
Embedding a CHDDL in a Proof System

K. G. W. Goossens

Laboratory for Foundations of Computer Science, Department of Computer Science,

University of Edinburgh, The King's Buildings, Edinburgh EH9 3JZ, U.K.

Abstract

This paper describes how a formal semantics for a computer hardware design and

description language may be embedded in a proof system. An abstraction of ELLA1,

its formal structured operational semantics and the underlying semantic model are intro-

duced. The Lambda2 proof system, the embedding of the semantics and some results

are discussed. Some examples are shown, and other approaches are brie
y surveyed.

1 Introduction

As circuits are getting larger and more complex, circuit design is becoming more diÆcult.

The need to describe and document designs has led to the development of computer hard-

ware design and description languages (CHDDLs) such as ELLA [Com90] and VHDL

[Ins88]. Using these languages, a circuit may be described at all stages of its design, from

the high level speci�cation down to the gate level description. Traditionally simulators

have been used to test designs at various levels. It is now impossible to fully test a design

by simulation alone. Circuits are too large to simulate all possible input combinations.

In addition, if a circuit contains internal state the input history must be taken into con-

sideration, increasing the number of possible test cases dramatically. The e�ectiveness of

tools such as simulators must be improved if they are to remain useful. Symbolic simula-

tors such as MOSSYM [Bry85] allow simulation at a higher level, reducing the number of

test vectors. Rather than dealing with individual values, variables and formulae, possibly

representing more than one value, are used. The major limitation of all conventional

simulators is that they can only deal with �xed circuits. We would like to verify general

designs such as N bit adders, rather than test each instantiation of a design. This applies

not only to parametrised designs, but also to simple components. Rather than re-testing

these in every context, it makes more sense to establish the conditions under which they

are known to function correctly. Thus verifying a design requires checking functional cor-

rectness and validating the contexts in which the components are used. To reason about

circuits it is useful to have objects representing them. This allows variables of type cir-

cuit, which facilitates a re�nement-based approach to design [FM89]. This contrasts with

1ELLA is a trademark of the Secretary of State for Defence, United Kingdom.
2Lambda is a product of Abstract Hardware Limited.

most veri�cation approaches which describe a circuit through its relational or functional

behaviour. Meaning must be ascribed to circuit objects if we want to reason about their

behaviour. A formal semantics is therefore necessary.

This paper explores the embedding of a fragment of the CHDDL ELLA in the

Lambda proof system. The next section describes the picoELLA language we will be

working with. A formal semantics is provided in section 3. Section 4 brie
y introduces

the Lambda proof system, before discussing the embedding of picoELLA in section 5.

Section 6 describes some small examples. Related work is discussed in section 7. Finally

we discuss future work and conclusions.

2 picoELLA

In order to reason about circuit descriptions in a CHDDL, the CHDDL must have a

formal basis. We have written a formal structured operational semantics for picoELLA,

a subset of ELLA encompassing its salient features [Goo90b]. ELLA was chosen because

of its elegant data and timing model. Here we describe picoELLA informally, its formal

semantics will appear in the next section.

picoELLA corresponds to the functional subset of ELLA. Full ELLA may be

translated into picoELLA. It does not contain functions, so that every program is a

single expression. Functions may be introduced at a higher level in the proof system.

picoELLA contains the following constructs: type de�nitions, local declarations, recur-

sive declarations, constants, tuples, indexing, multiplexors and delays. Each of these will

be described brie
y, followed by an example at the end of this section.

Type de�nitions are used to de�ne the values that a signal may have. Enumerated

types de�ne an arbitrary (�nite) number of distinct constructors, such as

TYPE bool = true | false IN

TYPE signal = hi | lo | x | z IN expr

Tuple types introduce signals with components made up from previously de�ned types:

TYPE twobool = bool * bool IN expr

Local declarations allow signals to be given an explicit name. This aids the structuring

of circuit descriptions, and allows fan-out of signals.3 To be able to deal with feedback,

recursive declarations are introduced. For example, the following expression describes an

alternating signal hi, lo, hi . . . changing at every time tick.

LET REC out = DELAY (hi, IF out MATCHES hi THEN lo ELSE hi) IN out

A constant is a constructor (from an enumerated type de�nition), a bottom value, or

a tuple containing constants. Associated with every type is a bottom value ?type. It is

declared implicitly, and represents the unde�ned or \don't know" value of that type. The

bottom value is used to introduce a data ordering v on constants of the same type. ?type

is less de�ned than every other value. Constructors are less than or equal to themselves,

but incomparable to other constructors. Thus v is a
at data order, and is extended

3We will assume throughout this paper that an unlimited fan-out is permitted, although it is possible

to limit fan-out.

component-wise to deal with tuples; for example, (hi,?signal) v (hi,lo). As we shall

see in the next section, the ordering v is crucial to the semantic model.

