
Easy Instances for Model Checking

Markus Frick

Dissertation
zur Erlangung des Doktorgrades

der Mathematischen Fakultät
der Albert Ludwigs Universität

Freiburg im Breisgau

16. August 2001

2

Dekan der mathematischen Fakultät:
Prof. Dr. Wolfgang Soergel

Erster Referent:
Prof. Dr. Martin Grohe

Zweiter Referent:
Prof. Dr. Heinz-Dieter Ebbinghaus

Datum der Promotion: 20. Juni 2001

3

Zusammenfassung

Das zentrale Thema der vorliegenden Dissertation ist das sogenannte
Model-Checking Problem. In seiner einfachsten Form haben wir eine endliche
relationale Struktur A und einen logischen Satz ϕ gegeben und fragen ob ϕ
in A wahr ist. Fragen dieser Art treten in den verschiedensten Bereichen der
Informatik auf, unter anderem in der Datenbanktheorie und der künstlichen
Intelligenz.

Neben diesem Entscheidungsproblem untersuchen wir bestimmte Varia-
tionen des Model-Checking Problems. Für eine Formel mit freien Variablen
stellen sich die Fragen des Aufzählens aller erfüllenden Belegungen, des Fin-
dens einer erfüllenden Belegung, sowie die Anzahl aller erfüllenden Belegun-
gen zu berechnen.

Unser Hauptinteresse gilt der Komplexität dieser Probleme, wobei wir auf
Algorithmen abzielen, deren Laufzeit beliebig von der Formel, jedoch nur li-
near von der Größe der Eingabestruktur abhängen. Offensichtlich hängt die
Komplexität der Model-Checking Probleme von der Ausdruckskraft der Spra-
che sowie der zugelassenen Strukturen ab. So ist z.B. Model-Checking für die
monadische Logik der zweiten Stufe (MSO) PSPACE-vollständig. Anderer-
seits hat Courcelle einen Algorithmus gefunden, der die Modellbeziehung in
Zeit O(f(‖ϕ‖) · ‖A‖) für Strukturen mit Baumbreite ≤ eine fest vorgegebene
Zahl w berechnet.

Die Baumbreite ist ein Maß für die Ähnlichkeit mit einem Baum. In der
Algorithmentheorie ist diese numerische Invariante die vielleicht erfolgreich-
ste Eigenschaft bei der Suche nach einfachen Instanzen für normalerweise
harte Probleme.

In der vorliegenden Arbeit untersuchen wir im wesentlichen zwei Pro-
blemarten. In Kapitel 2 verallgemeinern wir Courcelle’s Theorem und be-
schreiben Algorithmen, die für Formeln der monadischen zweiten Stufe und
Strukturen beschränkter Baumbreite alle erfüllenden Belegungen, bzw. eine
einzelne erfüllende Belegung finden. Beide Algorithmen arbeiten in Zeit li-
near in der Größe der Eingabe plus der Größe der Ausgabe (das ist für den
Aufzählungfall wichtig). Da das Zählproblem bereits von Arnborg, Lagergren
und Seese im Jahre 1991 gelöst wurde, kann damit MSO-Model-Checking auf
Strukturen beschänkter Baumbreite als vollständing bearbeitet betrachtet
werden.

4

Die vorgestellten Algorithmen basieren auf einem automatentheoretischen
Ansatz und stellen im wesentlichen nur eine Verfeinerung (und Optimierung)
bereits bekannter Methoden dar.

Im zweiten Teil der Arbeit (Kapitel 3 und 4), untersuchen wir das Pro-
blem der ersten Stufe Logik auf Strukturen, die lokal beschränke Baumbreite
besitzen, oder etwas formaler: für eine Funktion f : N→ N lassen wir Struk-
turen A zu, deren r-Nachbarschaften höchstens die Baumbreite f(r) haben.

Unter diesen Begriff fallen so wichtige Klassen wie planare Graphen,
Strukturen beschränkter Valenz und Graphen mit beschränkter Kreuzungs-
zahl.

Der Ansatz zur Lösung von Model-Checking Problemen dieser Art ba-
siert dabei auf der Beobachtung daß alle erste Stufe Eigenschaften “lo-
kal” sind. Durch die Ergebnisse aus dem 2. Kapitel können nun lokale
Lösungsmengen in optimaler Zeit berechnet werden (denn Nachbarschaften
haben nach Voraussetzung beschränkte Baumbreite). Danach müssen zur
Lösung des jeweiligen Model-Checking Problems “nur” noch die Teilergeb-
nisse zusammengesetzt werden. Auf diese Weise lösen wir die vier angespro-
chenen Model-Checking Probleme für die Logik der ersten Stufe auf lokal
baumartigen Strukturen (nicely locally tree-decomposable classes). Diese
Algorithmen arbeiten alle in Zeit linear in der Größe der Eingabestruktur
(plus der Größe der Ausgabe beim Aufzählungsproblem). Damit ist auch
dieser Problembereich vollständig gelöst.

Contents

1 Introduction 7

1.1 Background: The model-checking problem 7

1.2 Preliminaries . 10

1.3 The road map . 13

2 Evaluation on Tree-like Structures 16

2.1 Tree-decompositions and linear time 17

2.2 Courcelle’s result and a simple extension 21

2.2.1 Evaluation with one free point variable 25

2.3 Evaluation on tree-like structures 28

2.3.1 Evaluating MSO-queries on colored trees 29

2.3.2 The extension to tree-like structures 42

3 First-Order Decision Problems 48

3.1 Local tree-likeness . 48

3.2 Gaifman’s theorem . 57

3.3 The main algorithm . 58

3.4 Remarks on special cases . 62

4 First-Order with free Variables 67

4.1 A normal form for local formulas 68

4.2 Including the tree cover . 73

4.2.1 The contiguousness-graph 77

4.3 The evaluation- and witness problem 79

4.3.1 The evaluation problem 80

4.3.2 Finding a witnessing tuple 85

4.4 The counting problem . 88

4.4.1 Reducing the starting problem 90

4.4.2 Counting . 94

5

6 CONTENTS

A The Machine Model 101
A.1 The Definition . 102
A.2 RAMs on relational structures 104
A.3 Data-structures and algorithms 105
A.4 The linear time sort . 111

Index 115

Bibliography 117

Chapter 1

Introduction

1.1 Background: The model-checking prob-

lem

It is an important task in complexity theory to find feasible instances for
otherwise intractable problems. Apart from delivering algorithms for practi-
cal use, feasibility results may shed light on the structural properties of the
problem instances. The main subject of this thesis is the so called model-
checking problem and to exhibit instances for which this generally intractable
problem is easy to solve. In its basic version the problem looks as follows:
we have given a structure A and a sentence ϕ and we ask whether A satisfies
ϕ. If ϕ ∈ L for some logic L, we call this the L-model-checking problem.

This problem and its variations appear in various areas of computer sci-
ence, most notably in database theory [CH82] and in the realm of constraint
satisfaction [FV93]. An important feature is its meta-character with respect
to algorithms and complexity theory, i.e. standard problems from algorithm
theory can be expressed as certain instances of the model-checking problem.
For instance, to decide if a graph G contains a k-clique, we may alterna-
tively decide whether the first-order (FO) sentence ϕk, saying that there are
k pairwise adjacent vertices, holds in G. In a similar way colorability can be
reduced to monadic second-order (MSO) model-checking.

Essentially there are three different generalizations of the basic model-
checking problem. Assume that we are given a formula ϕ with free variables
and a structure A. The evaluation problem asks for all assignments of the free
variables such that ϕ with these assignments holds in A. The case where we
just want to find a single satisfying assignment is called the witness problem,
and finally, the counting problem refers to the task of computing the number

7

8 CHAPTER 1. INTRODUCTION

of satisfying assignments.

Our interest is focused on the complexity of the model-checking problem
and its generalizations. This question is intimately related to the expressibil-
ity of the logical language in question. First attempts of measuring the com-
plexity of model-checking have been done with respect to the size ‖ϕ‖+ ‖A‖
of the input. Unfortunately, this complexity turned out to be very high
(and certainly depends on the chosen language); already the very basic con-
junctive queries are NP-complete [CM77]. Full first-order logic and monadic
second-order logic have been shown to be PSPACE-complete [Var82].

To prove PSPACE-hardness for FO-model-checking, we reduce the prob-
lem to QBF (quantified Boolean formula, see [BDG95]), which essentially is
model-checking over a two element structure with an unary relation. One
conceivable interpretation of this fact is that the query carries the bulk of
complexity. Since at the same time, the queries are assumed to be small
compared to the size of the structure, Vardi [Var82] introduced the notion of
Data complexity. Herein, the complexity is expressed in terms of the size of
the structure, whereas the dependency on the query is completely neglected.
In this framework, we get PTIME algorithms for FO-model-checking and
its generalizations, e.g. for an FO-sentence with k variables we can decide
A |= ϕ in time O(‖A‖+ |A|k) [Var95].

Although this is considered to be “efficient” (well, it’s in PTIME), it is
not satisfying. Already for a query involving 5 variables and a structure of
moderate size 1000, the algorithm needs at least 1015 steps to decide the
model relation, what is far from feasible.

Parameterized complexity is a novel approach presented by Downey and
Fellows [DF99]. They not only introduced new ways to measure complexity,
but developed an entire complexity theory including reductions and notions
of completeness. In this framework, one or more parts of the input are con-
sidered to be the parameter of the problem instance. Under these conditions
the problem’s complexity is measured by separate functions on the parameter
and the rest of the instance, respectively.

In our context, we consider the formula ϕ as the parameter and say that
model-checking is fixed parameter tractable (in FPT), if there is a function
f : N → N, a constant c ≥ 1 and an algorithm that solves the problem
in time f(‖ϕ‖) · ‖A‖c. It was proved that conjunctive (first-order) query
evaluation is W[1]-complete [PY97] (AW[1]-complete, respectively [DFT96]).
These two classes correspond to the traditional classes NP and PSPACE and

1.1. BACKGROUND: THE MODEL-CHECKING PROBLEM 9

both results entail that, unless FPT = W[1], the corresponding problems are
not in FPT.1

We employ two strategies to bypass these hardness results. The first one
is exhibiting numerical invariants of the input instances and examining the
complexity with respect to these new parameters. The maybe most successful
parameter is the so called tree-width of a structure. Intuitively it measures
the tree-likeness of a structure, and it has been applied to a huge variety
of algorithmic problems (cf. [Bod97] for a survey). For instance, a tree has
tree-width 1, and an n-clique has tree-width n− 1. Of particular interest for
model-checking is Courcelle’s well known theorem:

Let w ≥ 1 and ϕ be a monadic second-order sentence. Then there
is an algorithm that, given a structure of tree-width at most w,
decides in linear time whether ϕ holds in A.

