Networks on Silicon: Blessing or Nightmare?

Paul Wielage
Philips Research Laboratories, The Netherlands

Electronic systems

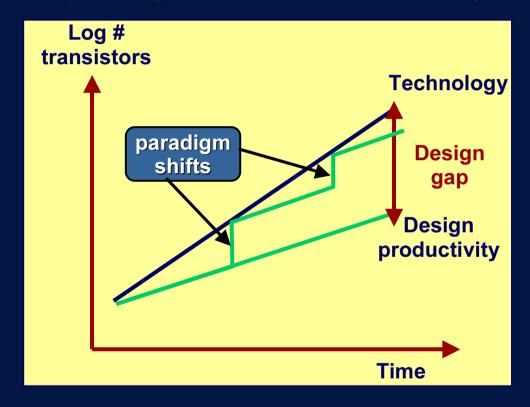
Systems on chip are everywhere

Technology advances enable increasingly more complex designs

Central Question: how to exploit deepsubmicron technologies efficiently?

Silicon technology roadmap

intrinsic capability of ICs (transistor count / gate delay)
 grows with ~ 50% per year (Moore's Law)


	low power SoC			high performance MPU/SoC		
	2001	2004	2010	2001	2004	2010
gate length (nm)	130	90	45	90	53	25
supply voltage	1.2	1	0.6	1.1	1	0.6
transistor count (M)	3.3	8.3	40	276	553	2212
chip size (mm²)	100	120	144	310	310	310
clock frequency (GHz)	0.15	0.3	0.6	1.7	2.4	4.7
wiring levels	6	7	9	7	8	10
max power (W)	0.1	0.1	0.1	130	160	218

Source: ITRS 2001

power limits the performance

Design Challenges

Moore's Law is a nice prophesy, but it is hard work to bring into practice

→ Paradigms shifts in design methodology is the only escape

Design challenges

- design productivity and design time system level design paradigm shifts:
 - component based design (IP block re-use)
 - platform based design (architecture re-use)
 - networks on silicon (communication-centric view)
- dynamic and standby power consumption
 - low swing signaling
 - clock gating / supply switching
 - power management
 - multi-V₁ transistors
 - new memory technologies

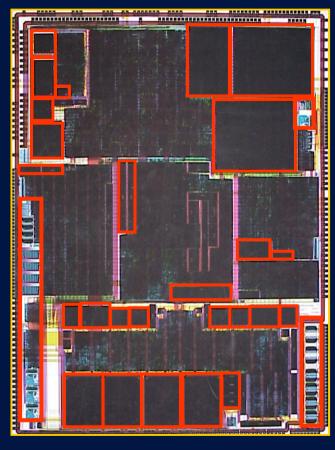
Component-based design

Design methodology:

- IC is a composite of heterogeneous IP blocks, preferably reused
 - e.g. processors, memories, controllers
 - or even whole sub-systems like MPEG encoders / decoders
- composition by standard interfaces and buses
 - e.g. virtual component interface (VCI) or AHB bus protocol
- use wrappers to comply to chosen communication standard
 - goal: plug and play by means of automatic wrapper generation

Weak point: how do physical issues influence performance and functional-correctness?

EUROMICRO 2002, Paul Wielage


SoC design in practice

IC of heterogeneous IP blocks

- analog
- storage
- computation
- communication

Prospect

- blocks of 50K-100K gates is do-able till 2010
- however in 2010: 1000 < # blocks < 10.000
- increasingly difficult with growing # blocks
- speed and energy are crucial

One-Chip TV Nexperia™ platform

Importance of communication speed

Scaling makes transistors faster but not wires → mismatch

Consequence: performance bottleneck

- faster processors need more data / instructions and more instantly
- highly concurrent processing makes hiding communication latency difficult

Eventually interconnect will dominate SoC performance

→ focus shift from computation to communication required

SoC interconnect requirements

scalable

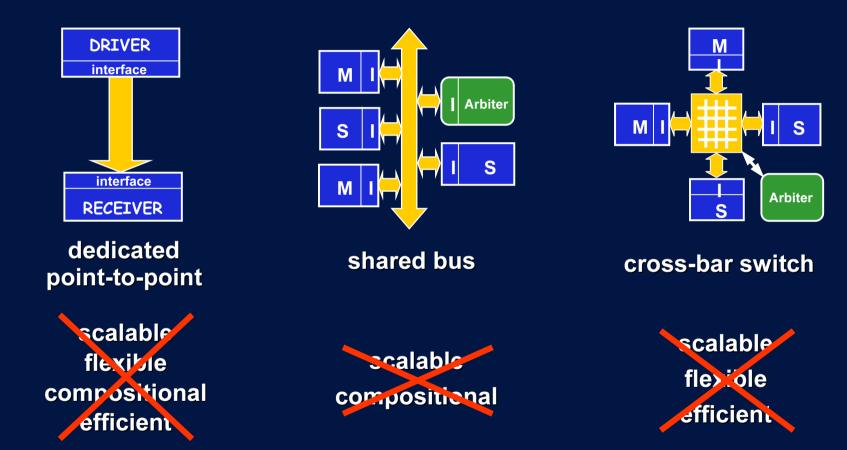
- in bandwidth and latency for any system size