Tuples and indexing behave as usual; for example ((x,y)[1], (x,y)[2]) is equal

to (x,y). Strictly speaking indexing is not required, but it will simplify matters when

combining expressions at a meta-level.

Multiplexors are at the basis of programs; they are used to describe a full range

of applications, from basic gates to sophisticated features such as bus arbiters [Com86]

Section 16.4. For example, an AND gate may be described as follows:

IF expr MATCHES (true,true) THEN true ELSE false

Another, equivalent, description is

IF expr MATCHES (false,bool) | (bool,false) THEN false ELSE true

The pattern between the MATCHES and THEN is called a chooser. bool is a wild card

matching every value of type bool. The bar \j" denotes disjunction: a value matches

ch|ch' if it matches one or both of ch and ch'. A tuple represents pairing: it matches if

both components match. Only de�ned values may be used in choosers; one is not allowed

to check for the bottom value. The way in which this matching process is de�ned for

bottom values is important. There are three possibilities when matching a value with a

chooser: (i) The value and the chooser give a de�nite match. For example, true matches

true|false. (ii) The value and the chooser give a de�nite no-match: (hi,lo) does not

match (lo,lo). (iii) Finally neither a match nor a no-match may occur. Consider either

version of the AND gate with input (?bool,true). If the unknown value turned out

to be true the output would be true. On the other hand, if it turned out to be false

the output would be false. The output of ?bool therefore re
ects the intuition that we

cannot give a de�nite answer.

The delay is the �nal construct in picoELLA. It introduces a discrete linear time

starting at time zero. DELAY(ct,e) denotes a unit delay with the output of circuit e as

its input. DELAY(ct,e) outputs the result of e one time step after it has been computed.

The output at this time step is the constant ct. At time t + 1 the new value ct+1 in the

delay is the output of e at time t. The state of the delay (i.e. its contents) are explicit in

its description.4 This is in contrast to the more common use of a state, which remembers

the values of delays from one time step to the next. Embedding the state in the circuit

description forces us to evaluate a new program at every time step. The result of an

evaluation consists therefore not only of the output signal of the program at that time

step but also the description of the program for the next time step.

An example of picoELLA, which we will refer to throughout this document is a half

adder, which delivers its output after one time step:

LET s = IF (x,y) MATCHES (true,false)|(false,true) THEN true ELSE false

IN

LET c = IF (x,y) MATCHES (true,true) THEN true ELSE false

IN

DELAY (?twobool, (s,c))

The �rst LET computes the sum, the second the carry. ?twobool is equivalent to (?bool,

?bool). We assume that true, false and twobool have been de�ned as above.

4In ELLA the value in a delay description indicates not the state, but its output at time zero only.

3 PicoELLA Semantics

The formal semantics of picoELLA takes the form of a structured operational semantics

[Plo81, Goo90b]. We have written a static semantics expressing which programs are well

typed for picoELLA. It will not be discussed in this section. It suÆces to say that typing

is \intuitively obvious". The dynamic semantics evaluates a well typed program in a given

environment. There are one or more rules for every construct in the language, expressing

their behaviour. There are a total of 18 rules for the 14 constructs in the language. The

dynamic semantics acts on a stream of values and a program. The result of a semantic

rule at each time step is the new circuit description and a constant. As described in the

previous section, rather than using state to remember values in the delays, the circuit

description itself is altered. This allows us to use environments (� in the rules below)

rather than states.

At every time step the element at the head of the input stream is removed from the

stream and added to the initial environment. A program has therefore exactly one input

and one output. This is not a limitation as these values may be tuples, representing more

than one input or output signal. For a completed program the initial environment will

be empty, but partial programs may have \unconnected wires". These may be set to a

constant value during simulations by providing a non empty initial environment. This

is an important feature, as it allows us to reason about program fragments in general

contexts. We could show for example, that a given circuit functions correctly using

several timing disciplines.

Let the initial program and input stream be e0 and < i0; i1; : : : ; iN > respectively. The

result of an evaluation of program et at time t with input it consists of a tuple (ot; et+1)

representing the output signal of the circuit, and a description of the circuit at the next

time step t + 1. Time is explicit only in three rules dealing with input; the remainder of

the dynamic semantics is independent of time. The rule for LET expresses that expr is

evaluated in the environment �0 resulting from evaluating the declaration decl. The result

of the LET consists of the output of expr at the current time, and the circuit description

at the next time step. This new circuit is a LET built up from the new declaration decl0

and the new expression expr0.

� ` decl) �0; decl0 �0 ` expr) v; expr0

� ` LET decl IN expr) v; LET decl0 IN expr0
(1)

The following rule shows how a non recursive declaration is evaluated.

