# Networks on Silicon: Combining Best-Effort and Guaranteed Services

K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage

**Philips Research Laboratories** 



# system design problems

- technological problems
  - global clock
  - global timing closure
  - IP partitioning based on floor plan
  - multiple busses & bridges
  - wire congestion
- increasing complexity
  - more dynamic applications
  - number of IP increases
  - diverse communication patterns
- design style problems
  - tightly-coupled components
    - clock, shared (external) memory
  - non-scalable



## overview

- the essence of a network on silicon
  - decouple computation and communication
  - routers are a hardware solution
  - protocol stack is a software solution
  - both solutions centre on services
- guaranteed services are essential
- the Æthereal network on silicon



## 1. network on silicon

#### decouple computation & communication

- separate intra-IP & inter-IP communication
- inter-IP communication
  - is explicit by using services
  - no longer free & instantaneous
- no global time
  - GALS clocking strategy
- ⇒ composable (plug & play)
  - synthesis, lay-out
  - local timing closure



## 2. router-based hardware solution

- communication hardware is now re-usable IP
- offer different kinds of communication services
- share wires
  - less wire congestion
  - dimension for average, not worst traffic
- scalable (no central resources)
- composable
- high bandwidth

router-based network offers services



# 3. protocol stack software solution

- application
- presentation
- session
- transport
- network
- link
- physical

- application diversity
- network independent
- peer to peer
- network on silicon
- network dependent

protocol stack is based on services



## 4. communication services

- uncorrupted data transmission
- loss-less transmission, duplication
  - percentage, per transaction type, ...
- data arrival order
  - per connection or transaction type, global, ...
- throughput guarantee
- latency bounds
- jitter bounds
- traffic classes/priorities
- etc.



## classes of services

- guaranteed
  - 1. predictable, dependable performance V
  - 2. shared resources must be managed x
  - 3. services must be requested (negotiation), and are either granted or rejected
- best effort
  - no resource management / QoS
    - may lead to higher performance
  - unpredictable performance x
    - if you know nothing of network or else IP are network dependent

# guaranteed services are good

#### 1. good design practice

- services make assumptions on partners explicit
- service contract limits possible interactions

#### 2. composable method

- services & design of different IP are independent
- no interference (cf. caches)

#### 3. robustness

- communication failure of IP limited to negotiation
- no overload of communication resources
  - local IP failure, not global system failure

#### 4. resource management

- QoS requires observation & predictable steering of communication resources
- independent of network architecture

## services and their costs

- guaranteed services
  - more (static) information allows firmer guarantees
- best-effort services
  - shift responsibility of predictability to upper levels
  - not always possible to recover predictability
- more services means harder to offer but easier to use
  - complexity can only be shifted, never removed

complexity & cost of using services

finding this balance





## the Æthereal network on silicon

- combination of guaranteed and best-effort services
- guaranteed throughput & latency
  - circuit switching (time division multiplexed)
  - ATM-like connection set up
- best-effort for efficiency
  - virtual output queuing
  - worm-hole routing
- inherently loss-less and ordered transport
- no global signals



## conclusions

- 1. decouple computation & communication
- 2. networks on silicon
  - routers are good hardware architecture
    - structure the wiring & clocking problem
    - enable local timing closure (composable)
    - are re-usable communication IP
  - provide basis for software architecture
    - protocol stack
    - diverse applications on single architecture
  - centred around notion of services
- offering guaranteed services
  - complicates hardware architecture
  - eases system design and programming