
Bringing Communication Networks On Chip:
Test and Verification Implications

Bart Vermeulen John Dielissen Kees Goossens Calin Ciordas†

Philips Research Laboratories
Prof. Holstlaan 4, 5656 AA Eindhoven

The Netherlands
† Eindhoven University of Technology

{Bart.Vermeulen, John.Dielissen, Kees.Goossens}@philips.com,C.Ciordas@tue.nl

Abstract

In this article we present test and verification challenges for system chips that utilise on-chip networks.
These systems on a chip (SOCs) and networks on a chip (NOCs) are introduced, where theNOC is exem-
plified by Philips’s ÆTHEREAL NOC architecture. We discuss existing test and verification methods for
SOCs andNOCs, and show the particular advantages of using aNOC both for testing and verifying the
network, and for testing and verifying the other components of theSOC. This paper is concluded with
our experiences withNOCs and a description of on-going work within Philips in this emerging field.

1 Introduction

High-performance networking requires dedicated hardware with tremendous computational and communi-
cation performance. Network components such as network interfaces and routers are complex systems that
are built in a modular fashion by combining many application-specific integrated circuits (ASICs). With
increasing packet throughputASIC performance must increase. Moreover, trends towards differentiated ser-
vices and higher quality of service require additional performance. Examples are more discerning packet
classification, traffic shaping, network management, debug, and so on. To address these issues networking
ASICs must become more versatile and programmable, often evolving towardsnetwork processors.

To indicate that network processors andASICs are complex systems in themselves, they are usually named
systems on a chipor SOCs. The number of components in aSOC is growing rapidly, and the communi-
cation infrastructure on a singleSOC is a major concern. In fact, on-chip interconnect will increasingly
be implemented as anetwork on a chip(NOC), complete with network interfaces, routers, and packet or
circuit switching. Although the distances over which communication takes place differ by many orders of
magnitude, the fields of on-chip networking and computer networking are clearly related.

In Section 2 we show why and howNOCs are used to implementSOC communication needs and we il-
lustrate why their implementation is different compared to computer networks. Section 3 outlines Philips’
ÆTHEREAL NOC, which is one such a solution.

In Section 4 we consider how aSOC, constructed from many hardware blocks (calledcores) and aNOC can
be tested for manufacturing defects. Section 5 describes the functional verification of aSOC, the verification
of a NOC, and how aNOC can aid in the verification of aSOC. In Section 6 we present how an application,
mapped onto aSOC with a NOC, can be verified. We end this paper in Section 7 with conclusions and
highlight future work for the development of the Philips ÆTHEREAL NOC.

1



2 Vermeulen, Dielissen, Goossens, and Ciordas

2 Networks on Chip

To manage the complexity of designing aSOC containing multiple cores, design teams are adopting core
re-use methodologies. These methodologies allow cores, once they have been designed, to be re-used
in multiple SOCs. As a result, the complexity of building a completeSOC shifts from the design of the
individual cores to the design of the communication architecture connecting the cores. To prevent the
design of this communication architecture from becoming the bottleneck for the design of futureSOCs, this
communication architecture itself has to be compositional and scalable.

A single broadcast medium, such as Amba and Silicon Backplane [1] buses, can already no longer deliver
the required global bandwidth and latency for currentSOCs. Switches, such as multi-layer Amba and
Prophid, provide some relief, but are ultimately not scalable. Mirroring computer networks, a trend can
be observed towards using networks of routers with circuit or packet switching to implement on chip
communication [2, 3]. Of particular interest areSOCs for networking applications that themselves use
NOCs. Examples ofSOCs with an on-chip mesh of packet-switched routers to implement a single-chip
switch are given in [4, 5]. Karim et al. [6] show how a network processor for OC-768 uses a hybrid
circuit/packet-switchedNOC.

Although computer networks and on-chip networks share many requirements, there are also a number of
differences, which can lead to different trade offs [2, 7], and hence different architectures. Examples are:

• Quality of service beyond best-effort traffic is probably more important inSOCs for consumer elec-
tronics than for Internet services, due to their embedded, real-time, and often safety-critical na-
ture [7]. Consumer applications have to be robust and require predictable performance.