In our framework, the tree-width w := tw(A) of A and the sentence ϕ are
considered as parameters (actually, w is a numerical invariant of the input
structure). Now this theorem looks as follows:

There is a function f : N2 → N and an algorithm that, given a
sentence ϕ ∈ MSO and a structure A, decides whether ϕ holds in
A in time

f(‖ϕ‖, tw(A)) · ‖A‖.

The second, less general approach we follow in this thesis, is to apriori re-
strict the class of admitted structures. For a long time it has been known that
properties expressible in first-order logic are local [Gai82]. Hence, motivated
by Courcelle’s theorem, it is conceivable that local tree-likeness of structures
can be exploited to get efficient algorithms. In this thesis, we introduce the
notion of locally tree-decomposable classes C and show the following:

Let C be a locally tree-decomposable class of structures. Then
there is an f : N → N and an algorithm that, given an FO-
sentence ϕ and a structure A ∈ C, decides whether ϕ holds in A

in time
f(‖ϕ‖) · ‖A‖.

Many important classes are locally tree-decomposable, for example, the
class of graphs of bounded genus and graphs with bounded valence. Note

1Like NP 6= P, it is usually assumed that FPT 6= W[1].

10 CHAPTER 1. INTRODUCTION

here that Courcelle’s theorem is a uniform result, in the sense that there
is one algorithm that works for all input structures. In contrast to that,
this second approach gives for each class C an algorithm solving the model-
checking problem for structures from C.

All results presented in this thesis are essentially of the two types above.
For the decision, witness and counting problems, we aim at algorithms that
work within time linear in the size of the input structure. For the evaluation
cases we admit time linear in the size of the input structure plus the size of
the output. In particular, we will settle the MSO-evaluation problem and
the MSO-witness problem in linear time parameterized by the tree-width of
the input structure. Furthermore, we are able to extend the just mentioned
optimal model-checking result for locally tree-decomposable classes to the
evaluation, witness and counting cases.

Before we give a survey on the thesis and an exact formulation of the
proved results, we have to fix notation and the computation model.

1.2 Preliminaries

For n ≥ 1, we set [n] := {1, . . . , n}. By Pow(A) we denote the power set of
A and Pow≤l(A) is the set of elements of Pow(A) that have cardinality ≤ l.

A vocabulary is a finite set of relation symbols. Each relation symbol is
associated with a natural number, its arity. Vocabularies are always denoted
by the letter τ .

A τ -structure A consists of a non-empty set A, called the universe of A,
and a relation RA ⊆ Ar for each r-ary R ∈ τ . Let A be a structure and
B ⊆ A non-empty. Then 〈B〉A denotes the substructure of A induced by B.
If the context is clear we omit the superscript.

We only consider finite structures. A graph is an {E}-structure (G,EG)
where EG is an anti-reflexive and symmetric binary relation (in other
words: we consider simple undirected graphs without loops). The ele-
ments of the universe of a graph are called vertices and sometimes we re-
fer to elements of EG by the term edges. A colored graph is a structure
B = (B,EB, PB

1 , . . . , P
B
m), where (B,EB) is a graph and the unary relations

PB
1 , . . . , P

B
m form a partition of the universe B.

For a vocabulary τ , the set of first-order formulas is built up from an
infinite supply of variables x, y, x1, x2, . . ., the relation symbols R ∈ τ and =,

1.2. PRELIMINARIES 11

the connectives ∨,∧,¬,→ and the quantifiers ∀x, ∃x ranging over elements
of the universe of the structure. This logic is denoted by FO.

We extend this calculus by unary second-order variables X,Y,X1, X2, . . .
which range over sets of elements of the universe. For a vocabulary τ , the
monadic second-order logic (MSO) is the closure of FO under the adjunction
of the new atoms built from new unary relation variables, and unary second-
order quantification ∃X,∀X.

A free variable in a formula ϕ is a variable x (or X) occurring in ϕ that
is not in the scope of a quantifier ∃x, ∀x (or ∃X,∀X, respectively). We write
ϕ(X1, . . . , Xl, x1, . . . , xm) to indicate that the free variables in ϕ are exactly
X1, . . . , Xl, x1, . . . , xm. A sentence is a formula that contains no free vari-
ables. The semantics of FO,MSO should be clear. For a τ -structure A,
A1, . . . , Al ⊆ A, a1, . . . , am ∈ A and a τ -formula ϕ(X1, . . . , Xl, x1, . . . , xm) we
write A |= ϕ(A1, . . . , Al, a1, . . . , am) to say that A satisfies ϕ if the variables
X1, . . . , Xl are interpreted by the subsets A1, . . . , Al and x1, . . . , xm are inter-
preted by the elements a1, . . . , am, respectively. The rank rk(ϕ) of a formula
ϕ is the maximal number of nested quantifiers in ϕ.

For a structure A and a formula ϕ(X1, . . . , Xl, x1, . . . , xm) we let

ϕ(A) := {(A1, . . . , Al, a1, . . . , am) | A |= ϕ(A1, . . . , Al, a1, . . . , am)}.

For a sentence ϕ we set ϕ(A) = TRUE if A satisfies ϕ, and = FALSE,
otherwise2. If the vocabularies of A and ϕ do not agree, we set ϕ(A) =
FALSE (or = ∅ for ϕ with free variables). Here the convention that all
variables of ϕ enclosed within the brackets actually occur freely in ϕ is crucial
for this definition to be well defined.

Let L be a logic and C a class of structures (C may be the class of all
structures). The L-model-checking problems over C are the following:

• the decision problem

Input: Structure A ∈ C, sentence ϕ ∈ L.
Problem: Decide, if ϕ(A) = TRUE.

• the evaluation problem

2To be more consistent, we could define TRUE = {∅} and FALSE = {}.

12 CHAPTER 1. INTRODUCTION

Input: Structure A ∈ C, formula ϕ ∈ L.
Problem: Compute ϕ(A).

• the witness problem

Input: Structure A ∈ C, formula ϕ ∈ L.
Problem: Compute an element of ϕ(A).

• the counting problem

Input: Structure A ∈ C, formula ϕ ∈ L.
Problem: Compute |ϕ(A)|.

Algorithms: Since we are looking for linear time algorithms for the above
query evaluation problems, the questions of how the input is coded and what
model of computation we employ, become a central issue. Our underlying
model of computation is the standard RAM-model with addition and sub-
traction as arithmetic operations [AHU74]. We assume the logarithmic cost
measure. For an exact description of the model, and why we have chosen it,
we refer the reader to the appendix (section A). There we also give a descrip-
tion of the pseudo-code we use in the algorithms. Nevertheless, it should be
possible to understand the programs without reading the appendix.

In our main results, we mostly omit the O-notation. This improves read-
ability of the main results (and often we can think of the constants as part of
some unspecified function bounding the running time: e.g. f in f(‖ϕ‖)·‖A‖).
But it should be clear that all results involve constants depending on the used
hardware and data-structures.

A relational structure A is coded by a word w consisting of the vocabulary,
the elements of the universe A, and the relations RA for R ∈ τ . Observe that
we do not encode relations by the corresponding Boolean matrices, but simply
by a list of its tuples. This is considered the standard coding for algorithms.
It becomes particular important due to the fact that we develop algorithms
running in time linear in the size of the input structure. In that case coding
relations by their Boolean matrices would waste space and grant too much
time, if the relations contained few tuples. Again, we refer the reader to the
appendix (section A.2).

Formulas are coded in some reasonable way, e.g. by a string or its syn-
tactic tree.

1.3. THE ROAD MAP 13

We will carefully distinguish between the size ‖o‖ of an object o (which
is the length of the used encoding), and, if o is a set, its cardinality |o|. For
instance, if R is an r-ary relation, then ‖RA‖ = O(r ·|RA|+1). The difference
between | · | and ‖ · ‖ becomes crucial when we consider sets of the form ϕ(A)
where ϕ has free second-order variables.

As an example let us present an easy observation concerning the decision
problem for first-order logic over the class of all structures.

Example 1 ([Var95]). Let ϕ(x̄) ∈ FO with k variables. Then ϕ(A) can be
computed in time

O(‖ϕ‖(‖A‖+ |A|k))

Proof: First, check if ϕ(x̄) and A are of the same vocabulary and, if not,
return ∅.

Let all variables in ϕ be among x1, . . . , xk. As a matter of fact, there are
O(‖ϕ‖) many subformulas ψ1(x̄), . . . , ψm(x̄) of ϕ(x̄). We compute ψi(A) in
a bottom-up manner. We start with the atoms, i.e. if ψi(x̄) is of the form
Rx̄ for some R ∈ τ then ψi(A) can easily be computed by a loop over the
elements of RA. If ψi is a conjunction or negation, then simply take the join
or complement of the corresponding intermediate result(s).

Let e.g. (x1, . . . , xl) be the tuple of variables free in ψj and ψi(x̄) =
∃x1ψj(x̄). Now compute the projection of ψj(A) without the coordinate
corresponding to x1. The result is ψi(A).

Since for all i |ψi(A)| ≤ |A|k it is easy to see that the algorithm, suitably
implemented, works within the claimed time bound. 2

1.3 The road map

So let us give a survey on the thesis. As mentioned before, our main topic
is the model-checking problem and its generalizations. We start with an
overview of the most relevant results and give some hints about how these
results have been achieved.

In the second chapter, we examine the MSO-model-checking problems
over structures of bounded tree-width. The standard way to handle this
kind of problems, is to reduce the problem stated for arbitrary structures to
a problem on binary trees. This linear time reduction was first employed in
[ALS91]. The resulting problem instance is well suited to apply, the algo-
rithmically well understood, automata theoretic methods.

