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Abstract. We investigate the use of communication protocols and co-
ordination languages (henceforth interaction languages) for high-volume
consumer electronics products in the multimedia application domain. In-
teraction languages are used to reduce the cost of designing a product
by introducing structure and abstraction, by being application-domain
specific, and by enabling re-use. They can also reduce the manufactur-
ing cost which includes the cost of using the interaction language, the
implementation cost of the interaction language, and its running cost.
We classify services that can be offered by an interaction language and
their impact on the cost of designing. Choices that can be made in their
implementations are also categorised, and their impact on the manu-
facturing cost is shown. This is illustrated by three existing interaction
languages: c-heap, Arachne, and stm.
We conclude first that the type of services offered by an interaction lan-
guage must match the application domain. Furthermore, implementation
choices are constrained by the underlying system architecture as well as
the services to be offered. Finally, an interaction language with fewer
services minimises the manufacturing cost but increases the cost of de-
signing, and vice versa. The cost of designing and the manufacturing cost
both contribute to the cost of the final product, which is to be minimised.
These costs must be balanced when designing an interaction language.

1 Introduction

In this paper we consider the role of communication protocols and coordination
languages1 in high-volume consumer products in the multimedia application do-
main. There are two salient points. The multimedia application domain deals
with complex systems, which can be easier to design using appropriate inter-
action language [24]. Moreover, high-volume production of consumer products
requires a focus on system cost, which interaction languages can help to reduce.
We elaborate both in turn below.

First, the multimedia application domain has its own characteristics. Multi-
media processing entails huge amounts of computation and communication due
1 To avoid repetition of the long phrase “communication protocol and coordination

language” we write interaction language. We leave open whether the communication
protocol and the coordination language are strictly separated or not [3].



to the high data rates (throughput) of digital video, and the large number of
operations per video sample. Furthermore, the processing must obey real-time
constraints because data rates are externally imposed. Applications are increas-
ingly complex and dynamic in their behaviour, and the design and implementa-
tion of multimedia systems is therefore challenging [28]. The use of interaction
languages structures the design process (how do we come to a design) and the
design itself (the software and hardware components and their interaction).

Second, our applications are implemented as embedded systems (or devices)
for the high-volume consumer electronics market. This means that the cost of
the device is very important. The cost of a consumer device can be split into
two parts: the cost of an individual device (the manufacturing cost, including
material costs and manufacturing tests), and the so-called non-recurring engi-
neering costs (the cost of designing the system). Table 1 shows these costs and
their subdivisions, which we explain below.

cost of with contributions from amortised over

abstraction, structuring, decomposition design method
designing tailoring to application domain application domain

product families &
re-use

design method

cost of use of interaction language design
manufacturing interaction language implementation cost design

running cost design

Table 1. Factors contributing to the device cost.

To reduce the cost of designing, the design process must be better struc-
tured [13], using abstraction and compositionality. The design of individual prod-
ucts can be eased through the use of interaction languages appropriate to that
application domain [24]. At a higher level, product families (multiple products
with common features) can benefit from re-use of existing systems to create
derivatives, and standardisation of the design process, through promotion of
platforms, through the use of interaction languages, and so on. It may be ar-
gued that in high-volume product runs non-recurring engineering costs are not
important because they are amortised over many devices. However, improving
the design process reduces the so-called time to market, which can have a large
impact on the number of products sold. The amortisation column of Table 1
indicates the largest scope in which the contributions mentioned in the second
column are effective. For example, the use of abstraction, structuring, and de-
composition in a design method benefits all designs made with that method.
Hence the cost of developing an abstract, structured, compositional interaction
language is amortised over all these designs.

We relate the cost of a single device to the manufacturing cost, which is to be
minimised by using an appropriate interaction language. This cost is composed
of the cost of the implementation using the interaction language (the cost of



use of interaction language), the cost of the implementation of the interaction
language itself (the interaction language implementation cost), and the cost of
using the interaction language in an implementation (the running cost). All these
costs are paid per design.2

In the remainder of this paper we use the terminology of the iso osi refer-
ence model [8], where an interaction language offers services to its users, imple-
mented by a peer-to-peer protocol that uses the services of lower layers. Further
terminology: designing (or: to design) leads to a single implementation or design
that when manufactured leads to a device or product. A design is therefore the
blueprint for the tangible device. A product family contains designs that have
common characteristics, and are perhaps derived from each other, through a
re-use strategy or otherwise [29].