• The conditions on a chip are currently more stable than off chip. On-chip routers are considered
either faulty or correct, and hence the network topology is static (and not upgradable) after the chip
leaves the factory.

• Routers and network interfaces of aNOC are more resource constrained than those in computer
networks because they are intended for main-stream consumer products. As a consequence the chip
area must be minimised leading to few and shallow buffers, fast and simple arbitration, limited traffic
shaping, etc.

• On-chip communication links are relatively short compared to those in computer networks. Pipelin-
ing or transmission-line effects are therefore absent. This advantage partially offsets the severe re-
source constraints: bufferscanbe small due to the tight synchronisation between routers, and buffer
overflow can be prevented by using flow control.

• In contrast to computer networks, inter-router wires are relatively abundant inNOCs [2]. Links can
be wide, and their utilisation is probably less important.

Within Philips, the need to manage present-day and future on-chip communication demands spurred the
development of the ÆTHEREAL NOC. Details of its architecture are presented in the next section.

3 The Æthereal Network on Chip

3.1 The Æthereal Architecture

The Philips ÆTHEREAL NOC [7, 8] addresses the communication needs for consumer-electronicsSOCs
with real-time requirements, as are for example used in digital video set-top boxes. Figure 1 shows an
exampleSOC, consisting of cores and an ÆTHEREAL NOC.

Cores communicate with each other using theNOC, and include memories (Mi), programmable or dedi-
cated processors (Pi), and external memory interfaces (MIi). TheNOC consists of routers (Ri) and network



Bringing Communication Networks On Chip: Test and Verification Implications 3

NI1 NI4

NI9

P4 M3

P2 M1 P3P1

NoC

SoC

NI2

R1

R4

NI7

MI1

NI3

R2

R5

NI8

R3

NI6

NI5

M2

to
external
memory

Figure 1: ExampleSOCwith an ÆTHEREAL NOC.

interfaces (NIi), which are linked by non-pipelined wires. These routers andNIs are described in more
detail in the following subsections.

3.2 The Æthereal Router

Conceptually, the ÆTHEREAL router module consist of two independent routers, see Figure 2(a).

high−priority control path

preempt

(b) hardware view

best effort

program

guaranteed
throughput

arbitration

best effort

program

guaranteed
throughput

data path

low−priority

(a) conceptual view

switchbuffers

Figure 2: Two views of the combinedGT-BE router.

The best-effort(BE) router offers uncorrupted, lossless (flow-controlled), ordered data transport. The
guaranteed-throughput(GT) router adds hard throughput and latency guarantees over a finite time interval.
TheGT router fulfils our real-time service requirement, and combining it with aBE router ensures efficient
resource utilisation.

3.2.1 The Guaranteed-Throughput Router

To offer not merely statistical, but also hard guaranteed latency the network and hence the routers must be
lossless. Besides this easy-to-solve property, also contention must be eliminated or quantified to be able to
provide a guarantee. Rate-based and deadline-based scheduling offer guarantees [9], but they require deep
output or priority queues. These queues are too costly for on-chip use. A low-cost alternative is to avoid
contention completely, by scheduling packets at the network edge such that they are never in the same place,
or are never there at the same time, or a combination. The ÆTHEREAL GT router uses a combination of
both with time-division-multiplexed pipelined circuits. Every router and network interface block contains



4 Vermeulen, Dielissen, Goossens, and Ciordas

a slot tableT (s, o) = i, defining for a given slots from which inputi outputo takes its data, if available.
For this approach to work, allNOC blocks must share a common notion of time to ensure that their slot
tables remain aligned. This is feasible inNOCs by using mesochronous clocking (synchronous clocks with
constant skew), or asynchronous hand shaking, as described byÖberg in chapter 8 of [7].BE packets are
used to program the slot tables to set up and tear downGT connections, akin toATM . This is shown in
Figure 2(a) by the arrow labelled “program,”. Router programming packets follow the same route as the
connection they program. Slot allocations can be computed and programmed at run time in a distributed
manner, or can be (pre-)computed off-line and then configured at run time.

