
A Rudimentary Expansive-Insertion
Algorithm for Embeddable Containment Trees

Higraph Editor Project∗

Konstantinos Tourlas, Daniele Turi
Division of Informatics, University of Edinburgh

{kxt,dt}@inf.ed.ac.uk

January 14, 2003

1 Preliminaries

1.1 Rectangles

Here a rectangle is considered a geometric entity: a simple closed curve on
the plane with the requisite properties.

Given any rectangle r write loc(r) for its location, defined as the coordi-
nate pair 〈x, y〉 of its top left-hand corner, also denoted as 〈loc(r) · x, loc(r) · y〉.
Write width(r) for the width of rectangle r, and height(r) for its height. Fur-
ther define maxX (r) as loc(r) · x + width(r), and similarly for maxY (r).

Given rectangles r, r′ write r < r′ to mean that the interior I (r) of r is
strictly contained in that of I (r′): I (r) ⊂ I (r′).

r ≤ r′ is defined as r < r′ or r = r′.
The empty rectangle is by convention taken to be the rectangle with

location 〈0, 0〉, zero width, and zero height.

∗Research carried out under UK-EPSRC grant GR/N12480/01 (pricipal investigator:
Stuart Anderson)

1



1.2 Nodes

Assume a set N of nodes, ranged over by n, n′ and so on.
We shall need to consider functions which assign boundaries to some

nodes in N . In general, it should suffice to regard these boundaries as simple
closed curves on the plane, yet here we make the simplifying assumption that
each assigned boundary is a rectangle.

We shall often write loc(n) as a shorthand for loc(B(n)) when B is
understood from the context; similar conventions apply to width(n) and
height(n). Also, when both B and B′ are understood, we shall write loc(n)
and loc ′(n) for loc(B(n)) and loc(B′(n)) respectively, and similarly for widths
and heights.

1.3 Trees

Given a tree t we write n →t n′ to mean that n′ is a child of n in t, omitting the
subscript t when clear from the context. Given tree t and node n0 ∈ nodes(t)
write Sibt(n0) for the set of siblings of n0 in t. In particular, n0 6∈ Sibt(n0).

2 Embeddable Containment Trees

An embeddable containment tree τ is a pair 〈t, B〉 where

• t is a tree with set of nodes in N

• B is a function assigning a rectangle to each n ∈ nodes(t).

These data are subject to the following conditions:

• whenever n → n′, then B(n′) < B(n) and, moreover, no other node n′′

exists in t such that B(n′) < B(n′′) < B(n)

• whenever n and n′ are distinct nodes in t, then the intersection of B(n)
and B(n′) is empty.

We assume certain evident (and partial) functions, such as root(t). Given
embeddable tree τ = 〈t, B〉 and a subset A of nodes(t), we shall often write
B(A) to mean

• the empty rectangle if A is empty

2



• the smallest rectangle r such that B(n) ≤ r for all n ∈ A, otherwise.

LSibτ (n0) is the set of the “left siblings” of n0 in the embeddable con-
tainment tree τ = 〈t, B〉, namely

{n ∈ nodes(t) | loc(B(n)) · x < loc(B(n0)) · x}

whereas RSibτ (n0) is

{n ∈ nodes(t) | loc(B(n)) · x ≥ loc(B(n0)) · x} .

Given τ = 〈t, B〉 and no ∈ nodes(t) define Containersτ (n0) to be the set

{n ∈ nodes(t) | n is an ancestor of n0} .

Also, we write subtreeτ (n) for the (embeddable containment) subtree of
τ rooted at n.

3 The Expansive Insertion Algorithm

The algorithm creates and inserts a new node with given bounding rectangle
bounds into an embeddable containment tree 〈t, B〉. If necessary, the new
node and any node already in the tree that is located to the right of the new
node are shifted further to the right, and any node which is to contain the
new node is expanded. A margin integer value M > 0 is used to provide extra
spacing between nodes which are shifted or expanded and the boundaries of
their container nodes.

The algorithm invokes the following two operations, specified in the fol-
lowing sections:

• An operation for shift-inserting a new node into an embeddable con-
tainment tree by relocating to the right, if necessary, the new node as
well as any nodes already in the tree which are to become siblings of the
new node. Such relocation may be necessary so as to avoid intersections
among the bounds of nodes.

