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why Networks-on-Chip

• deep sub micron
• wire cost
• timing closure

• design complexity
• increasing # of IP blocks
• increasing dynamism

problems observed for SoC design

decouple computation from communication
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why Networks-on-Chip
• problems observed for SoC design

• deep sub micron
• design complexity
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outline
• services
• combined router architecture
• guaranteed throughput router architecture
• best-effort router architecture
• router prototype
• conclusions
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services I
• we need a network that is

• predictable
• cost effective

• build guarantees on top of guarantees
• efficient network is efficient at every layer

constraints
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services II

• timeless guarantees
• guaranteed data integrity
• guaranteed data delivery
• guaranteed in-order delivery

• time related guarantees
(over bounded time interval)

• guaranteed throughput
• guaranteed latency

best-effort
service

(BE) guaranteed
throughput

service
(GT)
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• GT requires dimensioning for guaranteed throughput
• BE requires dimensioning for average throughput
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BE & GT combined architecture
• conceptually, two disjoint routers

• a router with GT service class
• a router with BE service class

• to obtain an efficient combination routers must 
have similar architectures

priority/arbitration

BE router

GT router

programming
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rwc
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preferred solution

buffering strategy
• output queuing

• highest cost
• highest performance

• input queuing
• lowest cost
• lowest performance

• virtual output queuing
• moderate cost
• high performance
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contention
• links in network are shared resources

• contention occurs when multiple data request same 
link at same time

• GT and BE resolve contention differently
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guaranteed throughput
• to guarantee latency or bandwidth over finite interval

• cannot drop data
• must bound contention

• rate-based scheduling
• has high buffer costs (deep fifos/output queuing)

• deadline-based scheduling
• even higher buffer costs (deep priority queues)

• contention-free routing
• low buffer costs (shallow fifos)
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contention-free routing I
• scheduling packet injection in network

to avoid contention
• in space: disjoint paths

as in pure circuit switching

• in time: time-division multiplexing
as with a statically scheduled bus

• in time and space: our solution
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contention-free routing II
• divide time in slots

• a block is amount of data that fits in a slot

• block entering router in slot n enters next in slot n+1

• matches with input queuing

block 1 block 2 block 3
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contention-free routing III
• routers have tables that

• store contention resolution & routing information
• allow distributed programming

• small blocks Æ low buffering costÆ low latencyÆ throughput guarantee on smaller period
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best-effort architecture
• to ensure high resource utilization

• statistical multiplexing
• packet-switching
• but implement BE service class

• packet-switching
• network flow control (routing mode)
• contention resolution
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packets and flits
• packet = header + payload

• packet might be transmitted in smaller parts called flits

• flits divide time in iterations and must be scheduled

• smaller flit size Æ higher scheduling rateÆ lower latencyÆ less storage

flit 2 flit 3flit 1 flit 4

payloadH

flit 2 flit 3 flit 4 timeflit 1
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network flow control (routing mode)

• store and forward routing
• first receive whole packet
• then transmit whole packet

• virtual cut-through routing
• send flit immediately
• if next router can receive entire packet

• wormhole routing
• send flit immediately
• if next router can receive that flit

packet

flit

flit flit

packet

packet

latency storage

performance/cost

network flow control

per router
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contention resolution
• queuing at input Æ set paths from inputs to outputs
• router has switch
• bipartite graph matching

• algorithm must
• be fair
• have low complexity (to schedule at flit rate)
• approximation of maximal matching
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combining GT and BE
• links must be shared by GT and BE traffic

• grain size of interleaving must match

• block size = flit size

• smallest value for this is given by implementation
• minimize scheduler latency Æ L
• maximize data path speed Æ F
• flit size = block size = F · L
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router prototype
• snapshot of current

prototype router:
• input queuing
• arity 5
• 32 bits wide words
• 8 flits deep BE queues
• 256 slots

• 0.25 mm2 CMOS12
• 500 MHz data path
• 166 MHz control path
• flit size is 3 words
• throughput per link:

500MHz·32bits = 16Gb/s

control



21
Æthereal Network-on-Chip
Philips Research

conclusions
• for NoCs, guaranteed services are essential

• demonstrated the useful combination of:
• BE service class Æ timeless guarantees
• GT service class Æ BE + time related guarantees

• made trade-offs to come to efficient combined router

• proved feasibility with router prototype
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router prototype
• snapshot of current prototype router:

• 5 input and 5 output ports (arity 5)
• 0.25 mm2 CMOS12
• 500 MHz data path, 166 MHz control path
• flit size of 3 words of 32 bits
• 500x32 = 16 Gb/s throughput per link
• 256 slots & 5x1 flit fifos for guaranteed-throughput traffic
• 6x8 flit fifos for best-effort traffic
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