� ` expr) v; expr0

� ` name = expr) �f(name; v)g; name = expr0
(2)

�f(name; v)g is the environment which contains value v for name name, and is identical

to � otherwise. The next rule shows clearly that the output of the delay is the constant

value contained within it. The new delay contains the output v from expr at the current

time step. The bijective function valueof: Expr ! Value converts a constant expression

to the corresponding constant value.

� ` expr) v; expr0

� ` DELAY (c; expr)) valueof (c); DELAY (valueof �1(v); expr0)
(3)

The following rule will clarify the informal description of the multiplexor, or IF statement.

Firstly, this rule evaluates all sub-expressions of the IF. It is strict because every branch,

whether its answer is used or not, must compute its circuit description for the next time

step. The three cases outlined previously are represented in Kleene's ternary logic as tt

(a match), ff (a no-match) and ?Bool (neither a match nor a no-match).

� ` expr0) v0; expr0
0

� ` expr1) v1; expr0
1

� ` expr2) v2; expr0
2

� ` IF expr0 MATCHES chooser THEN expr1 ELSE expr2
) v; IF expr0

0
MATCHES chooser THEN expr0

1
ELSE expr0

2

(4)

Where type is the type of expr1 and expr2 in:

v �

8><
>:

v1 match(v0; chooser) = tt

v2 match(v0; chooser) = ff

?type match(v0; chooser) = ?Bool

We may prove that the match function is monotone in its second argument, i.e. if the

value of an input becomes more de�ned then the output becomes more de�ned. To be

more precise:

` 8ch; c; d: c v d! match ch c v3 match ch d (5)

v is the data ordering de�ned in the previous section. v3 is a similar data ordering on

tt, ff and ?Bool. The reason for forbidding the use of bottom values ?type in choosers is

that it would allow non-monotone circuit descriptions.

The LET REC operator is used to describe feedback, which means that we have to

use the output value before we have computed it. The dynamic semantics computes the

least �xed point of the circuit output. Using an iterative method, this guarantees that

every circuit will return a sensible answer in a �nite number of steps. This is particularly

important if a circuit could oscillate. Consider the alternating circuit of page 2 without

the delay:

LET REC out = IF out MATCHES hi THEN lo ELSE hi IN out

If the value on the out wire happened to be hi the inverter would output lo. This means

that its input changes to lo. Hence its output changes back to hi. This circuit is therefore

unstable for output hi and lo.5 However, the circuit is stable for ?signal: it is the least

�xed point of this circuit. It is �xed, i.e. it does not oscillate, and it is the least because

?signal is the smallest value of type signal.

To prove that the dynamic semantics computes the least �xed point we use the

Knaster-Tarski theorem. The theorem states that the least �xed point of a continu-

ous function f for some complete partial order is equal to the least upper bound of the

set of all iterative applications of f to the bottom element ? of the CPO, i.e. the set

f?; f(?); f(f(?)); : : :g. It has been shown that the the data ordering v is a CPO, and

that the semantics is monotone and continuous.

As an example consider the half adder

5Actually, it is also unstable for the remaining constructors x and z.

LET s = IF (x,y) MATCHES (true,false)|(false,true) THEN true ELSE false

IN

LET c = IF (x,y) MATCHES (true,true) THEN true ELSE false

IN

DELAY (?twobool, (s,c))

Some indication how this circuit behaves is shown in the following table. Note that the

value in the delay is the value computed by the XOR and AND circuits at the preceding

time step.

time input program output

0 (true,false) LET ... DELAY (?twobool,(s,c)) (?bool,?bool)

1 (true,true) LET ... DELAY ((true,false),(s,c)) (true,false)

2 (false,false) LET ... DELAY ((false,true),(s,c)) (false,true)

3 . . . LET ... DELAY ((false,false),(s,c)) (false,false)

4 Lambda

This section brie
y describes the Lambda proof system [FFM90], and its relevant fea-

tures. The Lambda proof system is an implementation of a polymorphic constructive

higher order logic of partial terms. Polymorphism allows functions to operate on objects

of more than one type. The logic is constructive, which implies that we do not have the

law of the excluded middle or a strong axiom of choice. This contrasts with a classical

system such as HOL, in which Hilbert's " operator is used for descriptions. Higher order

logic means that we can reason about functions, functions of functions etc. For example,

signals are usually represented as functions from time to values, and circuits are described

in terms of their e�ect on signals. To reason about partial terms an existence predicate

E, weak equality or equivalence ===, and strong equality == are included. The system is

implemented in ML which is also used as the command language [HMT89].

Lambda allows the user to declare new data types and functions, which may then

be used in rules, theorems etc. Lambda's data type and function de�nitions are a large

subset of standard ML. For example,

datatype bool = true | false; fun not true = false | not false = true;

is part of the built-in de�nitions of the bool data type. Lambda returns a number of

rules and theorems which axiomatise this data type and function. For example, rules

about a data type are: existence of constructors, (in)equality rules for the constructors

and an induction rule for the type.

