
A PROTOCOL AND MEMORY MANAGER FOR ON-CHIP COMMUNICATION

K.G.W. Goossens

Philips Research Laboratories, Eindhoven, The Netherlands
Kees.Goossens@philips.com

ABSTRACT

We define a protocol for on-chip communication that supports dy-
namic interconnect networks with global memory management
based on the notion of distributed shared memory with a uniform
address space. The protocol is implemented by a memory man-
ager. It is beneficial to separate the steady-state processing (data
communication with static interconnect) from changing from one
steady state (or user function) to another, which may necessitate
reallocation of resources or changes in the network topology.

1. INTRODUCTION

Embedded systems can often be specified as a set of communicat-
ing tasks (or processes). Tasks can be as large as MPEG encoders,
transcoders, hard disk (interfaces), or be at a finer grain, such as
DCT/IDCT, or motion estimation functions. The functionality of-
fered to the user grows day by day and hence not only the number
of tasks in a system increases, but task graph transitions evolve
from simple mode switching to more refined dynamic behaviour
(which includes, for example, switch-over effects). In this paper
we define a protocol and its implementation to model and imple-
ment these dynamic networks of communicating tasks.

Tasks and their communications are often modelled with Kahn
networks [4, 3]. Producers and consumers (to be more precise,
ports, of which a task may have several) communicate via one-
to-one FIFO channels of infinite capacity in a static network. It is
an abstract model without any notion of time or resources (Fig-
ure 1A).

A: no modelling of
time or resources

B: local buffers

C: global buffers

full token

empty token

used
tokens

empty
tokens

Figure 1: No, Local, And Global Buffers

1.1. Time

The main advantage of the Kahn process model is the determinis-
tic behaviour resulting from the read primitive that blocks on ab-
sence of data, and the non-blocking write. While this is a natural
model for signal processing, many functions cannot be modelled

easily. For example, an MPEG decoder expects its incoming data
to arrive with a certain (average) bandwidth. If no data arrives
in time alternative action must be undertaken (such as redisplay-
ing the last correct picture). Time is significant not only for the
presence or absence of data, but also for changes in the network
topology (enabling and disabling communication) and resource al-
location. This cannot be modelled either.

1.2. Resources

In the Kahn model a write operation is non-blocking because FIFOs
have infinite capacity. But in an implementation resources are
limited, so that buffers and communication bandwidth must be
used efficiently. A one-to-one communication channel can be ef-
ficiently realised with local buffering, as shown in, for example,
[8] (Figure 1B).1 Note that producer, consumer, and channel (with
its buffers) form a triad which introduces several disadvantages.
First, data cannot be passed along from one channel to another
without copying of data because full and empty tokens circulate,
usually FIFO-fashion, on one channel. Filters, (de)multiplexers,
and shufflers (such as MPEG’s BBP!PBB shuffle) are then more
expensive to implement [5]. For the same reason, run-time choice
of token size is most likely precluded. Second, sending data to
several consumers (multicast) implies duplicating the data because
buffers cannot be shared. Third, buffer usage cannot be optimised
globally (over channels). For example, the number of tokens in
the system as a whole could be considerably smaller than the sum
of the worst-case token use of all channels. Global buffer man-
agement does not suffer from these drawbacks (Figure 1C). The
global memory manager receiving and providing empty tokens is
not shown because it is not a user task.