3.2.2 The Best-Effort Router

TheBE router is a classical input-queued wormhole router, and it uses round-robin arbitration for fairness.
Data packets are never reordered in the router, and because deterministic routing is used, ordering is pre-
served end to end. Programming packets are shunted to a programming module in the router, and spliced
in the data stream after they have programmed the slot table.

3.2.3 The Combined Router

As is shown in Figure 2(b) the control paths of theBE andGT routers are separate, yet interrelated. More-
over, the arbitration unit (including link-level flow control for theBE router) of Figure 2(a) has been merged
with the BE router itself. The data path, mainly consisting of the switch matrix, is shared. In computer-
network router architectures the buffers ofBE and GT traffic would be stored in a shared RAM. For the
small amount of buffering in on-chip routers (in our case, 3 words perGT queue, and 24 words perBE

queue) using either RAMs or register-file memories would be very area inefficient. By using dedicatedGT

andBE hardware fifos (labelledGQ andBQ in Figure 3), the area of the router is reduced by two-thirds.

Figure 3: Lay-out of a combinedGT-BE router.

We synthesised an arity 5 router with, aBE queue depth of 24 words of 32 bits, and a 256 slots table (labelled
STU) in a 0.12 micron technology. The lay-out is shown in Figure 3. It has an aggregate bandwidth of
5 × 500 MHz × 32 bit = 80 Gbit/s. The area of the router is0.26 mm2 in a 0.12 micronCMOS process
using 6 metal layers.

3.3 The Æthereal Network Interface

The network interface is the bridge between a core and a router, where in general more cores can be
connected to one network interface. It implements end-to-end flow control, admission control and traffic
shaping, connection set up and tear down, and transaction reordering. Like the router, it contains a slot
table, but it has dedicated hardware fifos per connection.



Bringing Communication Networks On Chip: Test and Verification Implications 5

4 Manufacturing Test

Like all other SOCs, anNOC-basedSOC has to be tested for manufacturing defects. TheNOC can be
considered as just another core of aSOC, but it is also special in two ways: (1) it is often composed of
many identical sub-cores (routers and network interfaces), and (2) it occupies a privileged, central position
in the SOC, by virtue of its interconnecting role. In this section we explore the most relevant options for
efficiently and effectively testing of aSOCwith a NOC.

4.1 SOC Manufacturing Test

With the design of a scalable and modularSOCcomes the issue of testing for manufacturing defects. Over
the last years, several advances have been made inSOC testing. IEEE P1500 [10] is standardising a core-
based test approach. In this approach, cores are wrapped in a test wrapper to allow easy testing of that core
in a SOC. A so-called Test Access Mechanism (TAM) is used in conjunction with test wrappers around the
core to transport test data to and from a core-under-test. Combined they allow application-independent test
access to all on-chip cores. An example of this core-based test approach is shown in Figure 4.

NI1 NI4

NI9

P4 M3

P2 M1 P3P1

NoC

SoC

NI2

R1

R4

NI7

MI1

NI3

R2

R5

NI8

R3

NI6

NI5

M2

Figure 4: Default core-based testing

In test mode, theSOC cores are distributed over four TAMs connected to the four I/O interfaces of the
chip. In Figure 4, these four TAMs are indicated with the colours red, green, blue, and purple. During scan
test all TAMs are used in parallel to minimise the total test time. A disadvantage of this methods is that
it requires additional wires to be added to the design to form the TAMs. In network chips, adding these
TAMs on top of an already large number of interconnects might cause wire congestion problems during
the layout phase of the design.

Built-in Self Test (BIST) is another popular approach to test mainly regular logic blocks, such as for
example on-chip memories. Developments have been made to extend the use of BIST to other cores than
memories as well. Techniques such as random test pattern generation, in combination with test point
insertion or bit-flipping [11] are used to test these blocks efficiently.

As test pattern set one will typically use the traditional stuck-at fault test patterns, complemented by both
delay fault test patterns and possibly IDDQ or∆IDDQ test patterns to meet the test quality requirements.