****** bool'ind ******

2: G // H |- Pbool#(false)

1: G // H |- Pbool#(true)

E w $ G // H |- Pbool#(w)

This induction rule allows us to derive things like 8x : bool: x == true_x == false. For

functions, rules include existence of the function and its partial applications, and rules

which allow rewriting. not true is equivalent to false for example:

****** not'eq'1 ******

G // H |- not true === false

In addition to rules, Lambda has tactics. Using tactics a number of rules may be

applied in succession / in any order / repeatedly / only if applicable etc. A sophisticated

rewrite system is also available. A number of libraries with rules and tactics about lists,

booleans, words, naturals and integers are supplied with Lambda.

5 Embedding picoELLA in Lambda

This section describes how the greater part of the static and dynamic semantics of

picoELLA has been embedded in the Lambda proof system. We will encode the types

and functions used in the semantics using the ML de�nitions mechanism explained in the

previous section.

The �rst thing we need are constants:

datatype const = Cons of natural * natural | CoTuple of const * const;

Cons(i,t) encodes the ith constructor of type t. By convention Cons(0,t) represents ?t.

A constant is therefore a constructor or bottom value, or a tuple containing constants.

The structural induction rule the system returns for constants is:

2: E r1' $ E r' $ G // P#(r1') $ P#(r') $ H |- P#(CoTuple (r1',r'))

1: E r3' $ E r2' $ G // H |- P#(Cons (r3',r2'))

E w $ G // H |- P#(w)

To prove a property P of all constants w two subgoals must be proved: (i) assuming that

naturals r3' and r2' exist, prove the base case Cons; (ii) assuming that P holds for

constants r1' and r', prove the inductive step for CoTuple. In this rule, the hypotheses

left of the G (known as the G-list) are conventionally existence hypotheses. Those between

the slashes and H are the remaining hypotheses.

To encode the matching process for the IF construct we de�ne

datatype choosers = C of const

| B of choosers * choosers

| T of choosers * choosers;

fun match (C c) c' = ...|

match (B (b,c)) a = or3 (match b a) (match c a) |

match (T (a', b')) (CoTuple (a,b)) = and3 (match a' a) (match b' b);

Thus choosers are either constants, bars, or tuples. As described on page 3, the bar

corresponds to disjunction, and tuples to pairing. and3 and or3 are part of a general

purpose three valued boolean logic library, speci�cally written for this project. The

description for matching one constant with another has been omitted here, because it

would obscure the de�nition. Note that match is a partial function; the result of match

(T ...) (Cons ...) is not de�ned. The function is total in the case where the types of

the chooser and constant are equal. The de�nitions for typeOfChoosers, typeOfConst,

and the type tpe representing types are straightforward. We are now in a position to

re-prove the monotonicity of match (equation 5), but now within Lambda:

G // H |- forall ch,c,d. le c d == true /n

typeOfChoosers ch == (typeOfConst c, true) /n

typeOfChoosers ch == (typeOfConst d, true) ->>

le3 (match ch c) (match ch d) == true

The type of circuits is de�ned as follows:

datatype expr = Const of const

| Tuple of expr * expr

| Let of expr * expr

| Var of natural

| Delay of const * expr

| If of expr * expr * expr * choosers

| Index1 of expr

| Index2 of expr;

Note that the LET REC and TYPE constructors are absent. Work is in progress to add

the LET REC operator. To embed the LET operator a de Bruijn encoding of lambda ab-

stractions was used [dB72]. The bound variables of lambda expressions are encoded as

natural numbers indicating the distance (measured in intervening lambdas) away from

the de�ning lambda. Thus �x:�y:(x; (x; y)) a b would be encoded as ��(1; (1; 0)) a b. In

picoELLA this corresponds to encoding LET x = a IN LET y = b IN (x,(x,y)) by

Let (a, Let (b, Tuple (Var 1, Tuple (Var 1, Var 0)))). This encoding was nec-

essary because a formal description of names of picoELLA had to be found in Lambda.

Finally, the dynamic semantics can be de�ned:

fun Reduce l (Delay (c,e)) = (c, Delay (Reduce l e)) |

Reduce l (Let (e,e')) =

let val (c, f) = Reduce l e

val (c', f') = Reduce (c::l) e'

in

(c', Let (f,f'))

end |

Reduce l (Var n) = elem l n |

Reduce l (If (e,e',e'',ch)) =

let val (c,d) = Reduce l e

val (c',d') = Reduce l e'

val (c'',d'') = Reduce l e''

in

(case match ch c of

tt => c' |

ff => c'' |

uu => bottom c',

If (d,d',d'',ch))

end | ...;

This de�nition re
ects the semantic rules at page 4. Consider the clause for a delay. The

output at this time step is the value c, which was stored in the delay. The new circuit is

Delay (c',e') where c' is the output from the circuit e at this time step, and e' is the

description of circuit e at the next time step.