14 CHAPTER 1. INTRODUCTION

We proceed in a two-fold way. First, we re-prove Courcelle’s theorem,
which coincides with the decision problem for MSO-logic parameterized by
the tree-width of the input structures. This is done without the abovemen-
tioned reduction using merely logical methods. Using dynamic programming
this approach is extended to solve the evaluation problem for formulas with
a single free first-order variable.

After that, we turn to the standard approach. We develop algorithms for
the evaluation and witness problem, i.e. algorithms that, given a structure A

and an MSO-formula ϕ(X̄, ȳ), compute ϕ(A) in time f(‖ϕ‖, w) · (‖ϕ(A)‖ +
‖A‖), for some function f : N2 → N and w the tree-width of A (and in time
f(‖ϕ‖, w) · ‖A‖ for the witness problem).

The proofs do not contain essentially new ideas. Some ideas concerning
automata can already be found in [CM93] (although no effort was made in
optimization). So the main technical problem remained to achieve the tight
time bounds.

Observe that the counting problem for MSO over structures of bounded
tree-width has already been settled by Arnborg, Lagergren and Seese
[ALS91].

The third chapter is dedicated to the problem of deciding first-order prop-
erties over locally tree-decomposable classes of structures. Essentially, a class
C of structures is locally tree-decomposable, if for each A ∈ C the universe
A can be covered suitably by a family T of subsets of A, such that for each
T ∈ T , 〈T 〉A has tree-width bounded by a value independent from the size
of A. After giving the definition, we prove some lemmas about the structure
of such classes.

Several natural classes of structures happen to be locally tree-
decomposable. Most notably structures of bounded degree, structures of
bounded tree-width, planar graphs, and graphs embeddable into some sur-
face.

Then we prove the main theorem saying that over classes C of locally
tree-decomposable classes, the FO-decision problem is solvable in linear time.
More precisely, there is a function f : N → N and an algorithm that, given
a structure A ∈ C and an FO-sentence ϕ, decides if ϕ holds in A in time
f(‖ϕ‖) · ‖A‖. Roughly, we use the normal form theorem from Gaifman
[Gai82] that allows to express first-order definable queries by “local” queries.
These local queries can be evaluated in the substructures induced by the
cover sets (the T ’s in the above definition). In a last step, we re-assemble the
local results and decide whether the initial first-order sentence holds in A.

1.3. THE ROAD MAP 15

A natural continuation of the third chapter is to extend the decision re-
sult to the cases with free variables. This is what the forth chapter intends.
But unfortunately, to solve these problems in the affirmative, the class char-
acterization developed in the preceding section does not suffice. We will call
classes satisfying a more restricted definition nicely locally tree-decomposable.
A pleasant property of this new, stricter definition is that it still comprises
all examples mentioned above.

For such classes of structures we develop algorithms that solve the evalu-
ation and witness problem. Given an input structure A and a formula ϕ(x̄),
the running time is bounded by f(‖ϕ‖) · (|ϕ(A)| + ‖A‖) for the evaluation
problem and by f(‖ϕ‖) · ‖A‖ for the witness problem.

The details are too involved to be presented here, but essentially we again
exploit locality and use the fact that local computations can be done in
optimal time (by the results of the second chapter for structures of bounded
tree-width).

Finally, we attack the FO-counting problem for nicely locally tree-
decomposable classes. At the end of the forth chapter, this counting problem
is reduced to the calculation of a sum over labels attached to “independent”
sets of a graph of bounded degree (hence we have a polynomial number of
addends). Nevertheless, we get an algorithm that solves the FO-counting
problem over such classes in time f(‖ϕ‖) · ‖A‖ for some suitable function
f : N→ N and input A, ϕ.

In the appendix we will present the machine model and some basic algo-
rithms that are used in the thesis.

Thanks to my supervisor Martin Grohe for guidance and advice. I would
also like to thank all people giving useful comments on drafts of this thesis
(they know who they are). Particular thanks to Bernhard Herwig who in the
last minute pointed out an easy proof for theorem 67.

Chapter 2

Evaluation on Tree-like
Structures

Intuitively, the tree-width of a graph measures its similarity with a tree.
In the known form, this notion was introduced by Robertson and Seymour
[RS86], and the straightforward generalization to arbitrary structures is due
to Feder and Vardi [FV93].

We start with the introduction of the notion of a tree-decomposition for
arbitrary structures. To explain the handling of such decompositions, we
develop the adequate data structures and procedures that are essential for
linear time algorithms. As a first application, we re-prove Courcelle’s theo-
rem [Cou90] by purely logical techniques. In a further step, we extend this
result by a Dynamic programming approach to a linear time algorithm that
associates to each element of the input structure its logical type.

In the subsequent section we state and prove the main result concerning
structures of bounded tree-width. It claims that there is an algorithm that
evaluates MSO-queries in time linear in the size of the input plus the size
of the output. This is done by an automata theoretic approach, essentially
based on ideas from Arnborg, Lagergren and Seese [ALS91]. For that, the
question about tree-decompositions is reduced to colored binary trees, on
which (by [TW68]) MSO and deterministic tree automata coincide. Doing a
suitable prescan, we will be able to avoid unnecessary computation, and thus
obtain the tight time bound. In a paper of Courcelle and Mosbah about eval-
uating MSO on tree-like graphs [CM93] it was already noted that the usual
automata theoretic methods can be improved by sorting out unreachable
states. But neither the exact idea was made explicit nor an implementation
was given to obtain optimal time bounds. In fact, these details will be the
technically most involved part of the section.

16

2.1. TREE-DECOMPOSITIONS AND LINEAR TIME 17

2.1 Tree-decompositions and linear time

We start with the definition of a tree-decomposition of a relational structure.
Recall that a tree is a connected acyclic graph. Let A be a τ -structure for
some relational vocabulary τ .

Definition 2. A tree-decomposition of A is a pair (T , (Bt)t∈T), where T is
a tree and (Bt)t∈T is a family of subsets of A such that

(1) For every a ∈ A, the set {t ∈ T | a ∈ Bt} is non-empty and connected
in T .

(2) For every R ∈ τ and every ā ∈ RA there is a t ∈ T such that ā ∈ Bt.

The sets Bt are called the blocks of the tree-decomposition, and the width
of (T , (Bt)t∈T) is max{|Bt| | t ∈ T} − 1. The tree-width tw(A) of A is
the minimal width of a tree-decomposition of A. From property (1) we
immediately derive the following important property of tree-decompositions:
Let t, t′ ∈ T with common ancestor s. Then Bt ∩Bt′ ⊆ Bs.

Sometimes we use the easy fact that the class of structures of tree-width
at most w is sparse:

Lemma 3 ([Bod98]). Let w ≥ 1 and τ a vocabulary. Then there is a
constant k (depending on τ and w) such that for every τ -structure A of tree-
width at most w we have ‖A‖ ≤ k · |A|.

The main application of this fact is that if C is a class of structures of
tree-width ≤ w, then each relation of a structure A ∈ C contains at most
f(w, τ) · |A| many tuples for some suitable f : N2 → N. Hence, we can pass
through the relation in time linear in the cardinality of the universe.

Definition 4 (Gaifman graph). Let A be a τ -structure. Then the Gaifman
graph of A is the graph G(A) = (G,EG(A)), with universe G := A and an edge
between a, b ∈ A, a 6= b, if there is an R ∈ τ and a tuple (a1, . . . , ak) ∈ RA

such that a, b ∈ {a1, . . . , ak}.
It is easy to see that, given a structure A, its Gaifman graph G(A) can

be calculated in time O(‖A‖): For each k-ary relation R ∈ τ perform a loop
over all (a1, . . . , ak) ∈ RA doing the following: for each i = 1, . . . , k add ai
to the adjacency list of a1, . . . , ai−1, ai+1, . . . , ak, respectively. Afterwards,
we remove multiple vertices from every adjacency list (cf. end of section
A.3). The time bound is easily verified. Observe here that the constant
hidden behind the O-notation depends on the vocabulary τ . If r denotes
the maximal arity of relations of τ then the constant is roughly |τ | · r2 (each
(a1, . . . , ak) ∈ RA leads to at most k(k − 1) edges in the Gaifman graph).

The next property of Gaifman graphs is particularly useful:

18 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

Lemma 5. Let A be a τ -structure. Then (T , (Bt)t∈T) is a tree-decomposition
of A if, and only if, it is a tree-decomposition of G(A).

Proof: Assume that (T , (Bt)t∈T) is a tree-decomposition of G(A). Now take
an ā ∈ RA, for some R ∈ τ . Since in G(A) the set {a1, . . . , ak} is a clique,
it must appear in a single block Bt, hence ā ∈ Bt. The connectedness (1)
condition is equal for both, the structure and its Gaifman graph.

For the other direction, assume that (T , (Bt)t∈T) is a tree-decomposition
of A and (a, b) ∈ EG(A). By definition of the Gaifman graph, there is an
R ∈ τ and an ā ∈ RA such that (a, b) ∈ {a1, . . . , ak}. Thus, there is a t ∈ T
such that ā ∈ Bt, hence (a, b) ∈ Bt. 2

By this lemma, most results about tree-decompositions of graphs extend
to structures. In particular, the outstanding result that tree-decompositions
can be calculated in linear time was originally stated for graphs.

Theorem 6 (Bodlaender[Bod96]). There is a polynomial p(x) and an
algorithm that, given a τ -structure A, computes a tree-decomposition of A of
width w := tw(A) in time

O(2p(w)|A|).

The first problem with this algorithm is that it is technically so involved
that an implementation appears to be hopeless. On the other hand the factor
depending on w grows unreasonably high, even small values. This makes the
algorithm almost worthless for practice. A Dynamic programming approach
to the problem has been developed by Arnborg et al [ACP87]. This, at
least implementable, algorithm needs O(|A|w+1) time to compute a tree-
decomposition of width w := tw(A). But due to its Dynamic nature, this is
also the least running time, hence it can not even be used for a particular set
of instances. Until now there is no practical algorithm known that calculates
a tree-decomposition of optimal width.