6 Vermeulen, Dielissen, Goossens, and Ciordas

4.2 Testing the NOC

Given theNOC’s regular and hierarchical structure, it makes sense to adopt a core-based test approach.
If we know the function of the core-under-test, i.e. aNOC we can utilise this knowledge to modify the
standard core-based test approach to obtain a better-suited test. Figure 5(a) shows a possible core-based
approach for anSOCwith anNOC.

The blocks that make up theNOC are tested first. If theNOC contains a fault, the entireSOC can be sent
off for diagnosis, without testing it further in the production line. This leads to a reduction in test time, and
consequently a savings in test cost.

The concept of test re-use can be taken one step further. While testing theNOC, all identical blocks (e.g.
all routers) can reuse the same test data. This test data set is broadcast and applied to all routers at the same
time. The responses can be compared against each other and any mismatches sent off-chip. This allows
for a very efficient pass-fail decision on theNOC. Note that each block still needs to be made uniquely
accessible for diagnostic purposes.

Timing tests are also very important for testing aNOC because: (1) all clock boundaries between cores
are inside the network interface, and (2) theNOC is spread over the entireSOC and has therefore many
long wires. These interconnection wires are more vulnerable to timing errors and cross-talk than others.
Sending delay fault test patterns with a high fault coverage over all communication links therefore increases
the overall fault coverage. WhenNOCs become very large, additional test strategies such as those applied
in FPGAs can also be included, as for example described by Ubar et al. in chapter 7 of [7].

4.3 Testing a SOC through its NOC

After theNOC has been structurally tested, the network can be used to functionally transport test data to and
from the cores in a very flexible way. Figure 5(b) shows how the functionality of theNOC is used during
the test of the other blocks in theSOC. TheNOC is now considered a known-correct block that can be used
to transport data from the device pins to the core-under-test and back. An advantage of the re-use of the
NOC functionality is that no new TAM wires need to be added to the design, as the existingNOC wires
are re-used. The flexibility of theNOC also enables the simultaneous distribution of test data to multiple
identical cores. The test data itself can come from off chip, or from an internalBIST module.

When aSOC has structural errors, there are three possibilities: (1) theSOC is thrown away, (2) redun-
dant hardware present on theSOC can replace the faulty cores (repair), or (3) theSOC is sold as a lower-
performanceSOC. In cases (2) and (3), theNOC’s flexibility is used to an advantage. During the man-
ufacturing test, the error information has to be collected and subsequently permanently stored inside the
SOC.

5 Silicon Verification

Silicon verification involves checking whether thehardware designis correct, assuming it has been man-
ufactured correctly. This process is often referred to as silicon debug, as the goal is to try to find any
remaining design errors that might have slipped through the pre-silicon verification stages. In this section,
we first discuss silicon debug ofSOCs and of communication networks. We then look in more detail at the
options for verifying aNOC as part of aSOC, and how aNOC can be used for the verification of the other
cores of theSOC.



Bringing Communication Networks On Chip: Test and Verification Implications 7

NI1 NI4

NI9

P4 M3

P2 M1 P3P1

NoC

SoC

NI2

R1

R4

NI7

MI1

NI3

R2

R5

NI8

R3

NI6

NI5

M2

(a)

P4 M3

P2 M1 P3P1

NoC

SoC
MI1

M2

(b)

Figure 5: Testing anSOCwith a NOC

5.1 SOC Silicon Verification

Many companies have adopted design-for-debug strategies to allow prototype silicon to be efficiently and
effectively verified [12, 13, 14]. The methods they use can be split into two complementary categories:
those that change the configuration of the hardware of the chip to access debug data (intrusive) and those
that can acquire debug data in parallel to the functional hardware (non-intrusive).

• Intrusive debug
This category covers all debug methods that impact the application before debug data can be exam-
ined. These methods add on-chip breakpoint modules to the design of theSOC. These breakpoint
modules interrupt the execution of the chip, after an internal sequence of events has been detected.
All functional processing is at that point frozen. Various methods are then applied to access internal
data. Commonly used access paths included system bus read and writes,TAP-basedDMA access, and
TAP-based scan-chain access [14].