The LET statement reduces the de�ning expression, and pushes the value result on the

stack (i.e. stores it in the environment). Evaluating a name corresponds to a lookup in the

environment � in the dynamic semantics, and a lookup in the stack l in the embedding.

The IF construct evaluates all of its sub-expressions. It then returns (i) the result

of the �rst branch (if we have a de�nite match | tt or tt); or (ii) the result of the

second branch (if we have a de�nite no-match | ff or ff); or (iii) a bottom value of the

appropriate type (if we have neither a de�nite match nor a de�nite no-match, ?Bool or

uu). As in rule (4), the IF is strict.

We may now prove properties which we would like to hold for the semantics. One such

property is the monotonicity of the reduction function. By extending the data ordering

on constants v to lists vl, the following theorem has been proved:

` 8l; l0; e: welltyped ^ l vl l
0 ! 9c; f; c0; f 0: Reduce l e == (c; f)^

Reduce l0 e == (c0; f 0) ^ c v c0
(6)

welltyped stands for a number of properties, which we will see below. Consider the

program consisting of a single delay: DELAY(?bool,Var 0). If l == [?bool] and l'

== [false], then (6) tells us that ?bool v ?bool. At the next time step, however, we

cannot use the theorem because we now have two distinct circuits (DELAY(?bool,Var 0)

and DELAY(false,Var 0) respectively). We introduce an ordering on programs vp, and

a predicate =shape determining when two circuits have \the same shape". e =shape e0^

e vp e
0 indicates that e and e' are identical, except that constants in e are less than or

equal to those in e'. Thus DELAY(?bool,Var 0) vp DELAY(false,Var 0). Now we can

state a more general monotonicity theorem:

G // H |- forall l,l',e,e',t.

lle l l' == true /n

ple e e' == true /n

shapeEq e e' == true /n

(map typeOfConst l) == (map typeOfConst l') /n

typeOfExpr (map typeOfConst l) e == (t, true) ->>

exists c,f,c',f'.

Reduce l e == (c, f) /n

Reduce l' e' == (c', f') /n

le c c' == true /n

ple f f' == true /n

shapeEq f f' == true /n

shapeEq e f == true /n

typeOfConst c == t /n

typeOfConst c' == t

It states that for all environments l and l', circuit expressions e and e', and types t,

if l vl l
0 ^ e vp e0 ^ e =shape e0 and environments l and l' have the same type and

circuit e is well formed in l interpreted as a type environment, the following properties

hold. (i) Reduce l e and Reduce l e' exist (i.e. the semantics terminates within a

�nite number of steps) and are equal to (c,f) and (c',f') respectively; (ii) Reduce is

monotone in its �rst and second arguments; and (iii) Reduce preserves shape equality,

well formedness and types. In other words, if we start with any well typed circuit and

evaluate it in a number of di�erent environments then all the resulting circuits will have

the same shape, will be well typed and will be ordered as the environments.

6 Worked Examples

This section shows how Lambda may be used to manipulate circuits. We show how

applications of a tactic compute the normal form of picoELLA circuit expressions. In

other words, a symbolic simulation is performed. The example also illustrates the use of

Lambda's abbreviations and functions to augment picoELLA.

Consider the following de�nitions:

val unknown = Cons(0,1);

val hi = Cons(1,1);

val lo = Cons(2,1);

val OR#(x) = If (x, Const lo, Const hi, T (C lo, C lo));

val AND#(x) = If (x, Const hi, Const lo, T (C hi, C hi));

val XOR#(x) = If (x, Const lo, Const hi,

B (T (C hi, C hi), T (C lo, C lo)));

val HA#(x) = Let (x, Tuple (XOR#(Var 0), AND#(Var 0)));

fun adder x y c = Let (Tuple (Tuple (x, y), c),

Let (HA#(Tuple (Index1 (Index1 (Var 0)), (*x*)

Index2 (Index1 (Var 0)))), (*y*)

Let (HA#(Tuple (Index1 (Var 0), Index2 (Var 1)(*c*))),

Tuple (Index1 (Var 0),

OR#(Tuple (Index2 (Var 1),

Index2 (Var 0)))))));

hi, lo, AND etc. are abbreviations which may or may not have arguments. Abbreviations

are constant syntactic functions with no free variables. The full-adder adder uses a func-

tion instead of an abbreviation. Note that we are using Lambda's de�nition mechanism

to structure picoELLA terms. These de�nitions may be loaded into Lambda using

val (pe',r') = useLambda pe "definitions";

pe' is a new parser environment, r' are the rules characterising the de�nitions. Parser

environments ensure that new de�nitions are known to the parser, and are printed out

correctly.