In [Ree92], Reed proposed a quadratic time algorithm for finding tree-
decompositions of width 4 · tw(A). Despite of bad constants in the worst
case, there are reasons for a nice behavior in practice. In each step, the
Divide and Conquer procedure determines a separator (out of a constant
number of possible separators) of the graph, splits up the graph into its
corresponding components and continues with these components. Since the
first encountered separator suffices to continue, it is conceivable that we
get reasonable running times in practice (this means for “natural” problem
instances). Parts of this algorithm have already been implemented by the
author, but there are still no experimental results. Above all there is the
question of what are “natural” instances of graphs of tree-width, say, w.

2.1. TREE-DECOMPOSITIONS AND LINEAR TIME 19

For our purposes, it is convenient to work with tree-decompositions of
a normalized form. For a vertex r ∈ T (the root) the pair (T , rT) is the
tree T rooted in rT (in the sequel we often omit the superscript). And once
we have declared a root in a tree, we can speak about parents, children and
descendents. This also induces the natural partial ordering ≤T on T (the
root is the least element). For t ∈ T , we denote the subtree of T rooted in
t by Tt. In relation with the underlying structure A, we denote by At the
substructure of A induced by the set

⋃
s∈Tt Bs.

Definition 7. A special tree-decomposition (STD) of width w of a structure
A is a 3-tuple (T , r, (b̄t)t∈T) where T is a binary tree, r ∈ T is the root
and every b̄t := (bt0, . . . , b

t
w) is a (w + 1)-tuple of elements of A, such that

(T , {bt0, . . . , btw}t∈T) is a tree-decomposition of A of width w.

Obviously, having a tree-decomposition (T , (Bt)t∈T), a special tree-
decomposition can be computed in linear time: Thereto, assume that w.l.o.g
all Bt are non-empty and declare an arbitrary vertex to be the root. For each
Bt we generate a |Bt|-tuple b̄, which itself is extended to a (w + 1)-tuple b̄t.
For that, we fill up missing bti with arbitrary “dummy” elements b ∈ Bt. To
make T binary, assume that t ∈ T has 3 children u1, u2, u3. We create a new
vertex t′ being a child of t with the unique sibling u1. u2 and u3 become the
children of t′, and we define b̄t

′
:= b̄t. For more than 3 children we simply

iterate this procedure. Altogether, we start with the root, proceed top-down
to the leaves and end up with a special tree-decomposition.

Representation of tree-decompositions: Generally, for algorithms to
run in linear time, it is important to structure the data adequately. We will
use the concept of bounded tree-width to design model checking algorithms
that work in time linear in the size of the input structure (plus the size of
the output for evaluation problems). Hence structuring the data in a time
saving manner becomes a central issue of our work. In chapter A we give a
complete account on the machine model we use throughout this thesis and
how we store and structure data in this model. The distinction between
small and big objects turns out to be useful in the parameterized setting
(cf. the introduction). Roughly, objects whose size depend on the input
structure (e.g. subsets of the universe) are called big and require a careful
implementation (by lists, arrays or whatsoever depending on the usage). For
further details the reader is referred to section A.3.

Let A be a τ -structure and (T , r, (b̄t)t∈T) a tree-decomposition of A of
width w. In the bulk of applications, the algorithms work as follows: the
tree is traversed in a bottom-up or top-down manner, while in each step

20 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

the procedure maintains a certain set of partial solutions (usually w.r.t At).
In each step, in order to establish the new partial solutions, the algorithm
requires constant time access to 〈Bt〉 for the current t. Unfortunately, this
information cannot be retrieved efficiently from the representation of the
underlying structure (since the relations are stored as “unstructured” lists).
To provide this tree-based access to 〈Bt〉, we associate with each tree node
t ∈ T and R ∈ τ the list of tuples contained in R〈Bt〉. By the next lemma,
this can be done in linear time.

Lemma 8. Given a special tree-decomposition (T , r, (b̄t)t∈T) of a τ -structure
A, the relations R〈Bt〉 for R ∈ τ and t ∈ T can be calculated in time

O(f(‖τ‖, w) · |A|)

for a suitable function f : N2 → N and w := tw(A).

The actual problem is the space bound. If we had polynomial space, we
would create a k-dimensional array ER[·] for each k-ary R ∈ τ as follows: for
all t ∈ T add t to the list ER[c̄] for all c̄ ∈ Bt. In a second loop over all
ā ∈ RA, we add ā to R[t], for all t ∈ ER[ā]. After that, R[t] contains the set
R〈Bt〉.

Proof: Let R ∈ τ , k-ary. We proceed in two steps to compute an array
R[·] such that R[t] contains the list R〈Bt〉 for all t ∈ T . In the first step
we generate a list d consisting of the (k + 1)-tuples (c̄, t) for all c̄ ∈ Bt

and t ∈ T . Furthermore, we order this list ascendingly with respect to the
first component. In a second pass, we compare d with the (also ascendingly
ordered) list rel that contains the elements of RA, and add those ā ∈ rel to
R[t] for which (ā, t) ∈ d. Since both list are ordered ascendingly, this can be
done in time linear in the size of both lists.

The first step is displayed as algorithm 1. Observe that for each t at most
(w+ 1)k tuples are added to d. Together with the Radix-sort in the last line
we thus need O((k + 1)((w + 1)k|T |+ |A|)) steps.

The subroutine block relation(T , (Bt)t∈T , R), finally, calculates the de-
sired array R[·] for R ∈ τ . The only non-trivial part is comparing the two
sorted lists. Essentially, we cycle over all ā ∈ RA and gather all (c̄, t) ∈ d

such that ā = c̄. For these elements we add c̄ to the list R[t]. Note that this
procedure requires the lists being sorted. Once explained, it is easily verified
that the algorithm works correctly. 2

Storing special tree-decompositions: Let A be a τ structure with special
tree-decomposition (T , r, (b̄t)t∈T) of width w. By the above lemmas, we can

2.2. COURCELLE’S RESULT AND A SIMPLE EXTENSION 21

1 proc gen ttuples(T , (Bt)t∈T)
2 for t ∈ T do
3 for c̄ ∈ Bt do append(d, (c̄, t)) od
4 od
5 radix sort(d);
6 return(d);
7 .

Algorithm 1. Generate the list d

compute additional arrays (R[·])R∈τ of size |T | such that for all R ∈ τ and
t ∈ T we have:

R[t] = R〈Bt〉 as a linked list.

Observe that since Bt has size (w + 1), each list R[t] for k-ary R has size
≤ (w+ 1)k, hence we have the desired constant time decision for queries like
ā ∈ R〈Bt〉.

2.2 Courcelle’s result and a simple extension

The following theorem is due to Courcelle [Cou90] and states that MSO-
properties are linear time decidable over classes of bounded tree-width. Ac-
tually, he proved this theorem using context free hyperedge-grammars and
classes definable by equational expressions. We take another way using games
that characterize certain fragments of monadic second-order logic (MSO).

Theorem 9. Let w ≥ 1 and ϕ ∈ MSO of quantifier rank q. There is function
f : N2 → N and an algorithm that answers A |= ϕ, for a structure A in time

f(w, q) · ‖A‖

for w := tw(A).

For two structures A,B and q ≥ 0 we write A ≡MSO
q B, if A and B

satisfy the same sentences ϕ ∈ MSO of rank ≤ q. ≡MSO
q can be charac-

terized by an Ehrenfeucht-Fraisse game that is played by the Spoiler and
the Duplicator. The Spoiler starts choosing one of the two structures, say,
A and then decides whether he does a point move or set move. In a point
(set) move, the Spoiler chooses some a ∈ A (P ⊆ A), and the Duplicator
answers b ∈ B (Q ⊆ B). After q moves, elements a1, . . . , ar and subsets
P1, . . . , Ps (q = r + s) in A and corresponding elements b1, . . . , br and sub-
sets Q1, . . . , Qs of B have been chosen. Now, the Duplicator has won, if

22 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

1 proc block relation(T , (Bt)t∈T , R)
2 rel := RA;
3 d := gen ttuples(T , (Bt)t∈T);
4 for ā ∈ rel do
5 while () do
6 (c̄, t) := current(d);
7 if ā = c̄
8 then
9 append(R[t], ā);

10 else
11 if predecessor(rel) = c̄
12 then
13 break;
14 fi
15 fi
16 next element(d);
17 od
18 od
19 .

Algorithm 2. Calculate R〈Bt〉 for all t ∈ T

ā 7→ b̄ ∈ Part((A, P1, . . . , Ps), (B, Q1, . . . , Qs)). The next theorem is folklore
and can be found in, for instance, [EF95].

Theorem 10. A ≡MSO
q B iff the Duplicator has a winning strategy for the

q-move game on A and B.

For q ≥ 0 the q-type tpq(A, ā) of a k-tuple ā ∈ A in a τ -structure A is
the set of all monadic second-order formulas ϕ(x̄) of quantifier-rank at most
q such that A |= ϕ(ā). Using standard techniques, it is easy to see that,
up to logical equivalence, there are only finitely many monadic second order
formulas with free variables in x̄ of quantifier rank at most q. Hence tpq(A, ā)
has a finite description. Observe that (A, ā) ≡MSO

q (B, b̄) is equivalent to
tpq(A, ā) = tpq(B, b̄).

Since we consider q-types of the substructures At of A, it is convenient to
introduce the shortcuts stype(t) := tpq(At, b̄

t) and block(t) := (〈Bt〉, b̄t). We
say that two blocks corresponding to tree vertices s, t (of maybe different tree-
decompositions) are isomorphic (block(s) ∼= block(t)), if there is a bijective
function f : Bs → Bt such that for k-ary R ∈ τ and all (a1, . . . , ak) ∈ Bs:
ā ∈ R〈Bs〉 ⇔ (f(a1), . . . , f(ak)) ∈ R〈Bt〉 and f(bsi) = bti for all i = 0, . . . , w.

2.2. COURCELLE’S RESULT AND A SIMPLE EXTENSION 23

Remark: When we treat special tree-decompositions, we always use b̄t to
denote the tuple associated with the tree node t ∈ T . Even if we handle var-
ious tree-decompositions, this does not introduce ambiguities, if we assume
that different tree-decompositions have disjoint underlying trees T . For con-
venience, we still use Bt to denote {bt0, . . . , btw}; of course only in situations
that do not depend on the specific ordering of the tuple b̄t.

For a special tree-decomposition (T , r, (b̄t)t∈T), we define the equality-type
at s, t ∈ T as

id(s, t) := {(i, j) | 0 ≤ i < j ≤ w, bsi = btj}.