• Non-intrusive debug
This category covers those debug methods that allow examination of debug data in real-time by
streaming data for debug to an on-chip memory or out of the chip via a set of dedicated chip pins.
Examples include theEJTAGand theIEEE-ISTO 5001NEXUS standard. These methods add hardware
to the design that only observes the functionality of the chip, operating completely in parallel to it.
This allows the application to run at the actual operating frequencies. As this debug architecture is
completely separated (apart from probe points) for the functional hardware, care must be taken to
keep the associated area cost within acceptable limits.

A hybrid solution is often chosen, combining these two methods, depending on the specific debug require-
ments.

5.2 Network Verification

In contrast to the previous section, network verification is about in-field testing. In the prior work on
network verification two major areas can be recognized. First of all, a lot of work has been done on
network errors: malfunctioning routers, routers that drop out of the network, links that are broken, error
detection, etc., and recovery procedures for all these cases. We assume the on-chip ÆTHEREAL network
to be very stable, and therefore network errors are not considered further.



8 Vermeulen, Dielissen, Goossens, and Ciordas

The second major area of network verification focuses on bandwidth bottleneck detection and latency
monitoring. This can be done either actively or passively. Active monitoring methods involve probing
the network with test packets, in order to get round trip latency, peak bandwidth or available bandwidth.
The problem with these methods is that they can introduce significant amounts of additional traffic in
the network. On the internet, this intrusiveness of the debug traffic can be easily reduced by temporarily
increasing the bandwidth with, for example, additional routers. Since this solution cannot be applied on a
SOC, the intrusiveness cannot be easily removed, and hence complicatesSOCdebug.

Passive measurement methods execute performance measurements using special probe devices or probes
added to routers, switches or hosts. The measured data is cached. This cached data can be either streamed
to a central entity or shared within a local domain. How to best apply the lessons learned in computer
networks to the ÆTHEREAL NOCs is an on-going research activity within Philips.

5.3 Verifying the NoC

In addition to using the standard verification techniques, an ÆTHEREAL NOC is verifying using special
events that have been defined inside the network blocks. With these events, conditions such as incorrect
configuration, incorrect topology (e.g. two ports of the router are switched), incorrect initialization, and
reset errors can be detected and used to verify applications.

Examples of events in theNI block are: connection opened/closed, data for a connection received, data
sent on a connection, and a certain data value appeared on a connection. Examples of events in the router
block are: data with a certain path is passing, data in a queue for more thann cycles, incorrect path,
and conflicts in reservation. These events can be sent either actively (self-initiating) or passively (polling)
Within ÆTHEREAL, the approach is taken to temporary log events on-chip with a local time-stamp, and
later, stream them off chip for analysis. Special debugger software uses the event information to graphically
represents the state of the network at different levels of detail. This provides the user of the debugger
software with very useful debug data. Furthermore the Codebook approach [15] is applied to the off-chip
data to correlate the generated events and isolate the root cause of a particular problem.

When deciding to use the on-chip network for transport the events, a choice has to be made to make the
implementation either completely independent of theNOC, or to over-dimension the existing network. Note
that the latter approach leads to intrusiveness .

5.4 Verifying a SOC through its NOC

Verification of theSOC contains two parts: verification of theNOC, which is described in the previous
section, and verification of the cores. In general the access to the cores is a problem. However, when using
a NOC this access is simplified. In Figure 6 one of the possibilities is shown.

A processing block P3 receives data from another processing block P1 via theNOC. If in the verification
of P3 a situation has to be reproduced, it is necessary to also repeat P1 and its predecessors. If data from
P1 to P3 is first tapped off and streamed to memory M2, P1 needs not be executed during the repetition
of P3 in following iterations. When upon replay P3 repeats its fault, the data can easily be streamed off
chip and compared with the behavior of for example aFPGA model or or a simulation model. Note that the
exact timing of the data is lost during replay. This might lead to the disappearance of the problem, or the
introduction of a new problem. Nevertheless, the disappearance of the problem hints at a timing-related
problem, which also aids in debugging the application. When the timing, captured at P3, is enforced via
specific reservations in theNOC, it is even possible to eliminate this time-intrusiveness. Experiments with
varying timing behaviour of the input data can also help to locate the problem.