The half adder HA has one argument, which is a tuple. It may be interpreted as a

pair of input wires. Similarly its output is a tuple consisting of a (sum,carry) pair. Any

function using the half adder, must select the appropriate components of the half adder's

result. The Let is used to explicitly name all inputs to the function (which may be large

expressions) so that these are computed only once, after which the result is distributed

by using a fan-out. In the case of the full-adder, the Let is necessary to ensure the correct

o�set for any Var i inputs. x and y are added �rst, followed by the addition of the partial

sum and c. The �nal result is the disjunction of the two carries (the second components of

the half adders), and the sum of the second component. Without the indexing operators

it would not have been possible to partition this description into subcomponents. As de-

scribed in section 3, \unconnected wires" are represented by accesses to the environment.

This can be expressed in the following way:

Reduce (hi:: hi:: lo:: l) adder (Var 0) (Var 1) (Var 2) ==

(output, adder (Var 0) (Var 1) (Var 2))

The adder instantiation uses the top three elements of the environment, with the Var i

arguments. The remaining environment l is irrelevant. If we use the adder in a larger

circuit, it may be used in di�erent contexts (i.e. l will be instantiated with di�erent

environments) as long as the top three components are there (and are of the right type).

This term also asserts that the adder does not change over time, and therefore has no

internal state. The circuit description for the next time step is adder (Var 0) (Var 1)

(Var 2), which is also the current circuit.

We may now prove properties about these circuits, for example:

***** Level 1 Premise 1 *****

1: x == hi n/ x == lo n/ x == unknown

2: input == CoTuple (x,lo)

3: halfadder == HA#(Var 0)

|- Reduce [input] halfadder == (CoTuple (sum,carry),next halfadder)

G // x == hi n/ x == lo n/ x == unknown $

input == CoTuple (x,lo) $ halfadder == HA#(Var 0) $ H

|- Reduce [input] halfadder == (CoTuple (sum,carry),next halfadder)

After removing the abbreviations we apply the tactic ReduceAllTac, which reduces ex-

pressions involving Reduce to a normal form. After the re-introduction of abbreviations

the result is:

***** Level 8 Premise 1 *****

1: input == CoTuple (x,lo)

2: halfadder == HA#(Var 0)

|- sum == x /n carry == lo /n next halfadder == halfadder

G // x == hi n/ x == lo n/ x == unknown $

input == CoTuple (x,lo) $ halfadder == HA#(Var 0) $ H

|- Reduce [input] halfadder == (CoTuple (sum,carry),next halfadder)

This proof takes seven steps, each of which was a straightforward application of a tactic.

Note that we have not just simulated the circuit, we have established that with a lo carry

input, the sum is identical to the other input, even for the \don't know" value.

A speci�cation for the half adder circuit could be stated as follows

val HA SPEC#(x,y,sum,car) = sum == (x+y) mod 2 /n car == (x+y) div 2;

fun abs (Cons(1,1)) (* hi *) = 1 | abs (Cons(2,1)) (* lo *) = 0;

Using the abstraction function abs, we may then prove that the half adder implementation

satis�es the speci�cation. Alternatively, we may design a circuit using re�nement by

starting with the rule:6

6Some typing constraints have been left out for clarity.

***** Level 1 Premise 1 *****

E impl $ E x $ E y $ E s $ E c $ G //

Reduce [CoTuple(x,y)] impl == (CoTuple(s,c),impl) $ H

|- HA SPEC#(abs x, abs y, abs s, abs c)

E impl $ E x $ E y $ E s $ E c $ G //

Reduce [CoTuple(x,y)] impl == (CoTuple(s,c),impl) $ H

|- HA SPEC#(abs x, abs y, abs s, abs c)

We may then split impl into two circuits, one to compute the sum and one to compute

the carry.

***** Level n Premise 1 *****

E sumc $ E x $ E y $ E s $ G //

Reduce [CoTuple(x,y)] sumc == (s,sumc) $ H

|- (abs x)+(abs y) mod 2 == abs s

**** Level n Premise 2 *****

E carc $ E x $ E y $ E c $ G //

Reduce [CoTuple(x,y)] carc == (c,carc) $ H

|- (abs x)+(abs y) div 2 == abs c

E (Tuple(sumc,carc)) $ E x $ E y $ E s $ E c $ G //

Reduce [CoTuple(x,y)] (Tuple(sumc,carc)) ==

(CoTuple(s,c),(Tuple(sumc,carc))) $ H

|- HA SPEC#(abs x, abs y, abs s, abs c)

This process may then be repeated for the sumc and carc subcircuits until a complete

implementation has been found.

