
Networks on Silicon: Combining Best-Effort and Guaranteed Services
K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage
Philips Research Laboratories, Eindhoven, The Netherlands

fkees.goossens,jef.van.meerbergen,ad.peeters,paul.wielageg@philips.com

Abstract
We advocate a network on silicon (NOS) as a hardware ar-
chitecture to implement communication between IP cores in
future technologies, and as a software model in the form of
a protocol stack to structure the programming of NOSs. We
claim guaranteed services are essential. In the ÆTHEREAL

NOS they pervade the NOS as a requirement for hardware de-
sign, and as foundation for software programming.

1. Introduction
It will soon be possible to manufacture systems on silicon
(SOSs) containing 10M gates and megabytes of embedded
software. The complexity of these systems will be over-
whelming, and two fundamental questions arise. First, from
a hardware view point, how can theseSOSs be designed?
What are the required hardware architecture concepts? Sec-
ond, from a software (application) perspective, how can the
SOShardware be programmed? What software concepts are
needed? Our tenet is that only a consistent approach to both
questions will enable us to harness the opportunities offered
by semiconductor technology.

We believe in the intellectual-property block (IP) re-use
model. This means that aSOScontains hundreds ofIPs that
are bought or premade. Assuming their correctness, their
communication is then the problem. We propose anetwork
on silicon (NOS) to implement the communication between
theseIPs. A NOS is a hardware architecture together with a
programming model.

Guaranteed services are the focus of this paper: they serve
as the basis for the programming model, and as a require-
ment for theNOS hardware architecture. Aprotocol stack
is a layered approach to offering different services to differ-
ent clients, based on a common network. It structures com-
munication complexity from the physical implementation up
to the application in a number of layers. TheOSI reference
model [4], used in this paper, comprises seven layers. In Sec-
tion 2 we motivate why a packet-switched router network is
a suitable hardware architecture, using the lower three layers
as a backdrop. The top four layers are independent of the
hardware architecture and are discussed in Section 3. In that
context we show why guaranteed services offer many advan-
tages overbest-effort services when programmingSOSs.

2. Packet-switched Router Networks
In this section we consider how aSOScontaining hundreds of
IPs can be designed, especially regarding layout and timing

closure. Consider that the communication patterns of theIPs
are dynamic at two levels. First, multiple configurations ex-
ist, each corresponding to a required user functionality. Sec-
ond, communication data rates are variable within a configu-
ration (e.g. variable-bit-rateMPEG streams). Structuring the
wires used for communication betweenIPs is the main prob-
lem. If dedicated point-to-point wires are used,IPs are con-
nected to all possible communication partners. This leads to
many global wires, with three problems. First, they must be
dimensioned for worst-case conditions in terms of a) electri-
cal parameters such as cross talk and wire spacing, and b)
volume of traffic. Second, it causes wire congestion around
eachIP. Thin closely-spaced high-power wires solve conges-
tion, but this conflicts with the requirements for global wires,
which are fat and widely spaced. Third, layout and timing de-
pendencies between allIPs make timing closure global, mak-
ing it non-scalable. Worse, it is layout specific: it cannot be
re-used over design iterations or different designs [2].

A router network based on packet switching helps on these
accounts. Fundamentally, wires are shared, or made pro-
grammable, by introducing switches (routers). This is pos-
sible because dedicated wires are normally underutilised (as
little as 10% [3]). The first benefit is that there are fewer
programmable wires, which reduces wire congestion around
IP blocks. Second, traffic of multipleIPs is combined over a
single wire, which can be dimensioned for the average traffic
over all blocks using that wire instead of worst-case traffic per
IP. Third, inter-IP wires are now structured: either they are
short to get on the network, or they are router to router. The
network topology and router layout can both be fixed (e.g.
a torus and mesh [3] or a fat tree and Maltese cross [5]), or
only the network topology. This allows dedicated optimisa-
tions that are re-usable overSOSs. Finally, and most impor-
tantly, decoupling of computation (IPs) and communication
(NOS) enables compositional layout and timing closure.IPs
communicate only using the network so that their layout and
timing closure are independent of otherIPs.

Programmable wires also have drawbacks. First, different
IPs will contend for the use of a wire, requiring arbitration
or scheduling. The properties of a router network depend
much on the kind of scheduling it uses. A schedule can be
fixed for a configuration (static) or dynamic (within a con-
figuration). Static scheduling must be worst case, while dy-
namic scheduling leads to dimensioning for average traffic
volume. Scheduling can also be independent for each router



(local) or consider all routers (global). Global scheduling
can avoidcontention (several packets want to use the same
resource at the same time) andcongestion (packets waiting
for a resource) but is not scalable. Global scheduling is usu-
ally static (circuit switching) and local scheduling dynamic
(packet switching). Performance guarantees (i.e. absolute
certainty instead of probabilistic behaviour) are more eas-
ily given for global static scheduling than for local dynamic
scheduling. The way packets are buffered and scheduled in
routers, and the effects on performance guarantees has been
the subject of intense research. Fundamentally, sharing and
guarantees are conflicting, and efficiently combining guaran-
teed traffic with best-effort traffic is hard [7].