2. THE ARACHNE PROTOCOL

We provide a communication protocol, named Arachne, for the
specification and implementation of networks of communicating
tasks where time and resources are taken into account (e.g. is there
sufficient space or data, adding and removing channels, allocating
and freeing buffers, deadlines, share and/or distribute buffers and
bandwidth over channels or producers). Our protocol facilitates
the modular construction of tasks by shielding them as much as
possible from communication intricacies such as buffer manage-
ment and reconfiguration. At the application level (that is, where
tasks are composed to perform the function requested by the user),
sufficient facilities must be present to analyse and manage (re-
configure) the collection of autonomously communicating tasks
without unduly disturbing the system. We advocate a separation
between the work to be done in the steady state (data communi-
cation) and that done for administration or reconfiguration. The

1We have drawn two arrows, for full and empty tokens, to indicate a
single channel.



former should be transparently performed by the protocol and not
burden the application, which should concentrate on the latter. For
example, the use of DMA to implement communication channels
requires periodic intervention of a central CPU, which must know
and keep up with the communication speeds of the channels, even
in the steady state. We want to avoid this.

2.1. Target Architectures

Due to the global nature of buffer management we concentrate on a
centralised implementation of the Arachne protocol. The applica-
tion and all producers and consumers communicate via a control
network with a token manager. The data transport to and from
buffers takes place over a data network without intervention of
either token manager or application. Control and data commu-
nication networks could be combined, of course. All data com-

app producer consumer

token
manager

data bus

control bus1
1 get_space
2 obtain *token, size
3 filling the token
4 put_data

2

3

global
memory

4

appproducer consumer

token
manager

packet switched network for data

token ring for control

1 get_data
2 obtain *token, size
3 reading the data
4 put_space

3
local
memory

1 2 4

A

B

Figure 2: Sample Architectures

munication takes place via distributed shared memories that can
be addressed within a uniform address space. It is not essential
over what kind of structure communication takes place; it could be
a bus, token ring, packet-switched network, and so on. Figure 2
shows two possible architectures.

2.2. Concepts

In this paper, our world consists in independently executing tasks
that can communicate via ports. A port comes in two flavours, pro-
ducer and consumer; a task may have any number of either. Pro-
ducers generate a stream of data, i.e. a finite or infinite sequence
of tokens. Tokens are used to transport data from a producer to a
consumer; they consist of a reference (pointer) to a buffer (a con-
tiguous range of memory locations) together with its size. Pools
are collections of tokens. It is a task of the application (which
has an overview of the whole system) to determine how many to-
kens, and of what sizes are allocated to which pool. One strategy
could be to allocate all tokens of a particular size to one pool, so
that a producer can easily request a token of the appropriate size.
An alternative is to group tokens based on their physical mem-
ory location. For example, a pool could contain tokens mapped
to the local memory of a producer (and thus fast to use for that
producer; Figure 2B), another pool could correspond to a global
on-chip memory (and perhaps requires a slower bus to write to;

Figure 2A), and yet another pool could be in off-chip memory. It
is essential to have a uniform address space that allows this kind
of mapping. A producer can decide at run time from which pool
to request a token. A credit mechanism [6] allows for limiting the
amount of buffer space a producer can use at a given point in time.
It also serves to regulate the data rate of a producer if it is faster
than its consumers.

A port autonomously indicates its willingness to start or to
stop creating or using data. However, data production and con-
sumption only starts when a communication channel has been added
between a producer and a consumer; this is done by a third party
(the application). A port can be connected to several channels,
this then corresponds to multicast for producers and merging input
streams for consumers. Tokens arriving over several channels at a
consuming port are interleaved in the order they arrive in. One of
the principles of Arachne is that all activity that is of no immediate
interest to a port will not impinge on it. Adding (or removing) all
but the first (or last) channel is therefore invisible to a port because
it can continue producing (or consuming) its data stream. Sending
tokens to more than one consumer, or merging data streams from
several producers is a protocol service, and is performed transpar-
ently. Handing over a token is asynchronous in the sense that there
is no point in time where the control flows of producer and con-
sumer coincide to exchange the token.2 This allows for pipelining
of producer and consumer to decouple their respective data rates,
and also enables efficient multicasting. A channel can be removed
without loss of data before a consumer has read all pending tokens.
This allows for reconfiguration of connected networks in which at
no time all tasks are idle [7]. As a protocol Arachne shares many
characteristics with Manifold [1].