flexible

- multiple applications / configurations, various bit-rates
- connectivity between each pair of IPs

compositional

allow to merge two sub-systems


deep sub-micron robust

- noise, cross-talk, IR drop, soft errors
- support multiple clock-domains (e.g. GALS)

efficient

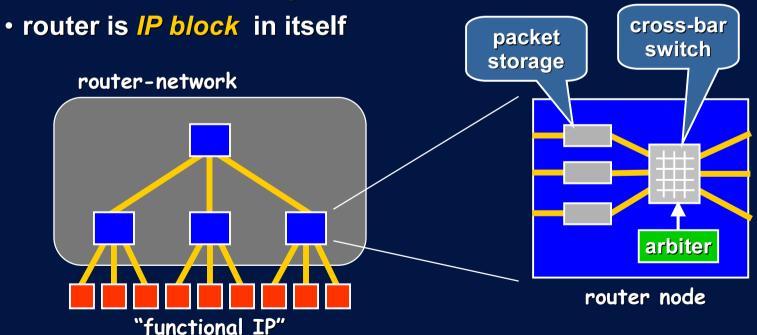
- cost
- power

Today's communication solutions

In addition, today's communication solutions are not deep submicron proof

10

On-chip communication


Novel approach:

- Charles Seitz et.al., "Let's Route Packets Instead of Wires", 1990
- William J. Dally et.al., "Route Packets, Not Wires: On-Chip Interconnection Networks", DAC 2001
- Kees Goossens et.al., "Networks on Silicon: Combining Best-Effort and Guaranteed Services", DATE 2002

Networks on Silicon a paradigm shift in *on-chip communication*

Essence of a NoS:

- all IP to IP communication via single network
- network is *multi-hop*: routers are point-to-point connected
- routers forward data-packets

Wire usage in router-networks

The typical extremes are not favorable for chip-wide interconnect

dedicated p-to-p

time congestion

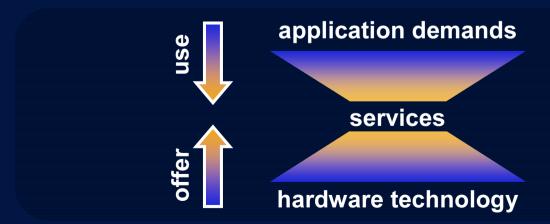
shared bandwidth cost efficient flexible

RC delay space congestion

time congestion

space-time shared

A router-network uses the proper mix: time-shared & point-to-point


- high utilization, few wires
- high frequency, pipelining & repeater insertion possible

EUROMICRO 2002, Paul Wielage

Networks on Silicon

Abstract communication services:

- transport
 - uncorrupted, loss-less, without duplication
- performance
 - guaranteed throughput, bounded latency and jitter
 - without guarantees: best-effort
- ordering
 - in-order per transaction, connection, global, ...

NoS characteristics

√ scalabe

- #routers, topology, traffic classes
- size, bandwidth, latency

√ flexible

- every IP is reachable
- services

✓ compositional

merging two networks is again a network

✓ deep submicron robust

- routers are highly reusable: allows for DSM optimization
- distributed implementation: no global clock required

√ efficient

high wire utilization → less wires needed

EUROMICRO 2002, Paul Wielage

Issues of concern

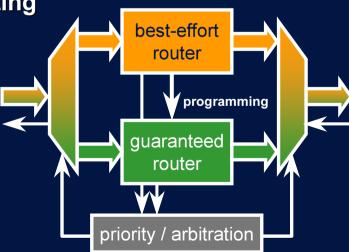
Two issues of many:

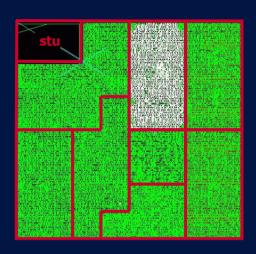
- overhead at interface between network and functional IP
- state synchronization at system level

EUROMICRO 2002, Paul Wielage

The Æthereal network on silicon

Combination of guaranteed and best-effort services


- guaranteed throughput & latency
 - circuit switching (time division multiplexed)
 - ATM-like connection set up
- best-effort for efficiency
 - virtual output queuing


worm-hole routing

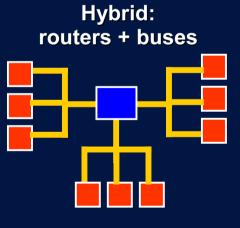
Inherently loss-less and

ordered transport

No global signals

6 port prototype router

- cmos12
- 6 Kbit queuing
- 512 TDMA slots


EUROMICRO 2002, Paul Wielage

Blessing or ...

Promising solution!

Summary

- 1. Technology offers tremendous opportunities
- 2. High demands from future applications
- 3. Communication is the problem of future SoCs
- 4. Networks on Silicon is the solution
 - technology wise
 - design wise