The next lemma is essential for Courcelle’s theorem.

Lemma 11. Let A and A′ be τ -structures, and (T , r, (b̄t)t∈T) and
(T ′, r′, (b̄t′)t′∈T ′) be special tree-decompositions of A and A′ of width
w ≥ 1, respectively. For t ∈ T and t′ ∈ T ′ with children
u1, u2 and v1, v2, respectively, the following holds (cf. figure 2.1):
If stype(u1) = stype(v1), id(t, u1) = id(t′, v1)
and stype(u2) = stype(v2), id(t, u2) = id(t′, v2)
and block(t) ∼= block(t′),

then we have stype(t) = stype(t′).

Proof: We prove this lemma using Ehrenfeucht-Fraisse games. Because
tpq(b̄

u1 ,Au1) = tpq(b̄
v1 ,A′v1

), the Duplicator has a local winning strategy for
the corresponding game on (Au1 , b̄

u1) and (A′v1
, b̄v1). Likewise he has a local

strategy on (Au2 , b̄
u2) and (Bv2 , b̄

v2). We have to show that the Duplicator
wins the game on (At, b̄

t) and (A′t′ , b̄
t′). We show that the Duplicator can

maintain the winning situation. Assume we have a partial isomorphism c̄ 7→ d̄
from (At, P̄ , b̄

t) to (A′t′ , Q̄, b̄
t′ (this means that P̄ , Q̄ and c̄, d̄ have already

been pebbled in the game) and that local strategies exist. We show how the
Duplicator act in the set moves.

Assume that the Spoiler pebbles a set X ⊆ At. This set splits up into
the parts X1 := X ∩ Au1 and X2 := X ∩ Au2 and X+ := X \ (X1 ∪ X2).
According to the local strategies, the Duplicator chooses sets Y1 ⊆ Bu1 , Y2 ⊆
Bu2 corresponding to X1, X2. Take Y + to be the image of X+ under the
claimed isomorphism (recall that block(t) and block(t′) are isomorphic). The
Duplicator responds Y := Y1 ∪ Y2 ∪ Y +.

We have to show that c̄ 7→ d̄ is still a partial isomorphism (now of the
structures expanded by X and Y , respectively). Take some a ∈ {c1, . . . , cr}.
Essentially, there are 2 cases: (i) a ∈ b̄t: then the isomorphism between b̄t

and b̄t
′

assures that a is mapped to an element a′ with a ∈ X ⇐⇒ a′ ∈ Y .

24 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

Au1 A′v1

b̄t
′

b̄t

Au2 A′v2

Figure 2.1: Dependency of types

If (ii) a /∈ b̄t, then a is contained in, say, Au1 . By the local strategy,
according to which the Duplicator chose Y1, we also have a ∈ X1 ⇐⇒ a′ ∈
Y1. Observe that we do not have to check for the relation of different a, b ∈
{c1, . . . , cr}, since there conformity with the relations holds by assumption.
Since the point moves work similarly, the proof is completed. 2

Let t ∈ T for a special tree-decomposition (T , r, (b̄t)t∈T). For each R ∈ τ
we define itype(R, t) := {(i1, . . . , ik) | (bti1 , . . . , b

t
ik

) ∈ RA}. The isomorphism-
type at t ∈ T is the pair

itype(t) := (id(t, t), {(R, itype(R, t)) | R ∈ τ}).

Observe that itype does not contain any reference to the underlying structure
A. It is easy to see that there is an isomorphism between (〈Bt〉, b̄t) and
(〈Bt′〉, b̄t

′
) if, and only if, itype(t) = itype(t′). Then it is an easy corollary of

the last lemma that for t ∈ T with children u1 and u2, stype(t) only depends
on stype(u1), stype(u2), itype(t) and how b̄t and b̄u1 , and b̄t and b̄u2 intersect,
respectively. For leaves t, stype(t) only depends on the isomorphism type
of itype(t). This means that there are functions Γ and ∆ such that for all
structures A with an STD (T , r, (b̄t)t∈T) of width w we have

stype(t) = Γ(itype(t), stype(u1), id(u1, t), stype(u2), id(u2, t))

for parent nodes t with children u1, u2

stype(t) = ∆(itype(t)) for leaves t.

As already mentioned, there is a finite number of q-types for a fixed q ≥
0. Furthermore, the number of different isomorphism types of blocks of
the decomposition depends only on w. The same holds for the number of

2.2. COURCELLE’S RESULT AND A SIMPLE EXTENSION 25

ways in which adjacent blocks may intersect. Hence, the functions Γ and ∆
only depend on w and q, but not on the structure A and can be assumed
to be accessible in constant size lookup tables. This thoughts are directly
translated to the program displayed as algorithm 3. The functions itype(t)
and id(s, t) calculate the respective types in constant time by access to the
arrays R[·] for R ∈ τ (recall the remark about how tree-decompositions are
stored).

1 proc model checkϕ,w(A)
2 Compute STD (T , r, (b̄t)t∈T) of width w of A

3 tp := stype(r);
4 if ϕ ∈ tp then accept else reject fi
5 .
7 proc stype(t)
8 comment: Compute and return stype[t]
9 if t is a leaf

10 then stype[t] := (∆(itype(t)))
11 else
12 u1 := first child of t;
13 u2 := second child of t
14 stype[t] := Γ(itype(t), stype(u1), id(u1, t),

stype(u2), id(u2, t));
15 fi
16 return(stype[t]);
17 .

Algorithm 3. Checking monadic second-order property ϕ

The correctness of model checkϕ,w follows directly from the properties of
Γ,∆ and the fact that A |= ϕ is equivalent to ϕ ∈ tpq(A, b̄

r) = stype(r).
To estimate the time bound, recall that a STD (T , r, (b̄t)t∈T) of A can be
computed in time g(w) · ‖A‖ for some function g.

Because ∆ and Γ are stored in constant size look-up tables and the func-
tions itype as well as id need constant time, each recursive call in stype

costs time g′(w, q) for a suitable g′. Summing this up, we obtain a time
bound g(w) · ‖A‖+ g′(w, q)|T | = f(w, q) · |A| for some suitable f . 2

2.2.1 Evaluation with one free point variable

Let A be a τ structure. In this section we describe an extension of the
result proved in the last section. In contrast to Courcelle’s algorithm, which

26 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

only computes tpq(A, b̄
r), we now compute (within essentially the same time

bound) tpq(A, b̄
t) for all t ∈ T at once (if T is the underlying tree of a suitable

tree-decomposition). This enables us to associate with each vertex a ∈ A its
q-type tpq(A, a) := {ϕ(x) | A |= ϕ(a) and rk(ϕ) ≤ q}.

Lemma 12. Let w, q ≥ 0. There is an algorithm that, on input A with
tree-width ≤ w, calculates the array tp[a] := tpq(A, a), for all a ∈ A in time

f(w, q) · ‖A‖

for an appropriate f : N2 → N.

Proof: Let (T , r, (b̄t)t∈T) be an STD of width w of a τ -structure A. We
adopt the notation from the above discussion. Let t ∈ T . Analogously to At,
we define At as the substructure of A “above” t, i.e. At := 〈(A \ At) ∪ Bt〉.
The top-type is ttype(t) := tpq(A

t, b̄t) and we define type(t) := tpq(A, b̄
t).

Our goal is to compute type(t) for all t ∈ T , since from that we can
easily extract the desired information. For a = bti, we get tpq(A, a) =
{ϕ(xi) | ϕ(xi) ∈ type(t)}, hence we can concentrate on type(t) for all t ∈ T .
Observe that for all t ∈ T we have (cf. figure 2.2)

At

At

b̄t b̄t b̄t

b̄t

At At

Figure 2.2: Computing type(t).

type(t) = Γ(itype(t), stype(t), id(t, t), ttype(t), id(t, t)).

Hence we are done, if we know stype(t) and ttype(t) for all t ∈ T . The array
stype[·] is computed (bottom-up) by the subroutine stype(r) from the proof
of Courcelle’s theorem. For the computation of ttype[t] for t ∈ T observe
the following:
Let t be a node, t 6= r with parent s and sibling t′. Observe that

tpq(〈At′ ∪ As〉, b̄s) = Γ(itype(s), ttype(s), id(s, s), stype(t′), id(t′, s)).

2.2. COURCELLE’S RESULT AND A SIMPLE EXTENSION 27

If we denote this type with τ we get

ttype(t) = Γ(itype(t), τ, id(s, t), τ, id(s, t)).

The straightforward implementation is displayed as algorithms 4 and 5. After
computing the STD of A we compute the two arrays stype and ttype as
explained above. Then an easy loop over all vertices t ∈ T associates with
t the corresponding type type(t). This proves the correctness. For the time
bound notice that each of the first two calls take time linear in |A|. The
same holds for last loop. 2

1 proc model checkϕ,w(A)
2 Compute STD (T , r, (b̄t)t∈T) of width w of A

3 stype(r); ttype(r);
4 for t ∈ T do
5 type[t] := Γ(itype(t), stype[t], id(t, t),

ttype[t], id(t, t));
6 for i = 0 to w do
7 if tp[bti] 6= NULL
8 then
9 tp[bti] := {ϕ(xi) | ϕ(xi) ∈ type[t]}

10 fi
11 od
12 od
13 .

Algorithm 4. Compute type[a] for all a ∈ A

The following lemma will be needed in the next chapter.

Corollary 13. Let w ≥ 1 and ϕ(x) ∈ MSO of quantifier rank q. There is
a function f : N2 → N and an algorithm that on input A calculates the set
{a ∈ A | A |= ϕ(a)} in time

f(w, q) · ‖A‖.

Proof: In a first step we associate tpq(A, a) with each vertex a ∈ A (through
the array tp in the last lemma). Then we perform a loop over all a ∈ A and
add those a to the set, for which ϕ(x) ∈ tp[a]. 2

Remark: Note that these model-checking algorithms require the functions
Γ and ∆. Since we did not explain how their tables can be computed, our

28 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

1 proc ttype(t)
2 if t = r then ttype[t] := ∆(itype(t)) fi
3 if t is not a leave
4 then
5 u1 := first child of t
6 htp := Γ(itype(t), ttype[t], id(t, t),

stype[u1], id(u1, t));
7 ttype[u1] := Γ(itype(u1), htp, id(u1, t), htp, id(u1, t));
8 ttype(u1);
9 u2 := second child of t

10 htp := Γ(itype(t), ttype[t], id(t, t),
stype[u2], id(u2, t));

11 ttype[u2] := Γ(itype(u2), htp, id(u2, t), htp, id(u2, t));
12 ttype(u2);
13 fi
14 .