2.3. Application Interface

There are three kinds of commands that a port can use: those for
basic data communication (obtaining empty or full tokens, sending
full tokens, or returning emptied tokens); commands dealing with
dynamism (starting, stopping); and finally, what could be termed
root, administrative, or application commands (adding and remov-
ing channels, adding and removing tokens from the system, giving
credits to producers, and status commands for observing the sys-
tem). Although every port can execute every command, it is wise
to separate basic functionality (encoding, filtering, and so on) from
system-wide application-level functionality (determining the over-
all functionality that must be delivered to the user, and quality of
service issues). The third category of commands is most appropri-
ate for the latter.

All commands in the following overview identify the port through
its first argument me(omitted from function definitions for brevity).
The deadline d will be discussed later. Function arguments pre-
ceded by an asterisk are return variables.

get space(d,pool,threshold,*token,*size) Wait
until at least threshold bytes of free space are available
in pool pool , and return the first empty token. The port is
now the owner of this token until it is reused (its life-time
ends), and until that time pays for it out of its credits.

put data(d,token,bytes) Send (or resend) token to con-
nected consumers, i.e. indicate that the token with bytes
bytes has been (partially) filled or modified and is ready to
be consumed.

2Synchronous hand-over is also supported, but is a derived feature. It
can be used to flush pipelines, and to synchronise control flows.



get data(d,threshold,*token,*bytes) Wait until at
least threshold bytes of data are pending. Optionally
receive the first token on return; its ownership can also be
requested. Note that modification of the data is only legal
for the unique owner of a token.

put space(d,token) Processing of token token is com-
plete; it has been (partially) read and/or modified, and is no
longer needed by this task.

start(d) Indicate a willingness to start production or con-
sumption of data; wait until started.

stop(d) Stop producing or consuming data; sever all outgoing
(resp. incoming) channels of a producer (resp. consumer).
It is equivalent to a remove channel for each channel.

add channel(d,prod,cons) Connect the producer and con-
sumer, if they are willing to communicate. They will start
(become active) if this is the first channel to be added.

remove channel(d,prod,cons) Disconnect the producer
and consumer; if this is the last channel of a producer port
it will be switched off. If it is the ultimate channel of a
consumer, it will end the input stream.

set credit(d,prod,credit) Set the maximum number
of bytes that producer prod can use at any point in time
to credit . With no limiting credit a producer could use
all buffers and perhaps impede progress of the rest of the
system. A similar credit system could be implemented for
bandwidth regulation.

alloc token(d,pool,token,size) Declare the memory
region of size bytes starting at location token for use as
a token in pool pool managed by the token manager.

free token(d,pool,*token,*size) Remove a token from
pool pool . Tokens can be added and removed during nor-
mal operation.

object status(d,...) Obtain the status of the objects in
the system, where objects are ports (off, waiting, or ac-
tive), channels (the interconnect matrix of producers and
consumers), space (free bytes per pool), data (bytes used
by producers, pending bytes in queues of consumers), and
commands (have ports made progress, and so on; can be
used detect dead-lock, for example). The commands wait
until there has been a change in the status of the objects.
An application would typically analyse the system at regu-
lar intervals and make adjustments like adding or removing
tokens, (dis)connecting producers and consumers, etc.

Almost all commands can take some time to complete. Exam-
ples are waiting until there is enough space or data, and waiting
for ownership of a token. By giving a deadline the time spent after
which a command returns can be limited. An infinite deadline cor-
responds to blocking, a deadline of zero means fast polling. Inter-
mediate values are useful because they avoid the need for polling,
reducing memory contention and network use. What’s more im-
portant, the concept of a deadline provides for a more natural API,
at a higher level.

