Science, 1490, 36-53 (1998).

P. Ciancarini. ‘Parallel programming with logic languages: A survey’. Computer Languages, 17, 213-239
(1992).

E. Shapiro. Concurrent Prolog—Collected Papers. MIT Press (1987).

. A. R. Hoare. Communicating Sequential Processes. P-H (1985).

G. Gupta, E. Pontelli, K. A. M. Ali, M. Carlsson and M. V. Hermenegildo. ‘Parallel execution of Prolog
programs: a survey’. Programming Languages and Systems, 23, 472 602 (2001).

E. Lusk et al. ‘The Aurora or-parallel Prolog system’. In ‘Proceedings of the 3rd Internation Conference
on Fifth Generation Computer Systems’, 819 830. Addison-Wesley (1988).

S. Gregory. Parallel Logic Programming in PARLOG, The Language and Its Implementation. Addison
Wesley (1987).

E. Tick. ‘The deevolution of concurrent logic programming languages’. Journal of Logic Programming,
23, 89-123 (1995).

‘CIAO home page’. http://clip.dia.fi.upm.es/Software/Ciao/.

M. Carro and M. V. Hermenegildo. ‘Concurrency in Prolog using threads and a shared database’. In
‘International Conference on Logic Programming’, 320-334 (1999).

M. V. Hermenegildo, D. C. Gras and M. Carro. ‘Using attributed variables in the implementation of
concurrent and parallel logic programming systems’. In ‘International Conference on Logic Programming’,
631-645 (1995).

A. Kennedy. ‘Drawing trees’. Journal of Functional Programming, 6, 527-534 (1996).

51. ‘MLj home page’. http://www.lfcs.ed.ac.uk/mlj.

52. ‘Jinni home page’. http://www.binnetcorp.com/Jinni/.

53. ‘The HAL home page’. http://www.csse.monash.edu.au/ mbanda/hal/.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2003; 00:1 60

Prepared using speauth.cls