• An operation to expand a given node, and all of its containers, by given
amounts along its width and height. Such expansions may become
necessary as a result of performing the shifting operation above.

3



The algorithm proceeds as follows:

1. locate a suitable container for the new node;

2. the bounding rectangle of the new node is relocated (if necessary) and
the new node is inserted using shift-insertion;

3. the bounds of the containers of the new node are expanded, if necessary.

Or in pseudo-code:

expansiveInsert(n: Node, bounds: Rectangle, margin: int) {

container = container of the location of bounds

shift-insert(container, node, margin);

W = amount by which container must be expanded along its width,

including margin

H = amount by which container must be expanded along its height,

including margin

expandNode(container, W, H);

}

4 The Node Expansion Operation

This section is concerned with the specification of a simple operation which
expands a given node in an embeddable containment tree by W units along
its width and by H units along its height.

4.1 Input

• An embeddable containment tree τ = 〈t, B〉;

• a node n0 ∈ nodes(t);

• two natural numbers W and H.

4.2 Output

An embeddable tree τ ′ = 〈t, B′〉 with the same underlying tree as the input,
but with a new “bounds” function B ′ determined as follows:

4



1. for all n ∈ nodes(t) such that B(n) < B(n0),

B′(n) = B(n)

2. for all n ∈ Containersτ (n0)

• loc ′(n) = loc(n)

• width ′(n) = width(n) + W

• height ′(n) = height(n) + H

3. for all nodes n such that n ∈ Sibt(n
′) for some n′ ∈ Containersτ ′(n0),

subtreeτ ′(n) = transl(subtreeτ (n), xn, yn)

where

xn =

{
W, if loc(n) · x > loc(n′) · x + width(n′)
0, otherwise

and

yn =

{
H, if loc(n) · x > loc(n′) · x + height(n′)
0, otherwise

(Notice that, for each n in this clause, the required n′ is unique when
it exists.)

5 The Shift-insertion Operations

This operation inserts a new node under a given parent node in an embed-
dable containment tree. This is done by shifting the insertion point (ie the
supplied location of the new node) to the right, if necessary, to avoid inter-
secting any of the parent’s children lying to the left of the insertion point.
Correspondingly, those children of the parent lying to the right of the new
insertion point are also shifted further to the right.

5.1 Input

• An embeddable containment tree τ = 〈t, B〉

• a node n0 ∈ nodes(t)

5



• a node n 6∈ nodes(t) with associated bounding rectangle b such that
loc(b) · x > loc(B(n0)) · x and loc(b) · y > loc(B(n0)) · y.

• a margin value M > 0 as a natural number.

Write L for the set of children of n0 in t lying to the left of b

L = {n ∈ nodes(t) | n0 → n and loc(n) · x < loc(b) · x} ,

and B(L) for the collective bounds of all nodes in L.

5.2 Output

If either loc(b) · x > loc(B(n0)) · x or loc(b) · y > loc(B(n0)) · y do not hold
of the input, the operation is undefined. Otherwise, the operation returns

• a tree t′

• a function B′ from nodes(t′) to rectangles; and

• a pair 〈W, H〉 of natural numbers representing the amounts by which
B′(n0) must be extended along its width and height to yield a rectangle
b0 such that b0 contains all the children n′ of n0 in t′ (i.e. B′(n′) ≤ b0

for all children n′) plus the specified margin M .

More specifically,

• t′ is simply t augmented with n0 → n

• B′ is determined as follows:

1. B′(n) = transl(B(n), loc(B(L)) · x + width(B(L)) + M, 0)

2. for all children n′ of n0 which are not in L,

B′(n′) = transl(B(n′), loc(B′(n)) · x− loc(b) · x + width(b) + M, 0)

3. for all other nodes n′ in t′, B′(n′) = B(n′).

• W = max(0,maxX (B′(R)) + M −maxX (B(n0))), where

R = {n′ ∈ nodes(t′) | n0 → n′ and loc(n′) · x ≥ loc(B′(n)) · x}

(i.e. R is the set of children of n0, including the new node n, which lie
to the right of the new node n)

• H = max(0,maxY (B′(n)) + M −maxY (B(n0))).

6