This is a typical producer task, always ready to produce data:
while true do

start(me,blocking);
repeat

r = get_space(me,blocking,p,0,&token,&size);
if SPACE(r) then

fill token[0..bytes-1] for bytes <= size;
r = put_data(me,blocking,token,bytes);

end
until EOS(r) or we want to stop;

if we want to stop then
stop(me,blocking);
/* else someone else already stopped us */

end
end

Figure 2 shows the execution of some commands in an archi-
tecture for a producer and a consumer. An internal buffer (scratch
pad), or space for dynamic data structures is obtained like this:

r = get_space(me,blocking,pool,minbytes,
&token,&size);

... use token, but never send it ...
r = put_space(me,blocking,token);

2.4. Implementation

The Arachne protocol has been implemented in C. Systems for
which C descriptions of (hardware and software) tasks exists can
be simulated and analysed (see the graphs in Section 3). A hard-
ware design of the central token manager is under way. For the
data and control communication existing wrappers are available
for several types of software and hardware [8] that can be used
with little or no modification. This means that a task written in
C that uses the Arachne protocol can be used in the same form for
specification, simulation, and embedded software implementation.
If a task is to be implemented as hardware it must be synthesised.

3. CASE STUDY: A SET-TOP BOX

Consider a system like a set-top box containing MPEG encoder(s)
and decoder(s), at least one CPU, IEEE1394 interconnect, and stor-
age devices such as RAM, hard disk, and digital tape recorder. All

enc

dec

hddPID filter

app

packer unpacker

decenc

1394 1394

..
..

Figure 3: Set-top Box Model

these functions have widely varying IO characteristics, and need to
communicate flexibly to offer the user functionality such as play,
replay, pause, fast-forward, live or automatically recorded televi-
sion programmes. Systems such as these can be simulated using
Arachne to verify their functionality, and to obtain timing and re-
source figures feedback like Figures 4 and 5 to dimension memo-
ries in an implementation.

The model of a simplified system is shown in Figure 3. The
dashed subsystems are active only part of the time. We see two
MPEG encoders that produce a variable-rate time-stamped partial
packetised transport stream (pTS+). The functionality of the packer
and unpacker is not relevant here. The programme identifier filter
demultiplexes the pTS+ stream in its constituent audio, video, and
teletext substreams. This can be done without copying the data;



also, only part of the data needs to be read to determine the output
stream. The hard disk is data-driven: it waits until at least 2Mb of
data are available on an input port and then uses it as quickly as
possible.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 2 4 6 8 10 12

td in use
tdl in use
td in use

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 2 4 6 8 10 12

pool (bits) 1 (pts tokens)
2 (pts tokens)

3 (10*pts tokens)

Figure 4: Resource Usage (Left), Free Space in Pools (Right)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

0 2 4 6 8 10 12

HDD queues (bits) 1 (all)
2 (video)

3 (txt)
4 (audio)

7 (decoder 1)
8 (decoder 2)

10 (1394)

Figure 5: Pending Data Queues
The encoders use tokens of 188+4 bytes (pTS packet with 4

bytes for the time-stamp). The IEEE1394 ports use packets ten
times larger. In the resource use graph (Figure 4) the highest line
indicates the number of tokens in the system; note that tokens are
added to the system while it is active. The lower of the two ag-
itated lines shows the number of tokens in use; the higher line
displays the number of tokens in all queues (with multicast, this
may be higher than the amount of tokens in use). The hard disk
has a very peaky IO; this can be observed in Figure 5 where the
queues of the full pTS+ stream, and the audio, video, and teletext
substreams are shown. The audio substream takes nearly 7 sec-
onds to fill 2Mb; this means that the life-time of a token produced
by the encoder varies from 0.5 to 7 seconds, depending on whether
it contains video or teletext. It also explains the marked (4Mb) in-
crease of free space in the token pool reserved for this subsystem
between 7 and 8 seconds; the token usage in the resource use graph
also decreases at that point. The queue of the decoder connected
to the packer (the highest graph in Figure 5) shows that substantial
buffering takes place (3Mb) before the decoder starts; thereafter
the variable bit rate is clearly visible. The amount of free space in
the token pool reserved for the encoder-packer-unpacker-decoder
chain shows the same curve, except for the increase around 3 sec-
onds due to the addition of extra tokens (Figure 4). The pending
data of the other decoder and the IEEE1394 port are hardly visible
in Figure 5 because they are closely coupled to their producers.