Algorithm 5. Compute the array ttype[t]

algorithms are non-uniform. In this context, this means that for each MSO-
formula ϕ there is a linear time algorithm Aϕ that decides whether ϕ holds.
In the next section we will see that, using automata theoretic ideas, all these
algorithms can be made uniform.

2.3 Evaluation on tree-like structures

The last corollary in the last section already had the flavour of an evaluation
algorithm for queries. It allows the evaluation of MSO-queries restricted to
one free first-order variable in linear time. In this section we develop an
algorithm that allows to evaluate arbitrary MSO-queries in time linear in
the size of the input plus the size of the output.

In the first section, we present an algorithm evaluating queries on trees.
The algorithm is based on the correspondence between tree-automata and
monadic second-order logic. Then this algorithm is extended to structures
of bounded treewidth.

2.3. EVALUATION ON TREE-LIKE STRUCTURES 29

2.3.1 Evaluating MSO-queries on colored trees

Before we start, we need to introduce the basic concepts concerning tree
automata. Let Γ be a finite alphabet. We define τΓ to be the vocabulary
consisting of a binary relation symbol E, a constant r and an unary relation
symbol Pγ for each γ ∈ Γ. A Γ-tree is a τΓ-structure whose underlying graph
(the reduction to {E}) is a binary tree rooted in r and the Pγ for γ ∈ Γ form
a partition of the universe. A colored tree is a Γ-tree for some Γ. We say that
a vertex t of a colored tree T has color γ, if t ∈ P Tγ . In this case we write
γ(t) = γ.

A (bottom-up) Γ-tree automaton is a 4-tuple A = (Q, δ,∆, F), where Q
is the finite set of states and ∆ : Γ→ Q the starting function. F ⊆ Q is the
set of accepting states and δ : Pow≤2(Q)× Γ→ Q is the transition function.

The run (observe that δ is a function) ρ : T → Q of A on the Γ-tree T is
defined in a bottom-up manner. If t is a leaf, then ρ(t) := ∆(γ(t)). If t has
children s1, s2 then ρ(t) := δ({ρ(s1), ρ(s2)}, γ(t)). The automaton A is said
to accept T if ρ(rT) ∈ F . Otherwise we say that A rejects T .

A class of colored trees is recognizable, if it is the class of trees accepted
by some tree-automaton.

Theorem 14 (Thatcher and Wright [TW68, Tho97]). Let Γ be a finite
alphabet. A class of Γ-trees is recognizable, if and only if, it is definable by
an MSO[τΓ] sentence.

We proceed as follows: since the above theorem only applies to sen-
tences we show how formulas with free variables have to be treated. First,
we replace free first-order variables by free second-order variables. Then
we show how free second-order variables correspond to an extension of
the vocabulary on the automaton side. So assume that we have given
an MSO-formula ϕ(X1, . . . , Xl, y1, . . . , ym). We translate ϕ to a formula
ϕ′(X1, . . . , Xl, Y1, . . . , Ym) such that for every structure A and B̄, C̄ ⊆ A

A |= ϕ′(B̄, C̄) ⇔ there are c1, . . . , cm ∈ A with C1 = {c1}, . . . , Cm = {cm}
and A |= ϕ(B̄, c̄)

Now let be given ϕ(X1, . . . , Xk) ∈ MSO[τΓ] for an alphabet Γ and a Γ-tree
T . To code assignments of the free variables Xi into the tree, we extend the
alphabet to Γ′ := Γ×{0, 1}k. Then, given an assignment B1, . . . , Bk ⊆ T for
our free variables, we obtain the corresponding Γ′-tree T ′ := (T ; B1, . . . , Bk)
by the obvious expansion of the vocabulary. In particular, if γ(t) denotes the
color of t in T , we define

γ′(t) = (γ, ε̄) ⇔ γ(t) = γ and (t ∈ Bi ⇔ εi = 1) for i = 1, . . . , k.

30 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

The tuple ε̄ is called the additional color of t. This establishes the corre-
spondence between assignments on the one side and colors on the other.
Observe that (T ; B1, . . . , Bk) does not denote the expansion of T with k
new unary relations (this is why we use a semicolon instead of a comma).
In fact, (T ; B1, . . . , Bk) denotes the τΓ′-structure (T,ET , (P T

(γ,ε̄))γ∈Γ,ε̄∈{0,1}k),

where P(γ,ε̄) is defined above (cf. the definition of γ′).
It is easy to see that the class

{(T ; B̄) | T a colored Γ-tree, B̄ ∈ ϕ(T)}

is axiomatized by the τΓ′-sentence

ϕ′ := ∃X1 . . . Xk∃(Yγ)γ∈Γ

(
ϕ̃(X̄)∧

∀t
(∧
γ∈Γ

∧
ε̄∈{0,1}k

(P(γ,ε̄i)t↔ (Yγt ∧
∧
i:εi=1

Xit ∧
∧
i:εi=0

¬Xit))
))
.

where ϕ̃(X̄) is obtained from ϕ(X̄) by replacing all Pγ with the unary second-
order variable Yγ, and using ∃(Yγ)γ∈Γ as a shortcut for the existential quan-
tification of all Yγ, γ ∈ Γ. As it will turn out, this characterization suffices
to apply theorem 14 to our problem. Let us state our main theorem for the
case of Γ-trees.

Theorem 15. There exists a function f and an algorithm that solves the
evaluation problem for MSO-formulas on colored trees in time

f(‖ϕ‖) · (‖T ‖+ ‖ϕ(T)‖)

on input ϕ(X1, . . . , Xl, x1, . . . , xm) and T .

Proof: By the discussion above, we assume the input consisting of a formula
of the form ϕ(X1, . . . , Xk) ∈ MSO[τΓ] and a Γ-tree T . Remember that the
class C is defined by the above MSO[τΓ′]-sentence ϕ′. Hence, there is a Γ′-
automaton A = (Q,∆, δ, F) recognizing C.

Now we get an easy and constructive characterization of the sought set.
For the input Γ-tree T we have

ϕ(T) = {B̄ | A accepts (T ; B̄)}.

This gives us the idea for the algorithm. We simply collect the additional
colors such that A accepts T expanded by those colors. The presentation
of the algorithm (doing this in an optimal way) involves two parts. In the
first part, we describe how the algorithm is going to work, including the

2.3. EVALUATION ON TREE-LIKE STRUCTURES 31

correctness of the steps performed by the algorithm. In a second part, we
give a detailed implementation of the algorithm together with an analysis of
the running time and the data structures involved.

I.) The algorithm: We pass through the tree T three times. In a first
bottom-up pass we collect the set of states that could be reached by the
automaton. Then we go down, sorting out those states that do not lead to
accepting states, and finally we go bottom-up again gathering the satisfying
assignments for ϕ(X̄) (even considering only those).

1. Bottom-up: By induction from the leaves to the root, we first compute,
for every t ∈ T , a set Pt of “potential states” at t: If t is a leaf, then
Pt := {∆((γ(t), ε̄)) | ε̄ ∈ {0, 1}k}. For an inner vertex t with children s1 and
s2, we set

Pt := {δ({q1, q2}, (γ(t), ε̄)) | q1 ∈ Ps1 , q2 ∈ Ps2 , ε̄ ∈ {0, 1}k}.

Then for all t ∈ T and q ∈ Q we have q ∈ Pt if, and only if, there are sets
B1, . . . , Bk ⊆ T such that for the run ρ of A on (T ; B̄) we have ρ(t) = q.
This is easily proved by induction.

Note that if Pr ∩ F = ∅ we have ϕ(T) = ∅, and no further action is
required.

2. Top-down: Starting at the root r := rT we compute, for every t ∈ T ,
the subset St of Pt of “success states” at t: We let Sr := F ∩ Pr. If t has
parent s and sibling t′, then

St := {q ∈ Pt | there are q′ ∈ Pt′ , ε̄ ∈ {0, 1}k such that δ({q, q′}, (γ(s), ε̄)) ∈ Ss}.

Then for all t ∈ T and q ∈ Q we have q ∈ St if, and only if, there are sets
B1, . . . , Bk ⊆ T such that A accepts (T , B̄) and for the run ρ of A on (T , B̄)
we have ρ(t) = q (again easy by induction).

3. Bottom-up again: Recall that for t ∈ T , by Tt we denote the subtree
of T rooted in t. For t ∈ T and q ∈ St we let

Satt,q :=
{
B̄ ⊆ Tt

 There are sets B′1, . . . , B
′
k ⊆ T such that

B′i ∩ Tt = Bi for 1 ≤ i ≤ k,
A accepts (T , B̄′),
and for the run ρ of A on (T , B̄′) we have
ρ(t) = q

}
.

We compute the sets Satt,q inductively from the leaves to the root. Let t ∈ T
and q ∈ St. Set Bt

1 := {t} and Bt
0 = ∅. If t is a leaf, then

Satt,q = {(Bt
ε1
, . . . , Bt

εk
) | ∆((γ(t), ε̄)) = q}.

32 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

If t has children u1 and u2, then

Satt,q =
{

(B1 ∪B′1 ∪Bt
ε1
, . . . , Bk ∪B′k ∪Bt

εk
)
 (2.1)

ε̄ ∈ {0, 1}k, there exist q1 ∈ Su1 , q2 ∈ Su2such that

B̄ ∈ Satu1,q1 , B̄
′ ∈ Satu2,q2 , δ({q1, q2}, (γ(t), ε̄)) = q

}
.

Note that ϕ(T) =
⋃
q∈Sr Satr,q. Hence our algorithm performs the two

passes through the tree to detect the necessary and sufficient set of states
that have to be considered. Then in a last pass, it incrementally computes
the sets Satt,q for all q ∈ St in a bottom-up manner. An informal version of
that procedure is displayed as algorithm 6.