In Section 2 we classify the services provided by interaction languages and
how these affect the cost of designing.

In Section 3 we observe that the same service can be implemented in different
ways and we classify implementation choices and their impact on manufacturing
costs.

We show how different interaction language choices, in terms of services and
implementations, lead to different costs by means of three running examples.
All three interaction languages address the limited amount of memory that
is available to applications in (embedded) systems in the multimedia domain.
Still their solutions, i.e. services and costs, are different: c-heap [15] imple-
ments local memory management at a low implementation cost using an explicit
claim/release mechanism, Arachne [16] implements global memory management
across communication channels at a higher implementation cost using an explicit
claim/release mechanism, and space-time memory (stm) [25] implements global
memory management with a shared data space and garbage collection.

In Section 4 we conclude that varying the balance between the cost of design-
ing and the manufacturing cost results in different ways of designing, different
interaction languages, and different designs. They can be judged only by the cost
of the final products.

2 Services Offered by Interaction Languages

In this section we look at the influence of the application domain on the services
that an interaction language must offer. In Section 2.1, these services are divided
in coordination or configuration services, communication services, and inspection
services. Some general properties of services are then defined and demonstrated
in the running examples in Section 2.2 and 2.3 respectively. Finally, in Section 2.4
we examine the cost (or better: advantage) of using interaction languages in the
design of embedded systems.

2 The cost of getting to an implementation of the interaction language is amortised
over the design method, which is included in the re-use part of the cost of designing.



2.1 Classification of services

The services that an interaction language offers must match the applications
for which it is used. For example, automotive applications are control domi-
nated and must be robust (cannot lose events). In video surveillance applica-
tions data collection and compression may be very lossy and computation and
storage must be minimised, whereas in medical applications data integrity is
essential and computation and storage costs are subservient. As stated in the
introduction, we focus on multimedia applications that typically deal with high
data rates (e.g. high-resolution digital video) and many computations per da-
tum. The massive number of operations that must be performed per second can
only be performed in parallel. Instruction-level parallelism (e.g. by using vliw

architectures), single-instruction multiple-data (simd), and task-level parallelism
(tlp) can be used to obtain the desired performance. Multimedia applications
often consist in streams of data processed by filters (scaling, decoding, encoding,
transcoding, mixing, interleaving, etc.) that are composed according to the cur-
rently required functionality. This fits the tlp programming model of a number
of concurrent tasks flexibly composed by an application manager depending on
the user requirements [5]. Now, the resources that are available in the system
are limited because we deal with embedded systems. The quality of service de-
livered to the user should be optimal using these limited resources. Tasks must
be coordinated and parameterised dynamically because data rates vary in the
system (e.g. variable bit rate mpeg), and also to obey the fickle user.

To address these different aspects we distinguish three kind of services. The
composition and interaction of tasks is regulated by an application manager,
which uses configuration or coordination services. The tasks operating on data
use communication services to obtain access to input data and pass results to
other tasks. Both tasks and the application manager can use inspection services
to interrogate their environment, for example to check for the availability of data
or the absence of deadlock in a task graph.

Configuration or coordination services

During execution, a system traverses a series of configurations (or steady states).
A configuration is composed of different entities, such as tasks or components,
channels or connections, ports, and tokens. Tokens are memory regions used for
data storage and/or communication. Tokens are gathered in collections such as
channels or pools. Components and channels can be connected in a topology
using ports, and tokens are associated to channels or perhaps more generally
to token pools. Systems can be generically described in many ways; we do not
intend to do so here, but refer to e.g. [3, 2, 29, 27].

Configuration services enable the construction and modification of a con-
figuration of the system. Entities must be created, destroyed, or modified (e.g.
started, suspended, stopped, moved, flushed), and their interaction specified or
modified (e.g. event triggers, changing the task graph). The computation and



communication entities must be distributed over the limited resources of an em-
bedded system. Entities are bound to (associated with) resources identified by
their type, location, or name. For example, tasks are bound to processors, and
tokens to memory regions. Similarly, mobile agents are bound more elaborately
by a security profile that includes credits for computation and communication,
an area to roam (lan, wan, virtual private network, anywhere) [6], and so on.
The coordination of entities and resources, usually by an application manager,
is essential for embedded systems that usually have hard real-time constraints,
and always have limited resources.