4. RELATED WORK

We envisage that many of the tasks that are traditionally performed
by a software operating system, such as inter-task communication,
memory management, and memory protection, will migrate to an
on-chip communication infrastructure because of the mixing of
hardware and software components on a single chip. Quality of
service is another aspect that must be supported by this infras-
tructure because it depends on the ability to observe, steer, and
trade-off resources like computation, buffer space, time (latency,
throughput). There is a plenitude of work published in this area.

There is a limited amount of work on memory management
in hardware. In [2] a memory manager for dynamic data struc-
tures is presented, but communication is ignored. This is only a
part of our work, see the scratch-pad example in Section 2.3. In
[11] hardware is generated from C to deal with distributed memo-
ries for dynamic data structures (again no communication). Every
data memory has its own allocator, and pointer disambiguation is
partially supported. [9] contains a software approach for buffer
sharing over channels. The elegant space-time memory of [10]
addresses many of the issues discussed here, but needs garbage
collection, which is expensive to implement.

5. CLOSING REMARKS

We have argued that modelling of systems built of dynamically
communicating components requires a concept of time (for adding
and removing channels and resources). Moreover, in a realisa-
tion resources are finite and must be managed (shared, distributed).
The Arachne protocol offers this in a smooth trajectory from speci-
fication (without time and resources) to implementation (with time
and resource constraints). Currently systems can be modelled and
simulated, and implementation of efficient dedicated hardware for
the token manager is in progress. The set-top box example shows
how Arachne is used to analyse dynamic systems and make im-
plementation decisions. It also shows that this is complex due to
time-dependent behaviour and resource sharing. We advocate the
decoupling of the steady-state processing (done by the protocol
infrastructure), resource and connection management (done by the
application task), and functional processing (done in the tasks) to
ease system design.

6. REFERENCES

[1] F. Arbab. Manifold version 2.0: Language reference manual.
Technical report, CWI, The Netherlands, June 1998.

[2] G. de Jong, et al. Background memory management for dy-
namic data structure intensive processing systems. In IC-
CAD, pp 515–520, 1995.

[3] E.A. de Kock, et al. YAPI: Application modeling for signal
processing systems. In DAC, 2000.

[4] G. Kahn. Information Processing, chapter The semantics of
a simple language for parallel processing. 1974.

[5] J. Kang, et al. Mapping array communication onto FIFO com-
munication – towards an implementation. In ISSS, pp 207–
213, 2000.

[6] H. Kung, et al. Credit-based flow control for ATM networks:
credit update protocol, adaptive credit allocation and statisti-
cal multiplexing. In Conf. on communications architectures,
protocols and applications, pp 101–114, 1994.

[7] J. Leijten. Real-time constrained reconfigurable communi-
cation between embedded processors. PhD thesis, Technical
University Eindhoven, 1998.

[8] A.K. Nieuwland and P.E.R. Lippens. A heterogeneous HW-
SW architecture for hand-held multi-media terminals. In
Workshop on signal processing systems, pp 113–122, 1998.

[9] H. Oh and S. Ha. Data memory minimization by sharing
large size buffers. In ASP-DAC, Tokyo, January 2000.

[10] U. Ramachandran, et al. Space-time memory: a parallel
programming abstraction for interactive multimedia applica-
tions. In Symposium on Principles and Practice of Parallel
Programming, May 1999.

[11] L. Séméria, et al. Resolution of dynamic memory allocation
and pointers for the behavioral synthesis from C. In DATE,
pp 312–319, 2000.