Beside transporting functional data to a core via theNOC, it is also possible to transport other data. By
recording the entire state of a core in an embedded memory, it is possible to quickly restore this state via
theNOC prior to replay.



Bringing Communication Networks On Chip: Test and Verification Implications 9

NI1 NI4

P2 M1 P3P1

NI2

R1

NI3

R2 R3

NI5

M2

(a) Record events

NI1 NI4

P2 M1 P3P1

NI2

R1

NI3

R2 R3

NI5

M2

(b) Replay events

Figure 6: Recording a stream for easy replay in the receiving processing unit.

In this section we have shown that theNOC introduced new options for locating a problem during the
verification of the cores. This type of verification is done only once perSOCdesign. In contrast, verification
of an application that is mapped onto aSOC has to be conducted more often, and this is the topic of the
next section.

6 Application Verification

Although the basic functionality of theSOC is verified using techniques from the previous sections, this by
no means implies that the hardware and application software together will also run correctly. Examples of
problems that we might detect only after we have mapped an application onto theSOCare:

• a processing core that writes into another core’s memory space and thereby corrupts its operation,

• an incompatible format is used to exchange data between cores (e.g. endianess), and

• deadlines are not met because constraints were not passed to the network.

These bugs will become more difficult to find due to the increasing complexity of theSOC itself. Many
cores run in parallel and the status of the system can no longer be related to a single program counter, or
to traffic on a single bus. It is even possible that some of the cores are executing multi-threaded software
and that these cores continue with those processes that can still consume or produce data. Lack of band-
width, for example due to network congestion or functional processing spread, can cause an application to
execute the processes in a different order. Some of the observed problems can be caused by the use of the
NOC. However, there are also new opportunities for verifying the complete application using theNOC e.g.,
breakpoints, spying functional signals, and performance analysis.

• Breakpointsin the network can help to analyse the state of theSOC in more detail, as breakpoints
can stop (part of) the application by either gating (some of) the on-chip clocks or by putting (part
of) the cores in an idle mode. Once (part of) the application is stopped, the on-chip communication
architecture can be used to access important registers and memories. Although in principle the
ÆTHEREALs NOC has a global notion of time and can therefore be stopped in relation to this global
clock, this is by no means trivial forNOCs in general. Furthermore stopping aSOC is even more
complex than stopping aNOC, as all cores can run at their own frequency. This is a topic of on-going
research within Philips.

• Spying functional datain a local area network can be done relatively easy by plugging a network
analyser on that link. This network analyser will monitor all data and process it into required debug
or performance information. In aNOC, it is not possible to plug in a similar network analyser because



10 Vermeulen, Dielissen, Goossens, and Ciordas

the data wires of the link are extremely difficult to probe. The two most important aspects we are
interested in regarding a link are (1) the possible congestion on the link, and (2) the data from one
of the connections that traverses the link. To achieve the first aspect, it is possible to add congestion
monitors to the hardware design that can generate breakpoint events. To solve the second aspect, the
NI can be configured such that the data is duplicated and sent along a separate debug channel. To
reduce the tremendous amount of data that is generated during this functional spying, watchpoints
can be introduced. Such a watch-point only gives an indication if a certain value has passed and
should be generated inside theNI because, in general, the routers have no knowledge about the data.

• Performance analysisdata and communication statistics, such as link utilisation, latency, and jitter,
are important when debugging an application. One way to gather statistics on latency is to let both
the sending and receivingNI blocks generate a event. From the sendingNI, the moment at which the
data is written in its queue is valuable data. At the receivingNI, this is either the time it arrives, or
the time the core retrieves it. The person debugging the application should decide which one is most
useful. This is a technique that is also very common in the verification of networks, as was described
in Section 5.2

The latter two debug techniques lead to real-time generated data, which can be viewed as network events.
These events are an addition to the network events defined in section 5.3, and they can be handled similarly.