Reconfiguration is the transition between two configurations. Defining the
transition behaviour of entities is not easy [17]. We must define when, with
whom, and how a reconfiguration takes place and what its effects on entities
and their state are. When relates to time or location in the control or data flow;
whom can vary from a single entity (local, autonomous reconfiguration) to every-
one (global reconfiguration); how can mean a master-slave relationship between
entities (e.g. a single quality-of-service manager plus rest of system) or coopera-
tive via negotiation. The effect of reconfiguration can be visible (a disconnected
or dangling channel) or not (suspended without warning or consent).

The difference between configuration and reconfiguration is not always sharply
defined. For example, task scheduling on a programmable processor is seen as
reconfiguration if it needs to be explicitly requested, otherwise it is part of the
steady state. Pre-emptive scheduling of tasks is a service that is implicit, whereas
explicit user-initiated suspension or thread switching could be classified as a
reconfiguration service or a steady-state (communication) service. Another ex-
ample is memory management. It can be implemented pervasively (like garbage
collection in stm or Linda [22]), offered at the coordination level (global memory
management in Arachne, local memory management in c-heap), or as explicitly
managed shared memory [20] using communication services.

Steady-state or communication services

Interaction languages exist to allow entities to exchange data and synchronise
in a given configuration. Data transfer services vary in the way data is ac-
cessed (message passing, shared data) and the structure of the transmission
medium (does it lose or duplicate data, how is data identified and addressed,
is there an underlying structuring of the data). Examples are shared memory
with a load/store interface, Bonita [26] with values in a shared data space, Java-
Spaces [14] with objects and associated methods or triggers in shared medium,
point-to-point fifo message-passing [19], broadcast events, and so forth.

As soon as multiple entities execute autonomously, their synchronisation
becomes germane. Communication primitives often combine data transfer and
synchronisation [10]. Their separation, however, allows the granularity of data
communication (perhaps imposed by the communication medium) to be dif-
ferent from the granularity of synchronisation (which is natural to the com-
ponent) [15, 16]. Synchronisation can be synchronous (performed at the same
instant, synchronous hand-over, rendez-vous, two threads of control coincide) or



asynchronous (at different points in time) [2, 11]. Asynchronous communication
decouples the operation of components, and therefore requires storage of values
or objects. The structure of the communication medium then becomes impor-
tant. A component can fully commit to a synchronisation (blocking, i.e. for all
time under all conditions) or commit conditionally. Conditions can include a
deadline before which the synchronisation must take place, the amount or type
of data that the other party must produce or consume [14], and so on. Multiple
concurrent or dependent synchronisations can be useful, such as the two forks
a hungry philosopher claims simultaneously (cf. the dependent transactions of
[21]).

There may be a single coordinating task not computing on data (a boot task
or quality-of-service manager) or there may be many tasks doing both (e.g. a
collaborative agent-based interaction). However, the coordination and commu-
nication services are probably best separated so that a task can be designated
either as a data-processing or coordinating task. Multiple coordinating tasks are
best avoided as unforeseen or unwanted interactions easily arise.

Inspection services

In a given configuration a component may want to observe and analyse the state
or performance of the system. This information can be used to manage resources
and to regulate the quality of the service, by reconfiguring the system if needed.
The inspection services must match the reconfiguration services; it is probably
not useful to observe that which cannot be steered.

At the coordinating level, activity of components could be used to detect
starvation, deadlock, etc. At the component level tasks may wish to observe
the state of other components before they want to engage in communication
or synchronisation, or the state of the communication medium to ensure the
presence of sufficient data to commence processing.

2.2 General Properties

Interaction languages and coordination languages have some general properties
that we mention briefly.

Global versus local

A global service, such as memory management or scheduling, takes into account
all relevant information in the system. Globality is usually used to obtain optimal
resource usage system wide. Global services are cost effective only when the use
of resources varies over different parts of the system. A global software approach
for buffer sharing over channels is presented in the context of embedded systems
in [23].