Second, programmable wires may be slower than using
dedicatedIP-to-IP wires, which may contain some buffers. In
a NOS a packet must traverse a number of routers. When
scheduling statically, a packet need not incur more than a
pipeline delay per hop. But for dynamic scheduling the
header of each packet must be inspected before it can be sent
to the appropriate output port. Contention and congestion
may further delay a packet. Finally, a packet header uses
some of the communication bandwidth.

Although aNOS based on packet-switching has its costs
(packetisation, routers, buffering, harder to give guarantees)
it is essential for anIP re-use strategy because it enables com-
positional and scalable integration of theIPs. Moreover, a
NOSinfrastructure (such as routers and protocol stack) can be
re-used and its design cost amortised over multiple designs.

The issues raised in this section can be mapped to theOSI

protocol stack [4]. Below we discuss the three lower layers
that are specific to the hardware architecture of the network.

The physical layer defines how a single bit is sent over
a physical medium (such as a wire, bus, optical link, radio
waves). For aNOS it deals with signal voltages and slopes,
wire sizing, etc. of inter-router wires. The preceding discus-
sions motivate why a router-basedNOS eases the implemen-
tation of the physical on-chip wires.

The data-link layer ensures reliable (lossless, fault-free)
communication over a single data link. It considers cross-
talk and fault-tolerance (both transient soft errors and hard
errors). For shared and especially broad-cast media (such as
busses), the medium access sublayer deals with contention
for the link. Examples are bus arbitration, and router-to-
router flow control.

Thenetwork layer has two main functions for a given net-
work. First, delivering packets, more specifically, routing,
congestion control, and scheduling over multiple links. Sec-
ond, network management, including accounting, monitor-
ing, management or steering, and internetworking.

3. Guaranteed Services are essential

In this section we discuss the remainder of theOSI protocol
stack, and then show why the services offered by this stack

must be predictable.
In a re-use modelIPs that are bought or re-used cannot be

adapted to eachSOS they are used in. They will interact in
many different ways (event-driven, data streaming, message
passing, shared memory, etc.) [8]. Thus the interconnecting
network has to be flexible, in terms of the services that it
offers. This is the task of the top fourOSI layers. They are
independent of the network hardware architecture,end to end
(the network is transparent), andpeer to peer (between enti-
ties at the same level of abstraction, such as task to task). We
now list these layers, starting with the lowest.

The aim of thetransport layer is to provide reliableend-
to-end services overconnections, through packetisation, end-
to-end connection management (perhaps over multiple net-
works), (de)multiplexing multiple transport connections over
network connections, and so on. Examples of services per
connection are: uncorrupted transmission, lossless transmis-
sion, in-order delivery, throughput, jitter (delay variation),
and latency. Flow control avoids data loss by aligningIP pro-
duction and consumption rates.

In the session layer multiple connections are combined
into services such as multicast, half duplex and full duplex
connections. Synchronisation of multiple connections (of au-
dio and video streams, for example), and token management
for mutual exclusion and atomic (chains of) transactions (e.g.
test and set, swap) may also be offered.

The presentation layer converts the application view on
data to a view more appropriate for transport and vice versa.
Examples are encryption and endian-ness conversions.

In the application layer communication is natural to ap-
plications, running onIPs. This could be bit streams obeying
theMP3 standard, video frames, or Java byte code.

We now return to the question of programming. ASOS

consists of a set ofIPs and aNOS that must be (dynamically)
configured. For a given user function, computation is mapped
to functionalIPs (e.g. tasks to processors) and communica-
tion to theNOS. The number of configurations can be large
and they may be generated at run-time by an application man-
ager. To avoid unnecessary design iterations, we need to be
sure of correctness of the combination of static hardware (the
IPs and their interconnect) and dynamic software (the config-
urations) as early as possible in the design flow. Program-
ming must be predictable; this can be ensured by basing it on
a NOS that offers guaranteed services.

A NOS with guaranteed services simplifies programming
individual IPs in three ways. First, someIPs have inherent
performance requirements, such as a minimum throughput
(for real-time streaming data), or bounded latency (for inter-
rupts). A NOS with guaranteed services eases their integra-
tion. Second, anIP communicates using theNOS. Requests
for services make its assumptions and dependencies on the
NOS explicit, structuring the design and programming of the
IP. Third, anIP can also be simpler when using guaranteed

2



services because it has fewer possible interactions (a stricter
contract) with its environment. A service request may be
granted or denied by the network. Communication failures
are therefore restricted to the configuration phase of theIP,
instead of every communication action, so simplifying the
IP’s programming model.