7 Conclusions and future work

Today and in the future,SOCs will be used to implement high-performance networking applications. One
of the issues to be addressed for theseSOCs is their on-chip data communication. In this paper we presented
the Philips ÆTHEREAL NOC for future-generationSOCs.

With the integration of a network on aSOCcome additional test and verification requirements. Fortunately
we can still use the wealth of test and verification methods that have already been successfully used in
the past for either other existingSOCs and the much-larger communication networks, such as LANs or the
Internet. The integrated network also provides new, and complementary possibilities to test and verify the
SOC, and with it theSOC application. As shown in this paper, there are plenty of options for meeting a
particularSOC’s test and verification requirements.

In the initial phase of the ÆTHEREAL project, key elements of future investigation were defined, which
include the challenge of stopping aSOCwhen cores run on their own frequency. Due to dynamic run-time
effects (voltage drops, cross-talk, alpha particles, etc.), and their growing sizeNOCs evolve to computer
networks. How to apply the verification lessons learned in computer networks toNOCs in a cost-effective
way is another interesting (research) challenge that is currently under investigation within Philips.

In the future, aNOC will most likely become a similar commodity as its bigger brother the Internet, and no
doubt equally successful.

Acknowledgements

The authors like to thank their colleagues Harald Vranken and Jos Huisken and the anonymous reviewers
for their valuable feedback on an early draft of this article.

References
[1] Drew Wingard. MicroNetworks-based integration for SOCs. InDesign Automation Conference, 2001.

[2] William J. Dally and Brian Towles. Route packets, not wires: On-chip interconnection networks. InDesign Automation
Conference, pages 684–689, June 2001.



Bringing Communication Networks On Chip: Test and Verification Implications 11

[3] Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC paradigm.IEEE Computer, 35(1):70–80, 2002.

[4] David Whelihan and Herman Schmit. Memory optimization in single chip network switch fabrics. InDesign Automation
Conference, June 2002.

[5] HyperChip Inc. Cell-based switch fabric architecture. World International Property Organization Patent number WO 02/098066
A2, December 2002.

[6] Faraydon Karim, Anh Nguyen, Sujit Dey, and Ramesh Rao. On-chip communication architecture for OC-768 network proces-
sors. InDesign Automation Conference, June 2001.

[7] Axel Jantsch and Hannu Tenhunen, editors.Networks on Chip. Kluwer, 2003.

[8] E. Rijpkema, K. G. W. Goossens, A. Rădulescu, J. Dielissen, J. van Meerbergen, P. Wielage, and E. Waterlander. Trade offs in
the design of a router with both guaranteed and best-effort services for networks on chip. InProceedings of Design Automation
and Test Conference in Europe, March 2003.

[9] Hui Zhang. Service disciplines for guaranteed performance service in packet-switching networks.Proceedings of the IEEE,
83(10):1374–96, October 1995.

[10] IEEE P1500 Web Site. http://grouper.ieee.org/groups/1500/.

[11] H. Vranken, F. Meister, and H.-J. Wunderlich. Combining deterministic logic bist with test point insertion. InProceedings
European Test Workshop, pages 105–110, May 2002.

[12] Don Douglas Josephson, Steve Poehlmann, and Vincent Govan. Debug Methodology for the McKinley Processor. InProceed-
ings IEEE International Test Conference (ITC), pages 451–460, Baltimore, MD, October 2001.

[13] H. Hao and R. Avra. Structured design-for-debug - the SuperSPARC-II methodology and implementation. InProceedings IEEE
International Test Conference (ITC), pages 175–183, Washington, D.C., October 1995.

[14] Bart Vermeulen, Tom Waayers, and Sandeep Goel. Core-based Scan Architecture for Silicon Debug. InProceedings IEEE
International Test Conference (ITC), pages 638–647, Baltimore, MD, October 2002.

[15] S. A. Yemini, S. Kliger, E. Mozes, Y Yemini, and D. Ohsie. High speed and robust event correlation.IEEE Communications
Magazine, pages 82–90, May 1996.