Static versus dynamic

Decisions can be taken for the life time of the system (static), for the duration of
a configuration (dynamic), or be continually under review (more dynamic). Ex-
amples of decisions are binding of memory to channels, and binding of processes
to processors. Lowering the frequency of decision-taking will usually result in
less overhead. Dynamic decision-taking is worthwhile for designs where the av-
erage and worst-case resource use differ much. An example of a memory manager
for dynamic data structures (but not communication) for embedded systems is
presented in [9].

Global dynamic services can move resources to parts of the system where they
are needed most, which can result in optimal resource throughout all configu-
rations (Table 2). On the other hand, local static services may not be optimal,
but are simplest to implement. We return to their relative merits in Figure 2(C)
of Section 3.4.

combination of service choices consequences

global & dynamic optimal throughout all configurations
global & static optimal at start of each configuration
local & dynamic not useful
local & static not optimal, simple & fast

Table 2. Some examples of interactions of service choices.

2.3 Three Running Examples

We consider three interaction languages in the application domain of signal-
processing. stm [25] is for use in the so-called Smart Kiosk, produced in low
volumes with limited cost restriction, whereas Arachne [16], and c-heap [15]
are meant for embedded systems in the high-volume consumer market with a
cost focus. Although their basic services are more or less equal, they optimise
different properties: the structure of the communication medium and the scope
of the memory management.

stm allows reconfiguration of tasks and channels at any point by any task
(creation and destruction, as well as changes in topology). The communication
medium is based on message passing (synchronisation and data transfer are
combined) to random-access channels. Specifying a channel at a virtual-time,
data can be written only once, but read several times. Reading and writing take
place at any time in a time window to enable pervasive memory management
by garbage collection. There are no inspection services.

Arachne supports autonomous reconfiguration by any of its components at
any time. Tasks are static, but channels can be created or emptied at any time by
any task. Empty tokens can be added or removed from the system at any time.
The communication medium is a shared memory organised in fifo multicast,
narrowcast, and merged channels for full tokens, and pools (sets) for empty
tokens. Synchronisation for empty and full tokens is independent of data transfer
to and from these tokens. Synchronous token hand-over is also supported. Token



management is global. Inspection services include checking the amount of data
(space) in a channel (pool), the activity on communication ports, and examining
the interconnection of tasks.

c-heap supports reconfiguration initiated by a single master (the application
manager) reacted to by multiple slaves (the tasks) at predetermined points in
their control flows. Tasks and channels can be created, destroyed, (re)started,
suspended, resumed, and stopped. The communication medium is a shared mem-
ory organised in fifo channels for full and empty tokens. Synchronisation for
empty and full tokens is independent of data transfer to and from these tokens.
Token management is per channel, i.e. local. Inspection services are limited to
the checking of the amount of full or empty tokens in a channel.

For more or less the same application domain, stm offers the highest level
of services, in terms of reconfiguration and abstraction of data communication,
followed by Arachne, and then c-heap.

2.4 Services and the Cost of Designing

Using appropriate interaction languages the cost of designing embedded systems
can be lowered in three ways (recall Table 1).

First, large or complex systems like today’s multimedia products benefit from
a structured and compositional design method. Interaction languages can help
by separating component design from communication design (computation ver-
sus communication and coordination [3]). This separation of concerns enables
hierarchical and divide-and-conquer design methods. In general, more abstract
interaction languages relieve designers of detailed working out of an implemen-
tation (e.g. a message-passing instead of shared-memory architecture), leading
to a reduction of the design time (but perhaps at higher implementation costs,
as we shall see later). Shortening the design time is an essential prerequisite for
reducing the time to market.

Second, an interaction language tuned to an application domain enables a
natural, and hence efficient, description of the design at hand. For example, it
depends on the application domain whether sampling of incoming data may be
lossy (the data rate is higher than the sampling rate, e.g. Splice [4]) or duplicative
(the sampling rate is higher than the data rate), or a combination of both. Thus
we see that c-heap and Arachne support only lossless fifo channels, whereas
stm offers random-access data channels for more sophisticated subsampling.

Third, interaction languages and (especially) coordination languages can fa-
cilitate re-use of (parts of) designs in different products [1, 29]. Design for re-use
may lead to a higher design cost for lead products, but derivative products should
be cheaper to design [13].

