Integrating Hardware Description
Languages and Proof Systems*

K. G. W. Goossens

Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh
Scotland, UK

1 The Problem

Simulation in Hardware Design and Testing

Hardware description languages (HDLs) have been used in industry since the 1960s to
document and simulate hardware designs. Simulation of HDL descriptions is very useful to
find design faults without the need to manufacture the design. A well known drawback of
simulation, however, is that the number of input combinations (or test vectors) increases
exponentially. For modern designs, it would take years to fully simulate a design. In
practice a limited number of test vectors are used to probe the circuit, possibly failing to
uncover faults.

Formal Hardware Verification

Research into formal hardware verification of hardware designs aims to address this prob-
lem. A circuit and its specification are given by mathematical descriptions. A mathem-
atical proof system is then used to prove correctness of the design with respect to its
specification. Although the hardware verification field is still young, notable achieve-
ments include the formally verified VIPER microprocessor which is manufactured and
used commercially. However, most proposed methodologies are not automated, and need
considerable expertise to be used. Although formal verification methods remove the
exponential explosion occurring for simulation, verification takes substantial time.

A severe drawback is that many different notations and tools are employed. Indus-
trial hardware description languages have not yet been used, alienating the hardware
verification field from the industrial designers.

*This poster was presented at the IFIP 12th World Congress in Madrid, Spain, September 1992

2 The Solution

Our approach advocates the use of a HDL in conjunction with a proof system [3].

To be able to use a HDL in conjunction with a proof system, it must have a precise
definition. We have provided a formal semantics for (a small subset of) a widely used
industrial hardware description language called ELLA" [1]. Using a formal semantics it is
possible to prove results about the behaviour of circuits.

This semantics has been embedded in the LAMBDA® [2] proof system. LAMBDA is a
higher order logic proof system which allows specifications of designs to be stated in a
natural and succinct form. Using the proof system, a number of results have been proved
which confirm the correctness of the simulation model which is used in the industrial
simulator for ELLA.

ELLA circuit descriptions reside inside the proof system which allows their formal
manipulation. It is now possible for industrial users to describe designs in a formal
setting, while retaining a familiar ELLA notation.

formal circuit

optimisations
formal HDL stmulation » simulation
descriptions results
formal ormal , counter
. synthesis]
semantics examples
Y A
description » specifications
of behaviour prove correct or properties

proof system
Figure 1: Embedding a HDL in a Proof System

We combine familiar notations (HDL) and techniques (e.g. simulation) with mathem-
atical rigour (formal semantics, proof system). The fusion of a HDL and a proof system
allows a number of different methodologies and tools to be integrated into one framework.
Moreover, we can easily interface with existing tools because the HDL provides a common
medium. We will discuss some of the applications in more detail below.

1ELLA is a trademark of the Secretary of State for Defence, United Kingdom.
ZLAMBDA is a product of Abstract Hardware Ltd.

3 Proving General Properties About Circuits

Circuit descriptions are part of the proof system. Using conventional hardware verification
methodologies we can prove, for example, that a circuit meets its specification. We can
also prove properties about all circuits, classes of circuits (such as N bit adders) or
individual circuits.

F Ve arcuit. sstmulation of ¢ cannot loop, and 1s monotone.

Proving a property about a class of circuits may be harder than proving it for a particular
member, but the proof needs to be done only once. We can also deal with circuits which
are parametrised on word length (e.g. N bit adders), or other circuits (i.e. contain plug-in
components).

- VN. adder N (z,y) (s,¢) — s=abs ' ((abs x + abs y) mod 2N) A
c= abs_l((abs x+ abs y) div ZN)

This example also illustrates the use of data abstraction.

4 Abstractions in Hardware Design

Hardware designs span many levels of abstraction from behavioural descriptions down
to, for example, gate level. Most HDLs do not provide facilities to link different levels
of abstraction. Although different levels may be simulated and their outputs compared,
they are only “proven correct” through exhaustive simulation. Using a proof system
different levels of abstraction may be related formally, thus ensuring that no errors are
introduced when going from one level to another.

Data Abstraction The representation of integers by bitstrings above, is an example
of data abstraction. By defining the abstraction function abs, boundary problems
such as overflow often become more explicit.

Structural Abstraction Decomposition of hardware modules is essential in top-down
design methodologies. Formal synthesis of hardware and refinement based synthesis
are paradigms which have been used in conjunction with proof systems.

Temporal Abstraction Time is often observed differently at adjacent levels of abstrac-
tion. A microcode instruction may take several clock cycles, and a whole microcode
program may implement a single instruction level operation. Temporal abstraction
functions relate various time scales in a formal manner, facilitating proofs of cor-
rectness.

Behavioural Abstraction Often it is not desirable to specify the behaviour of a hard-
ware module fully. We may not care what the behaviour of the component is for
input combinations which will not occur. Loose specifications do not unnecessarily
constrain implementations.

5 Formal Symbolic Simulation

Simulating circuit descriptions using simple values (1 and 0) leads to an exponential
increase in the number of test vectors. Using extra values in the value domain, such as
don’t care X, and don’t know U, somewhat relieves this problem. Symbolic simulation
goes one step further and allows the use of variables and formulae z V y as inputs and
outputs. The variable z is not a value in value domain, but ranges over all these values.
Proof systems provide exactly the right environment for this sort of simulation. With the
use of an industrial HDL, such as ELLA, we can perform any of the conventional (symbolic)
simulations [4].

F simulate ANDGATE z (y V 1) = «

ANDGATE is part of the proof system, and we could replace it by any proof system term,
as long as it evaluates to a circuit. For example, we can simulate N bit adders, for
arbitrary N.

A very useful application is abstract hardware. During the course of a design, we often
want to simulate it, even when some subcomponents have not been implemented. Using
variables to stand for unimplemented hardware we can still simulate the whole design,
because we should know the specifications of the subcomponents. Using proof system
facilities the specifications can be used instead of a future implementation to compute
the outputs.

6 Formal Synthesis and Optimisation

Circuits may be produced inside the proof system, by formally verified hardware gener-
ators. The hardware generating function is proved correct once. All outputs from the
function are then guaranteed to be correct. This output can then be exported out of
the proof system to conventional tools such as layout generators. Of course, it is also
possible to verify output from conventional synthesis tools, by importing the circuit de-
scription into the proof system. Qur work fits in with interactive paradigms such as
formal synthesis and refinement based synthesis.

Other applications include formally verified circuit optimisations. Semantically equi-
valent circuit descriptions may be swapped without changing the meaning of the circuit.
It may also be possible to prove correct previously informal transformations and op-
timisations. Transformational design methodologies have also been used successtully in
conjunction with proof systems.

References

[1] Computer General Electronic Design, The New Church, Henry St, Bath BA1 1JR, England. The ELLA Language
Reference Manual, issue 4.0, 1990.

[2] Mick Francis, Simon Finn, and Ellie Mayger. Reference Manual for the Lambda System. Abstract Hardware Limited,
version 3.2 edition, November 1990.

[3] K G W Goossens. Embedding a CHDDL in a proof system. In P Prinetto and P Camurati, editors, Advanced Research
Workshop on Correct Hardware Design Methodologies, pages 359-374. North Holland, June 1991.

[4] K G W Goossens. Operational semantics based formal symbolic simulation. In Higher Order Logic Theorem Proving
and Its Applications, September 1992. A longer version is available as LFCS Report ECS-LFCS-91-231.