To show the power of having explicit circuit descriptions consider the following (sim-

pli�ed) hardware generating function.

fun nadder 1 x y c = adder x y c |

nadder (S (S n)) (Tuple (x,x')) (Tuple (y,y')) c =

Let (nadder (S n) x' y' c,

Let (adder x y (Index2 (Var 0)),

Tuple (Tuple (Index1 (Var 0), Index1 (Var 1)),

Index2 (Var 0))));

It returns a description for an N bit adder for arbitrary N > 0. A one bit adder is the

full-adder described above. An N +1 bit adder is an N bit adder followed by a full-adder

which adds the most signi�cant bits and the carry from the N bit adder. The �nal result

is a nested tuple

Tuple (Tuple (msb, Tuple (..., lsb)...), carry)

where msb and lsb are the most and least signi�cant bits respectively.

7 Related Work

In [BGM91] Barringer et al. describe a language akin to picoELLA. Their Logic+Delay

language is also an abstraction from ELLA. The data values are either true or false.

There are no tuples. Their CASE statement corresponds to picoELLA's IF expr MATCHES

true THEN expr' ELSE expr''. The language also has a stable delay of arbitrary length.

Rather than including explicit declarations, a program is a set of de�nitions, which may

contains loops. Thus fan-out and feedback loops are permitted.

The semantic model uses (�nite) histories to save the internal state of delays. At

every clock tick all declarations are evaluated simultaneously until a stable solution has

been found. An interesting di�erence in the treatment of unde�ned values comes to light

in one of the delay rules. It uses a negative judgement 6 ` to detect unstable signals:

h 6 `t rhs)4 0 h 6 `t rhs)4 1

h `t rhs)4?
(7)

This rule expresses that if rhs does not evaluate to either 0 or 1 using history h, it

evaluates to ? (?bool). Unde�ned elements can arise either from a delay whose input

has not remained stable for a suÆciently long interval, or from an unstable loop (c.f. the

alternating circuit on page 5). A rule similar to the one just discussed detects unstable

circuits. Informally, it states that the output of the circuit is unde�ned due to instability

if after the circuit reaches a state h00 from the initial state h0, there exists a non empty

sequence of states h00; : : : ; h00. That is, the evaluation is stuck in a loop. Both of these

rules could be embedded in a way similar to picoELLA. The second rule would have to

keep track of all previous states, and check for a circularity at each step. It is not clear

however, how to use these rules within a constructive proof system.

In [BH89] Brock and Hunt use the Boyer-Moore theorem prover to encode a circuit

type. The Boyer-Moore system implements a quanti�er free �rst order predicate logic

with equality. Circuits are encoded as constants in the logic, and are given a mean-

ing using interpreters. A well formedness predicate is used to recognise valid circuit

descriptions. Circuit descriptions resemble Lisp. Brock and Hunt demonstrate circuit

generating functions such as N bit adders which are also veri�ed. A severe drawback

to their approach is that circuit descriptions are restricted to combinatorial circuits with

no feedback. This allows the interpreters and well formedness predicates to be relatively

simple. The complexity of the picoELLA semantics is due solely to these features.

Boulton et al. have implemented a behaviour extraction function [BGHvT90] in the

HOL proof system. It maps ELLA descriptions from outside the proof system onto

(classical) higher order logic formulae. A large functional subset of ELLA, including

functions, is thereby given a semantics. However, the lack of a circuit type prevents

results about general or partially instantiated circuits to be proved.

A behaviour extraction function maps a circuit onto a formula describing its meaning.

A problem with general behaviour functions is that they do not reside in the proof system,

preventing a formal veri�cation. The Cambridge system, however, counters this problem

by making the result of the behaviour function as close to the original ELLA as possible.

The model within HOL is at the same level of abstraction as the original ELLA. Ideally

this high level embedded semantics would correspond to a formal semantics outside the

proof system, as is the case for picoELLA. [Goo90a] contains a formal semantics for a

superset of the ELLA subset used by Boulton. Whether this semantics agrees with their

embedded semantics is not clear.

In contrast, an embedded operational semantics can be reasoned about formally. We

can thus gain con�dence in the semantics by formally proving desirable properties. For

picoELLA, the correspondence between \paper" and embedded semantics is very close,

again increasing our con�dence in the correctness of the embedding (with respect to

the \paper" semantics). picoELLA's semantics works at a lower level, by explicitly

embedding the �x point model. A �ne grained semantic model allows more detailed

results to be proved about the language. Also, by embedding a much smaller subset of

ELLA, it is easier to maintain a consistent system. The remainder of the language can

later be given a semantics in terms of the embedded subset. ELLA descriptions outside

the proof system may then be mapped onto syntactically equivalent proof system term,

which have a formal semantics by virtue of the embedded operational semantics.