In Figure 1 we show a possible trade-off of the level of abstraction or services
of an interaction language against the cost of designing a system using that
interaction language. The conclusion that an interaction language lowers the
cost of system design by being sufficiently abstract, by offering the appropriate
services for the application domain, and enabling re-use is trite by itself, but
must be balanced by the manufacturing costs of the design resulting from the use
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Fig. 1. Services versus cost of designing.

of the interaction language. Care must be taken that the interaction language
offering perfect services is not too expensive for its intended use (also argued
in [12]). We return to this trade off in Section 3.4.

3 Implementation of Interaction Language Services

The design of high-volume consumer products is driven by cost in two ways.
The first, as we saw in Section 2, is the cost of designing a system (with as
major component the time to market). In this section we focus on the second,
the cost of a single device. We commence by classifying the ways in which an
interaction language can be implemented, in Section 3.1. Naturally, the services
that an interaction language offers influence the implementation choices, as will
constraints on the implementation architectures (such as re-use of existing hard-
ware and software components, platforms, etc.). These ideas are described in
Section 3.2 and illustrated using the running examples in Section 3.3. In Sec-
tion 3.4 the manufacturing cost is then broken down and examined in detail.
The next section (Section 4) then combines services and the cost of designing of
Section 2, and implementations and the manufacturing cost of this section.

3.1 A Classification of Interaction Language Implementations

Implementations of an interaction language can be classified at a high level along
a number of axes. An implementation has varying cost depending on the choices
taken but the cost is also related to the match with the services that are to be
offered by the interaction language.

Centralised versus distributed

A centralised implementation of an interaction language concentrates all func-
tionality in one place. It may therefore be easier to make than a distributed im-
plementation because all coordination, communication, and inspection services



converge on a single server. A single server avoids interference, synchronisation
and consistency problems for shared data and control, and for services such as
reconfiguration. The main disadvantage is its fundamentally non-scalable nature,
resulting in lower reconfiguration, data, and synchronisation rates.

Hardware versus software

Multimedia systems require both efficiency and flexibility. Embedded systems
therefore contain heterogeneous components of varying flexibility and perfor-
mance (cpus, vliws, application-specific instruction-set processors (asip), ded-
icated and programmable hardware blocks, etc.). Interaction languages must be
implemented efficiently on all these components (i.e. in hardware and in software)
to provide transparent communication. c-heap, one of our running examples,
has been implemented in software on programmable components such as mips,
arm, and asip, and in a dedicated hardware block [24].

Emulated versus native

An interaction language can provide all its services as an integral part of the lan-
guage. Usually such native implementations of the services are efficient because
optimisations across services are possible. Alternatively, a basic set of services
can be implemented natively, while the remainder is emulated, i.e. provided as
a library or a layered protocol [12]. An example is the coherent shared-memory
service [7], which can be implemented natively (in hardware) or emulated (in
software on a non-coherent shared-memory service). Naturally, emulated ser-
vices tend to be implemented in software, and native services in hardware or
software, depending on the component they are used by (Table 3).

combination of
implementation choices consequences

emulated & software flexible, slower
emulated & hardware difficult to achieve
native & software rigid, but upgradable, slower
native & hardware rigid, faster

Table 3. Some examples of interactions of implementation choices.

3.2 Interaction Language Implementations: A Compromise of
Services and Architecture

An interaction language implementation must obviously match the services that
are supported. Table 4 shows some combinations of services and implementa-
tions. Some choices reinforce each other, while others cannot be usefully com-
bined. Global services tend to have a centralised implementation; they are harder



combination of
service and implementation choices consequences

global & centralised not scalable, slower & optimal (possibly)
global & distributed not scalable, fast & optimal
local & centralised not useful
local & distributed scalable & fast, but not optimal
dynamic & software best resource utilisation, but slow
dynamic & hardware same, but hard to achieve
static & software less useful
static & hardware fastest, but worst resource utilisation

Table 4. Some examples of interactions of service and implementation choices.

to implement when information is distributed in the system. Local services can
be distributed more easily, and can result in scalable implementations. Global
services that have a distributed implementation are possible (e.g. global synchro-
nisation using a token ring) but still lack scalability. Services are often more easily
implemented in software, but at a lower performance than hardware. Moreover,
the more dynamic a service, the higher the rate at which decisions are taken.
The ideal situation consists in a dynamic hardware implementation. This is of-
ten hard to achieve, and dynamic software and static hardware are compromises
(the requirements of the service are opposed by the implementation).