Algorithm 6: Computing ϕ(T)

Input: A colored tree T , an MSO-formula ϕ(X̄)
Output: ϕ(T)

1. Check if there is an alphabet Γ such that T is a colored Γ-tree and
ϕ(X̄) is an MSO[τΓ]-formula; if this is not the case, then return ∅

2. Compute the Γ′-tree automaton A corresponding to ϕ′

3. Compute Pt for all t ∈ T

4. Compute St for all t ∈ T

5. For all t ∈ T and q ∈ St, compute Satt,q

6. Return
⋃
q∈Sr Satr,q.

By the above discussion it is obvious that the algorithm works correctly.
Next we examine the important steps.

II.) Implementation details: The computation of the automaton A fol-
lows the inductive construction given in the proof of theorem 14. Observe
that the size of the vocabulary Γ′ (including the arity k of the sought as-
signments) as well as of the automaton A only depend on ‖ϕ‖. Hence, for
the complexity analysis, it does not care how we store the description of A;
all queries posed to A can be answered in time only depending on ‖ϕ‖, in
particular, retrieving the values of the transition functions δ and ∆.

Having the automaton A in a convenient way, the sets Pt for all t ∈ T
are computed by the subroutine calc potentials displayed as algorithm 7.

2.3. EVALUATION ON TREE-LIKE STRUCTURES 33

The call of calc potentials(r) provides the set Pt as array element p[t] for
all t ∈ T . For that, we recursively descent the tree and compute Pt by a
direct evaluation of the definition. Note that the colors of tree vertices t ∈ T
are stored in an array over T (cf. the appendix on page 110). This admits
access to γ(t) in time h(‖Γ′‖) for a suitable h. Since we also have constant
time access to δ and ∆, we can evaluate the definition of Pt (in each level
t ∈ T) in time f(‖ϕ‖) for some function f .

1 proc calc potentials(t)
2 if t is a leaf
3 then
4 p[t] := {∆((γ(t), ε̄) | ε̄ ∈ {0, 1}k}
5 else
6 u1 := first child of t
7 u2 := second child of t
8 calc potentials(u1); calc potentials(u2);
9 p[t] := {δ({q1, q2}, (γ(t), ε̄)) | q1 ∈ p[s1],

q2 ∈ p[s2], ε̄ ∈ {0, 1}k}
10 fi
11 .

Algorithm 7. Compute the sets Pt for t ∈ T

Together, the time for the entire procedure call sums up to f(‖ϕ‖) · |T |.
The subroutine calc successfuls works like calc potentials, implement-
ing the above recursive procedure for the sets St (there we fill up the array
s[·]). Thus, steps 3 and 4 need time f(‖ϕ‖) · |T | each.

Step 5 is the crucial one, and to compute the sets Satt,q we have to
proceed particularly carefully to obtain the optimal time bound claimed in
the theorem. We shall use the following two facts about the sets Satt,q.

(1) Satt,q is non-empty for all t ∈ T and q ∈ St

(2) Satt,q ∩ Satt,q′ = ∅ for all t ∈ T , q, q′ ∈ St such that q 6= q′

The first one claims that all sets Satt,q that are sufficient for the compu-
tation of ϕ(T) are actually necessary, while the second essentially says that
no tuple is handled twice.

Proof: (of the two claims) For the first claim assume q ∈ St. By definition,
this is equivalent to there exists a B̄ such that for the accepting run ρ of A

34 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

on (T , B̄) we have ρ(t) = q; hence B̄ ∩ Tt ∈ Satt,q. The second claim follows
from the fact that A is deterministic, i.e. different states in t ∈ T can only
be reached in runs over different colorings. 2

By definition, Satt,q contains sets of k-tuples of subsets of the universe
T (the assignments for X1, . . . , Xk). To represent these sets we use a data
structure of the following form: subsets of the universe T are stored as linked
lists (cf. section A.3). Then a k-tuple Ā is represented as a k-size array such
that the ith array element is a pointer to the list Ai. The arrays Ā themselves,
are again arranged as lists (cf. the distinction between big and small data
structures in the appendix).

Let T ′, T ′′ be disjoint sets and S ′, S ′′ two non-empty sets of k-tuples of
subsets of T ′ and T ′′, respectively. The operation required to compute Satt,q
(cf. the definition) corresponds to

merge(S ′, S ′′) := {(B′1 ∪B′′1 , . . . , B′k ∪B′′k) | B̄′ ∈ S ′, B̄′′ ∈ S ′′},

whose implementation is displayed as algorithm 8. Note that this is a so
called destructive procedure, since after the call the arguments are part of the
result.

Let us estimate the time needed by algorithm 8 to merge the sets s′, s′′.
Apart from the if-statements at the beginning of the code, we perform a
loop over all tuples assign′ ∈ s′, assign′′ ∈ s′′ and concatenate each of
them componentwise. This concatenation is done in constant time (cf. the
appendix). As mentioned above, we incorporate the arguments into the
result. This is guaranteed by the two if-clauses, e.g. the first one assures that
each but the last entry of s′ is concatenated with a copy of the respective
assign′′ ∈ s′′. On the other hand, the elements assign′′ ∈ s′′ (themselves)
are concatenated with the last entry of s′. The second if-clause does the
same with reversed roles of assign′ and assign′′. Hence, all elements of s′

and s′′ are reused.

Making a copy of an object x takes time ‖x‖. Hence, altogether we need
time

O(1 + |merge(s′, s′′)|+ ‖merge(s′, s′′)‖ − ‖s′‖ − ‖s′′‖)

to compute the merge of two sets s′, s′′. Note here that |s| stands for the
number of items contained in the list s, while ‖s‖ :=

∑
(B1,...,Bk)∈s

∑k
i=1 |Bi|.

Two get a more convenient representation of this upper bound, we use further
conditions that are assured by the three if-clauses (i.e. s′, s′′ 6= ∅ and s′, s′′ 6=
{(∅, . . . , ∅)}) at the beginning of the procedure. Under these conditions we

2.3. EVALUATION ON TREE-LIKE STRUCTURES 35

1 proc merge(s’, s”)
2 ms := ∅; /* the merged set */
3 if empty(s’) or empty(s”) then return(ms) fi;
4 if s’ = {(∅, . . . , ∅)} then return(s”) fi;
5 if s” = {(∅, . . . , ∅)} then return(s’) fi;
6 for assign’ ∈ s’ do
7 for assign” ∈ s” do
8 if last(s’, assign’)
9 then a2 := assign”

10 else a2 := copy(assign”)
11 fi
12 if last(s”, assign”)
13 then a1 := assign’
14 else a1 := copy(assign’)
15 fi
16 for i = 1 to k do /* concatenate the sets */
17 append(a1[i], a2[i]);
18 od
19 append(ms, a1); /* add it to the result */
20 od
21 od
22 return(ms);
23 .

Algorithm 8. Destructively merging two sets of assignments

can show that

O(1 + |merge(s′, s′′)|+ ‖merge(s′, s′′)‖ − ‖s′‖ − ‖s′′‖)
= O(1 + ‖merge(s′, s′′)‖ − ‖s′‖ − ‖s′′‖), (2.2)

which simplifies the subsequent analysis of the main algorithm. To prove
this, assume w.l.o.g. that |s′| ≥ |s′′| and that |s′| is sufficiently big (otherwise
(2.2) holds trivially). If |s′′| = 1 then ‖merge(s′, s′′)‖ = |s′| · ‖s′′‖ + ‖s′‖,
hence ‖merge(s′, s′′)‖ − ‖s′‖ − ‖s′′‖ ≥ |s′| − 1 (since ‖s′′‖ ≥ 1). Together
with |merge(s′, s′′)| = |s′|, this implies equation (2.2) for this case.

If |s′′| > 1, then ‖merge(s′, s′′)‖ − ‖s′‖ − ‖s′′‖ ≥ |merge(s′, s′′)|. Hence,
as before, we obtain (2.2).

Having proved an upper bounded for algorithm 8, let us move to the main
algorithm. Given a t ∈ T , algorithm 9 computes the sets Satt,q for all q ∈ St.

36 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

The case where t is a leaf is handled in the loop around line 5. Its correctness
is obvious. For inner nodes we call the procedure calc sat(t, u1, u2) displayed
as algorithm 10, where u1, u2 are the children of t.

1 proc calc sat(t)
2 if t is a leaf
3 then
4 for q ∈ St do
5 sat[t, q] := {(Bt

ε1
, . . . , Bt

εk
) | ∆((γ(t), ε̄)) = q}

6 od
7 else
8 u1 := first child of t;
9 u2 := second child of t;

10 calc sat(t, u1, u2);
11 fi
12 .

Algorithm 9. Calculate Satt,q for all q ∈ St

Now consider algorithm 10. In the second line we compute the values
Satui,qi for qi ∈ Sui , i = 1, 2. Based on these values we want to compute
Satt,q for q ∈ St in an efficient way (reusing all already obtained partial
assignments). We explain the functionality in two phases: first, we describe
why we get the right answer and second, we give a detailed account on the
running time of the procedure.

Essentially, the procedure consists of two loops. In the first one (lines 4 to
15), we prepare for the second one (lines 16 to 21), which actually computes
the desired sets by means of merges. To understand the first loop, take a
pair (q1, q2) ∈ Su1 × Su2 , a q ∈ St and define

B(q, q1, q2) := {(Bt
ε1
, . . . , Bt

εk
) | δ({q1, q2}, (γ(t), ε̄)) = q}.

The first inner loop computes this set B[q, q1, q2], which intuitively con-
tains the tuples by which assignments from Satu1,q1 and Satu2,q2 extend to
assignments in Satt,q. For the second inner loop (around the if-clause in line
10) we need to have a closer look at the problem of reusing intermediate
results.

Our objective is to compute the sets Satt,q, which in terms of the merge-
function can be characterized as the following disjoint union:

Satt,q =
⋃

(q1,q2)∈Su1×Su2
B(q,q1,q2) 6=∅

merge(merge(Satu1,q1 , B(q, q1, q2)), Satu2,q2). (*)

2.3. EVALUATION ON TREE-LIKE STRUCTURES 37

In a straightforward implementation, we would simply merge all sets
Satu1,q1 , B(q, q1, q2), and Satu2,q2 with B(q, q1, q2) 6= ∅. Recall here that merge
is destructive, i.e. after the call of merge(s′, s′′) the parameters s′, s′′ are no
longer available (they have become part of the result). On the other hand,
we cannot copy each argument before passing it to the merge-procedure; this
would be to wasteful.

