Trade Offs in the Design of a Router with Both Guaranteed and Best-Effort Services for Networks on Chip

E. Rijpkema, K. Goossens, A. Rădulescu,

J. Dielissen, J. van Meerbergen, P. Wielage,

and E. Waterlander

why Networks-on-Chip

problems observed for SoC design

- deep sub micron
 - wire cost
 - timing closure

- design complexity
 - increasing # of IP blocks
 - increasing dynamism

decouple computation from communication

why Networks-on-Chip

- problems observed for SoC design
 - deep sub micron

Philips Research

- design complexity
- key: decouple computation from communication

outline

- services
- combined router architecture
- guaranteed throughput router architecture
- best-effort router architecture
- router prototype
- conclusions

services I

- we need a network that is
 - predictable
 - cost effective

- build guarantees on top of guarantees
- efficient network is efficient at every layer

services II

- timeless guarantees
 - guaranteed data integrity
 - guaranteed data delivery
 - guaranteed in-order delivery
- time related guarantees (over bounded time interval)
 - guaranteed throughput
 - guaranteed latency

best-effort service (BE)

guaranteed throughput service (GT)

guarantees vs. best-effort

- GT requires dimensioning for guaranteed throughput
- BE requires dimensioning for average throughput

BE & GT combined architecture

- conceptually, two disjoint routers
 - a router with GT service class
 - a router with BE service class

 to obtain an efficient combination routers must have similar architectures

buffering strategy

- output queuing
 - highest cost
 - highest performance

- lowest cost
- lowest performance

virtual output queuing

- moderate cost
- high performance

contention

- links in network are shared resources
- contention occurs when multiple data request same link at same time
- GT and BE resolve contention differently

guaranteed throughput

- to guarantee latency or bandwidth over finite interval
 - cannot drop data
 - must bound contention
- rate-based scheduling
 - has high buffer costs (deep fifos/output queuing)
- deadline-based scheduling
 - even higher buffer costs (deep priority queues)
- contention-free routing
 - low buffer costs (shallow fifos)

contention-free routing I

- scheduling packet injection in network to avoid contention
 - in space: disjoint paths as in pure circuit switching
 - in time: time-division multiplexing as with a statically scheduled bus
 - in time and space: our solution

contention-free routing II

divide time in slots

- a block is amount of data that fits in a slot
- block entering router in slot n enters next in slot n+1

contention-free routing III

- routers have tables that
 - store contention resolution & routing information
 - allow distributed programming

small blocks → low buffering cost
 || → low latency
 small slots → throughput guarantee on smaller period

best-effort architecture

- to ensure high resource utilization
 - statistical multiplexing
 - packet-switching
 - but implement BE service class
- packet-switching
 - network flow control (routing mode)
 - contention resolution

packets and flits

• packet = header + payload

H payload

packet might be transmitted in smaller parts called flits

flit 1 flit 2 flit 3 flit 4

flits divide time in iterations and must be scheduled

smaller flit size → higher scheduling rate
 → lower latency
 → less storage

network flow control (routing mode)

performance/cost	per router	
network flow control	latency	storage
 store and forward routing first receive whole packet then transmit whole packet 	packet	packet
 virtual cut-through routing send flit immediately if next router can receive entire packet 	flit	packet
 wormhole routing send flit immediately if next router can receive that flit 	flit	flit

contention resolution

- queuing at input \rightarrow set paths from inputs to outputs
- router has switch
- bipartite graph matching

- algorithm must
 - be fair
 - have low complexity (to schedule at flit rate)
 - approximation of maximal matching

combining GT and BE

- links must be shared by GT and BE traffic
- grain size of interleaving must match
- block size = flit size
- smallest value for this is given by implementation
 - minimize scheduler latency \rightarrow L
 - maximize data path speed \rightarrow F
 - flit size = block size = F · L

router prototype

- snapshot of current prototype router:
 - input queuing
 - arity 5
 - 32 bits wide words
 - 8 flits deep BE queues
 - 256 slots

• 0.25 mm² CMOS12

- 500 MHz data path
- 166 MHz control path
- flit size is 3 words
- throughput per link: 500MHz·32bits = 16Gb/s

conclusions

- for NoCs, guaranteed services are essential
- demonstrated the useful combination of:
 - BE service class \rightarrow timeless guarantees
 - GT service class \rightarrow BE + time related guarantees
- made trade-offs to come to efficient combined router
- proved feasibility with router prototype

router prototype

- snapshot of current prototype router:
 - 5 input and 5 output ports (arity 5)
 - 0.25 mm² CMOS12
 - 500 MHz data path, 166 MHz control path
 - flit size of 3 words of 32 bits
 - 500x32 = 16 Gb/s throughput per link
 - 256 slots & 5x1 flit fifos for guaranteed-throughput traffic
 - 6x8 flit fifos for best-effort traffic