The architecture of the system is also important in the implementation of the
services. For example, if the underlying architecture is based on message passing
then a shared-memory service is expensive to implement. The reverse may be
easier, but is still not necessarily very efficient.

An interaction language must balance services offered, to suit an application,
and the implementation cost of those services, to fit an underlying architecture.
Rightly or wrongly, in embedded systems the latter often is given more consid-
eration. This may lead to a lower manufacturing cost, but almost certainly to a
higher cost of designing.

3.3 Examples Continued

As shown in Section 3.1, different implementations of the same service are pos-
sible. Using the examples of Section 2.3, we show that implementations and
services of interaction language are related, and lead to different costs. We now
describe why stm, c-heap, and Arachne are implemented in the way they are,
and the consequences regarding the manufacturing cost.

stm is implemented in software to support distributed garbage collection. It
is based on a multiple-address-space distributed message-passing architecture to
support clusters of symmetric multiprocessors. It assumes the provision of atomic
operations (e.g. read-modify-write) by the underlying architecture. Latency to
services is higher (approximately 20000 cycles). Data is often copied in message-
passing architectures; this can be avoided using shared memory, like in c-heap.

c-heap uses a distributed implementation to provide local memory manage-
ment services. Services are fairly static: reallocation of memory, for example,



is possible only by reconfiguring explicitly. A single-address-space (distributed)
shared-memory architecture reduces data copying to minimise resources (buffer
sizes and bus load). No atomic operations (such as read-modify-write) are re-
quired, to ease implementation. All the services offered by the interaction lan-
guage are native, and are transparent across hardware and software. The com-
bined result of these choices is that the latency to execute services is low (approx-
imately 30-100 cycles). There are several software and hardware implementations
of the interaction language. Local memory management may be pessimistic when
buffers are needed for different channels at different times. Global memory man-
agement, like that performed in Arachne, aims to address this.

Arachne uses a centralised implementation to facilitate global memory man-
agement. It uses single-address-space (distributed) shared-memory architecture
for the reasons mentioned before. All the services are native, and are transparent
across hardware and software. Services are executed with medium latency (ap-
proximately 100-3000 cycles). There are hardware and software implementations
of the interaction language.

We see that the implementation of each interaction language matches the
type of services: c-heap’s local static services & distributed implementation,
Arachne’s global dynamic services & centralised implementation. stm’s global
services are offered on a symmetric multiprocessor platform and are therefore
emulated in software. The implementation choices of each interaction language
are reflected in its manufacturing cost. For example, the manufacturing cost is
affected by the latency to access services: higher latency means that data and
command buffers must be larger to avoid stalling tasks. Reducing the latency
reduces buffer sizes, which translates to a smaller chip area, and hence lower
cost. The next section further elaborates these cost aspects.

3.4 Implementations and the Manufacturing Cost

A design (the blueprint) is manufactured to a device. The manufacturing costs
include the bill of materials (e.g. related to the silicon area), cost of testing, and
so on. To avoid the explicit distinction between the cost of the device and the
cost of the design that led to it, we define the term manufacturing cost. The
resources a design uses are reflected directly in the cost of the device. Examples
are the code size of a program (resulting in embedded or external memory), and
memory management (leading to more or less memory). Other examples are
power-efficient computation and communication, electromagnetic interference,
and number of io pins of a device. All affect the price of the chip package, and
must be taken into account during the design process.

Recall from Table 1 that the manufacturing cost is composed of the cost
of the implementation while using the interaction language (the cost of use of
interaction language), the cost of the implementation of the interaction language
itself (the interaction language implementation cost), and the cost of using the
interaction language in an implementation (the running cost).

The cost of use of interaction language is basically the cost of the implemen-
tation of the required application using the given interaction language. Whereas



the the cost of designing measures the effort spent in getting to the design, the
cost of use of the interaction language quantifies the end result, ignoring the
cost of implementing the interaction language itself. Usually, for an interaction
language at a high level of abstraction both the cost of designing (Figure 1) and
the cost of the use of the interaction language are low (Figure 2(A)) because, to
some extent, the interaction language absorbs application functionality.