Guaranteed services offer the following advantages for the
composition ofIPs. First, services that are guaranteed to anIP

are not affected by otherIPs in the network, making reasoning
about theIP in isolation possible. This is essential for acom-
positional construction (design and programming) ofSOSs.
WhenIPs, assumed to be correct, are combined in a system it
must be clear that the system will function as a whole. This
holds both at the time of design and at run time. Current sys-
tems often fail this requirement. Consider a bus; adding an
IP influences the electrical parameters (like load) of the bus,
as well as the existing traffic patterns. The latter can seri-
ously affect cache behaviour and hence embedded processor
performance. Second, aNOS that offers guaranteed services
must accurately model its resources to offer those services.
This makes costs of theNOS explicit early in the design of a
SOS. At run-time an application or quality-of-service man-
ager reconfigures theSOS. This can only be effective when
the NOS is observable and controllable, but above all, pre-
dictable in terms of performance and cost. Third, aNOS

based on guaranteed services concentrates communication
failures to (re)configuration points. When theNOS declines
a service request from anIP, only that IP is affected. Fall-
back strategies are much easier for local configuration-time
failure than for global failure at any point caused by any of
the communicating parties.

4. The Æthereal Network-on-Silicon

The ÆTHEREAL NOSintends to support both guaranteed and
best-effort services. We can only list some salient features
here, to indicate our current direction.

We use a combination of circuit and packet switching,
in the spirit of ATM [1]. A channel implements a simplex
point-to-point communication between two network inter-
faces (possibly with multiple paths). A channel can have a
combined throughput and latency guarantee (GT), or be best
effort (BE), with an unspecified finite latency upper bound.
Delivery order is not guaranteed over different paths or chan-
nels. A connection combines multiple channels and can in-
clude flow control and reordering for lossless in-order (mul-
ticast) transmission. The programming model is concurrent
and distributed:IPs can set up and remove connections in a
pipelined fashion, and at the same time. Configurations that
have been computed off-line can be efficiently loaded and ex-
tended or changed at run time.GT channels are created and
removed withBE packets that reserve a path through the net-
work, subject to resource availability.

BE packets use worm-hole source routing, andGT streams

use time-division-multiplexed circuit switching. Routers use
virtual output queuing forBE traffic. GT traffic is tightly
scheduled to minimise buffering. Routers do not drop or re-
order packets, the former due to fine-grain link-level flow
control. A variant of the iSLIP switch-scheduling algo-
rithm [6] is used forBE traffic. BE traffic use all spare ca-
pacity in the network, i.e. bandwidth that is not reserved or
unused byGT traffic. Network interfaces implement multi-
path and multi-channel ordering, and channel flow control.

5. Conclusions
In the IP re-use model communication between the manyIP

cores is key. We have shown that a network on silicon (NOS)
eases the design of systems on silicon (SOSs) at the levels of
hardware design and software programming.

A NOS hardware architecture based on a packet-switched
router network allows average-case wire dimensioning, and
reduces wire congestion aroundIPs. It breaks the fatal global
timing closure loop by separating inter-IP from intra-IP com-
munication, and can so reduce global design iterations. The
OSI protocol stack structures the communication complexity
in the router network (the physical to network layers) and the
programming model (the transport to application layers).

While a protocol stack offers diverse services on a sin-
gle hardware architecture, we show that predictability, in the
form of guaranteed services, greatly benefits programming
a SOS at two levels. IndividualIPs with real-time require-
ments are more easily integrated, and theNOS’s actions are
restricted by the contract, simplifying theIP’s IO. At theNOS

level, programming ofIPs is compositional because their ser-
vices are independent of each other. Quality-of-service man-
agers can effectively observe and steer aNOS because it be-
haves predictably in terms of performance and cost.

We believe that aNOS must be a synthesis of hardware ar-
chitecture and software programming model with guaranteed
services at its core. In the ÆTHEREAL NOSwe aim to do so
efficiently.

References
[1] ATM Forum. ATM User-Network Interface Specification. 1994
[2] R. E. Bryant, et al. Limitations and challenges of computer-

aided design technology for CMOS VLSI.Proc. of the IEEE,
89(3):341–365, March 2001.

[3] W. J. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. InDAC, pages 684–689, June 2001.

[4] J. D. Day and H. Zimmerman. The OSI reference model. In
Proceedings of the IEEE, volume 71, pages 1334–1340, 1983.

[5] P. Guerrier. Un Réseau D’Interconnexion pour Systémes
Intégrés. PhD thesis, Universit´e ParisVI , Mar. 2000.

[6] N. McKeown. iSLIP: A scheduling algorithm for input-queued
switches.IEEE Transactions on Networking, 7(2), Apr. 1999.

[7] J. Rexford and K. G. Shin. Support for multiple classes of traffic
in multicomputer routers. InLNCS 853, 1994.

[8] M. Sgroi, et al. Addressing the system-on-a-chip interconnect
woes through communication-based design. InDAC’2001

3