8 Future Work and Conclusions

Two short terms goals are the embedding of the LET REC construct, and the completion

of a number of normal form results for choosers. Proving the correctness of the �x point

result will be challenging. The implementation of a pretty printing system, to present

picoELLA expressions in a more readable form, will make the system more user friendly.

A number of tactics and rules to perform common operations with a minimum of e�ort

would be very useful. In addition the semantics should be integrated with Lambda's

window based browser facility.

As mentioned in the previous section the remainder of ELLA can, in principle, be

given a derived semantics. This may be achieved by encoding a second circuit type encom-

passing the new constructs, and then formally mapping these constructs onto picoELLA.

Also, a behaviour function could be derived by proving a characterisation of every con-

struct. An informal function can then map every construct onto the relevant property.

The embedding of the state of delays in the circuit description simpli�es the seman-

tics, but complicates reasoning about general circuits. It would be very helpful if a

general method for dealing with delays could be found. Combining picoELLA with var-

ious design strategies, such as design for correctness, formal system design [FM89] and

transformational design [Bus90] may be possible. Hardware generating functions, such as

the N bit adder generator, open up the exciting prospect of formally veri�ed hardware

generators.

The eÆciency aspects of the operational semantics will have to be addressed at some

point. Brute force methods do not work well even on the small examples shown above.

An incremental approach to veri�cation has so far been faster. In addition, it allows the

re-use and structuring of designs and proofs, which will be crucial for circuits of medium

to large size. Finally, a number of larger case studies need to be performed to see how

the design activity is improved, speeded up, or otherwise.

Formal semantics for CHDDLs will be increasingly important as the need to verify

circuit descriptions and designs will become increasingly important. This research is

a �rst step towards providing systems which will allow designers to create fully veri�ed

circuits. These systems may be hybrid simulator-theorem provers or totally formal. So far

very little work has been done about either formalising CHDDLs or the use of CHDDLs

in conjunction with, or within proof systems.

References

[BGHvT90] Richard Boulton, Mike Gordon, John Herbert, and John van Tassel. The

HOL veri�cation of ELLA designs. Technical Report 199, University of Cam-

bridge Computer Laboratory, August 1990.

[BGM91] Howard Barringer, GrahamGough, and Brian Monahan. Operational seman-

tics for hardware design languages. Technical Report Series UMCS-91-2-2,

Department of Computer Science, University of Manchester, February 1991.

[BH89] Bishop C Brock and Warren A Hunt Jr. The formalization of a simple

hardware description language. In Luc Claessen, editor, Applied Formal

Methods For Correct VLSI Design, pages 778{792, Amsterdam, November

1989. IMEC-IFIP International Workshop, Elsevier Science Publishers B.V.

[Bry85] Randal E Bryant. Symbolic veri�cation of MOS circuits. In Henry Fuchs,

editor, 1985 Chapel Hill Conference on Very Large Scale Integration, pages

419{438, March 1985.

[Bus90] Holger Busch. Proof-based transformation of formal hardware models. In

Geraint Jones and Mary Sheeran, editors, Designing Correct Circuits, Ox-

ford, September 1990.

[Com86] Computer General Electronic Design, The New Church, Henry St, Bath BA1

1JR, England. The ELLA Tutorial, issue 3.0 edition, 1986.

[Com90] Computer General Electronic Design, The New Church, Henry St, Bath BA1

1JR, England. The ELLA Language Reference Manual, issue 4.0 edition,

1990.

[dB72] N D de Bruijn. Lambda-calculus notation with nameless dummies, a tool

for automatic formula manipulation. Indag Math., 34:381{392, 1972.

[FFM90] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the

Lambda System. Abstract Hardware Limited, version 3.2 edition, November

1990.

[FM89] Michael P Fourman and Eleanor M Mayger. Formally based system design

{ interactive hardware scheduling. In G Musgrave and U Lauther, editors,

International Conference on VLSI, Munich, 1989.

[Goo90a] K GW Goossens. An operational semantics for a subset of the HDDL ELLA.

Version 0.3 Manuscript, April 1990.

[Goo90b] K G W Goossens. Semantics for picoELLA. Manuscript, June 1990.

[HMT89] Robert Harper, Robin Milner, and Mads Tofte. The de�nition of standard

ML version 3. LFCS Report Series ECS-LFCS-89-81, LFCS, Department of

Computer Science, University of Edinburgh, May 1989.

[Ins88] The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th

Street, New York, NY10017 USA. IEEE Standard VHDL Language Refer-

ence Manual, IEEE std 1076-1987 edition, 1988.

[Plo81] Gordon Plotkin. A structural approach to operational semantics. Technical

Report FN-19, Computer Science Department, Aarhus University (DAIMI),

1981.