The interaction language implementation cost depends on the abstraction
level of the services it has to offer as well as on the architecture on which it has
to be implemented. Implementing an interaction language with few services is
always cheaper than implementing an interaction language offering more. How-
ever, Figure 1 shows that offering few services raises the cost of designing (i.e.
getting to a design takes longer). Offering too many services, and thus raising
the interaction language implementation cost, is also to be avoided. An option
only open to emulated services is that services that are not used in a design can
be omitted from the implementation of the interaction language. The services
are tailored to the design, as it were. Examples are Horus [30], x-kernel [18],
and Koala [29]. It will not escape attention that offering the service of proto-
col stripping will not be free. See Figure 2(B) for some possible relationships
between the services and their cost of implementation. An emulated implemen-
tation (curve 2(B)i-2(B)iii) may be cheaper than a native implementation for
few services (curve 2(B)ii-2(B)iv) but lose when cross-service optimisations kick
in (2(B)v).
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Fig. 2. Services, implementations, and costs.

Another influence on the manufacturing cost is the running cost of a inter-
action language. A first example is memory management. When the average-
case and worst-case memory requirements vary in time and throughout the sys-
tem, global dynamic memory management will use fewer resources than local
static memory management. Arachne and stm fall in the first category. c-heap,
with its local static memory management, has pessimistically sized buffers. In



the end, however, its buffer sizes may be comparable to those of Arachne and
stm (2(C)ii) because its efficient distributed implementation offers services with
lower latency [15] (2(C)i), reducing the sizes of its buffers.

A second example is scheduling. Dynamic global (multi-processor) pre-emptive
task scheduling may have minimal running costs (2(C)ii) but expensive to achieve
(2(B)iv). Dynamic local (per-processor) task scheduling can be pre-emptive,
or by explicit hand-over (using synchronisation primitives like setjmp/longjmp,
coroutines [19], etc.) at medium implementation cost (2(B)v). Static local task
scheduling avoids run-time scheduling altogether and is cheap to implement (2(B)ii).
It will perform badly when processor loads vary much over time and place (2(C)iv),
when dynamic global task scheduling will excel (2(C)iii).

A third example is the coherent shared-memory service [7]. A native hard-
ware implementation perhaps costs more than an emulated software implemen-
tation (2(B)iv versus 2(B)iii) but is more efficient at run-time (2(C)v ver-
sus 2(C)vi).

We conclude that for identical services different implementation choices result
in different manufacturing costs (i.e. cost of use of interaction language, cost of
interaction language implementation, and running cost).

4 Closing Remarks

In this paper we focus on high-volume consumer products for multimedia ap-
plications. Multimedia applications are increasingly dynamic and complex. In-
teraction languages help to contain this complexity by structuring the design
process. This includes separating communication and coordination from compu-
tation. Furthermore abstraction, composition, and application-specific services
(e.g. fifo-based streaming) are offered.

High-volume consumer products are implemented as embedded systems that
are cost driven. Interaction languages impact the cost in two ways: the cost of
designing and the manufacturing cost (Table 1). We classify services that an
interaction language can offer in coordination services, communication services,
and inspection services. The ensemble of services must match the application
domain of the interaction language. Offering more services will reduce the cost
of designing an embedded system (see Figure 1). Services to enhance re-usability
of (parts of) systems may lead to a higher design cost for lead products, but
derivative products should be cheaper to design.

Next, we categorise the ways in which services can be implemented. Examples
are distributed versus centralised, and native versus embedded implementations.
The implementation choices must match the services:- a global service is better
implemented centrally than in distributed fashion, for example.

We divide the manufacturing cost into the cost of using the interaction lan-
guage, the implementation cost of interaction language, and its running cost. An
interaction language with more services reduces the cost of use (Figure 2(A)),
may reduce the running costs (Figure 2(C)), but is more expensive to implement
(Figure 2(B)).



The final cost of a product is made up of a combination of the cost of de-
signing (especially influenced by the time to market) and the manufacturing
cost. Defining and using the right interaction language for the application do-
main amounts to finding the right trade-off between the various costs. These
trade-offs can be judged only by the cost of the final products.
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