Our solution to this problem is to make copies of all Satu1,q1 and Satu2,q2

that are to be merged with some B(q, q1, q2) (one copy for each subsequent
application of (*)). When doing the copies, we guarantee at the same time
that we only make a copy, if it is really necessary. This allows direct calls of
the merge-procedure in the subsequent loop and, as we will see, assures the
claimed time bound.

To avoid unhandy pre-estimations of the number of copies that have to
be made, we enhance the data structure for the sets Satt,q by a “usage”-flag,
which indicates, if the set has already been copied. Initially, after the object
is created, this flag is set “off”. In this context we introduce the function
fcopy(x) which first looks if the flag of x is “on”, and if so, returns a copy
of x. If the flag is “off”, the flag is flipped “on” and x itself is returned.

So we come back to the second inner loop: for each non-empty B(q, q1, q2)
we store the triple (Satu1,q1 , Satu2,q2 , B(q, q1, q2)) in the list l[q]. And these
are exactly the arguments of the merges of the form (*) that have to be done
to obtain Satt,q for all q ∈ St.

In the second outer loop (lines 16 to 21), we finally generate the sets
Satt,q from the elements of the list l[q]. This proves the correctness of the
algorithm.

The running time: We will show by induction over t ∈ T that all Satt,q,
q ∈ St are computed in time

T (t) ≤ c ·
∑
q∈St

‖Satt,q‖+ f(‖A‖) · |Tt|

for a constant c and a suitable function f (these will be defined later). Then
the theorem follows with property (2) of Satt,q. To prove this bound, we first
give a recursive characterization of the time algorithm 9 spends at a node
t ∈ T . In a second step, we show inductively that this recursive formula
yields the upper bound claimed above.

38 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

1 proc calc sat(t, u1, u2)
2 calc sat(u1); calc sat(u2);
3 initialize array B
4 for (q1, q2) ∈ Su1 × Su2 do
5 for ε̄ ∈ {0, 1}k do
6 q := δ({q1, q2}, (γ(t), ε̄))
7 B[q, q1, q2] := B[q, q1, q2] ∪ {(Bt

ε1
, . . . , Bt

εk
)}

8 od
9 for q ∈ St do

10 if B[q, q1, q2] 6= ∅
11 then
12 append(l[q], (B[q, q1, q2], fcopy(sat[u1, q1]),

fcopy(sat[u2, q2])));
13 fi
14 od
15 od
16 for q ∈ St do
17 for (B, cp1, cp2) ∈ l[q] do
18 med := merge(B, cp1);
19 sat[t, q] := sat[t, q] ∪merge(med, cp2);
20 od
21 od
22 .

Algorithm 10. Compute Satt,q for t with children u1, u2

I.) For a leaf t and q ∈ St the set Satt,q is computed in time f1(‖A‖) for
some function f1 by a direct evaluation of the definition (in line 5, algorithm
9).

Let t be an inner node with children u1, u2. In this case, we call algorithm
10. In the first line, we descend recursively computing the sets Satui,qi for
qi ∈ Sui and i = 1, 2. So let us assume that these sets are already known.

To estimate the complexity of the first loop fix a (q1, q2) ∈ Su1 × Su2

and observe that the first inner loop, which computes B(q, q1, q2), needs time
2k · (cA + k) (cA charges the time to get the result of the transition function
δ, and k steps are charged to produce one k-tuple (Bt

ε1
, . . . , Bt

εk
)).

It is easy to see that for the second inner loop, in each pass, we need cQ
steps to check the if-statement (by cQ we denote the number of states of A,

2.3. EVALUATION ON TREE-LIKE STRUCTURES 39

i.e. cQ := |Q|). Furthermore, for all (q1, q2) together, we need

c1·
(∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+‖Satu2,q2‖

)
−
∑
q1∈Su1

‖Satu1,q1‖−
∑
q2∈Su2

‖Satu2,q2‖
)

steps to do the copies. In particular, the first double sum accounts for
the effort to make the copies (in line 12). From this cost we have to subtract
the work we saved by reusing the sets Satui,qi , qi ∈ Sui . The constant c1

takes care for the overhead produced by fcopy and the generation of l[q]
(this constant is independent from T and A). Hence, we need

c2
Q · 2k · (cA + k) + c3

Q + c1 ·
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

)
− c1 ·

(∑
q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)

steps for the entire first loop (in the sequel, we denote the term c2
Q · 2k ·

(cA + k) + c3
Q by f(‖A‖)).

The second loop simply merges all of the recently computed sets. The
needed time sums up to

c2 ·
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖merge(merge(Satu1,q1 , B(q, q1, q2)), Satu2,q2)‖

− ‖Satu1,q1‖ − ‖B(q, q1, q2)‖ − ‖Satu2,q2‖
)
,

where c2 is the constant from the merge-function. Observe that we do
not need to account for the loops, since there are no void loops (property
(1) above). In characterization (*) of Satt,q the union is disjoint, hence, this
value is dominated by

c2 ·
(∑
q∈St

‖Satt,q‖ −
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

))
.

Altogether, it is obvious that for the time T (t) spent at an inner node t ∈ T

40 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

with children u1, u2 we have

T (t) ≤ T (u1) + T (u2) + f(‖A‖)

+ (c1 − c2) ·
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

)

− c1 ·
(∑
q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)

+ c2 ·
∑
q∈St

‖Satt,q‖.

II.) It remains to prove that this recursion formula yields the claimed upper
bound. Define c := c1 + c2. By induction hypothesis, T (ui) ≤ f(‖A‖) ·
|Tui| + c ·

∑
qi∈Sui

‖Satui,qi‖ for i = 1, 2. If we insert this into the recursive

characterization of T (t), we get T (t) ≤ f(‖A‖) · (|Tu1|+ |Tu2|+ 1)

+ (c1 + c2) ·
(∑
q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)

+ (c1 − c2) ·
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

)

− c1 ·
(∑
q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)

+ c2 ·
∑
q∈St

‖Satt,q‖,

which is equal to

f(‖A‖) · |Tt|+ c2 ·
∑
q∈St

‖Satt,q‖

+ (c1 − c2) ·
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

)

+ c2 ·
(∑
q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)
.

It is easy to see that

∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

)
≤
∑
q∈St

‖Satt,q‖,

2.3. EVALUATION ON TREE-LIKE STRUCTURES 41

hence, we have

T (t) ≤ f(‖A‖) · |Tt|+ (c1 + c2) ·
∑
q∈St

‖Satt,q‖

+ c2 ·
((∑

q1∈Su1

‖Satu1,q1‖+
∑
q2∈Su2

‖Satu2,q2‖
)

−
∑
q∈St

∑
(q1,q2),

B(q,q1,q2) 6=∅

(
‖Satu1,q1‖+ ‖Satu2,q2‖

))
,

which is smaller than f(‖A‖) · |Tt| + c ·
∑

q∈St ‖Satt,q‖ (since the last
addend is ≤ 0). As mentioned in the beginning of the complexity analysis,
this bound on T (t) completes the proof of theorem 15. 2

We immediately get the following corollary.

Corollary 16. There exists a function f and an algorithm that solves the
evaluation problem for MSO-formulas with no free set variables on colored
trees in time

f(‖ϕ‖) · (‖T ‖+ |ϕ(T)|)
on input ϕ(x1, . . . , xk) and T .

Proof: For a formula without free set variables we have ‖ϕ(T)‖ = k ·
|ϕ(T)| ≤ ‖ϕ‖ · |ϕ(T)| (since all variables xi must occur freely in ϕ(x̄)). 2

The witness case for MSO on colored trees is now an easy corollary of
theorem 15.

Corollary 17. There exists a function f and an algorithm that solves the
witness problem for MSO-formulas on colored trees in time

f(‖ϕ‖) · ‖T ‖

on input ϕ(X1, . . . , Xl, x1, . . . , xm) and T .

Proof: Proceed as before, until the calculation of Satt,q. Now we select an
accepting run ρ : T → Q on T and then compute a particular coloring of T
inducing that run. We start with an arbitrary q ∈ Sr and proceed top-down.
Assume that in node t we are in state q ∈ St and t has children u1, u2. Now
choose an additional color ε̄t ∈ {0, 1}k and states q1 ∈ Su1 and q2 ∈ Su2

such that δ({q1, q2}, (γ(t), ε̄t)) = q. If t is a leaf and ρ(t) = q, choose an
ε̄t ∈ {0, 1}k such that ∆((γ(t), ε̄t)) = q. The tuple Ā = (A1, . . . , Ak) with
Ai := {t | εti = 1} is an satisfying assignment. The analysis is straightforward
and omitted. 2

42 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

2.3.2 The extension to tree-like structures

In this section we extend the result presented in the previous section from
colored trees to structures of bounded tree-width. For that, we reduce the
question for tree-like structures to the question for colored trees and then
apply the results proved in the last section. This reduction goes back to
Arnborg, Lagergren and Seese [ALS91].

Some main techniques could already be seen in the proof of Courcelle’s
theorem. Essentially, we code all information, given by a tree-decomposition
into the colors of the underlying tree. This is done by the following defini-
tions. Let A be a τ -structure and (T , r, (b̄t)t∈T) a special tree-decomposition
of A of width w ≥ 1. With T we associate the colored tree T ∗ with underlying
tree T and coloring γ(t) = (γ1(t), γ2(t), γ3(t)) for t ∈ T , where

• γ1(t) := id(t, t)

• γ2(t) :=

{
id(t, s) for the parent s of t if t 6= rT ,

∅ if t = rT ,

• γ3(t) := {(R, itype(R, t)) | R ∈ τ}

For the colors recall the definition of id(t, s) and itype(R, t) on page 23 in
this chapter. Examining the definitions, we observe that T ∗ is a Γ(w, τ)-tree
for

Γ(w, τ) := Pow({0, . . . , w}2)× Pow({0, . . . , w}2)×

Pow
(
τ ×

⋃
R∈τ,r-ary

Pow({0, . . . , w}r)
)
.

The next lemma is an easy corollary of lemma 8.

Lemma 18. Given a τ -structure A and a special tree-decomposition
(T , r, (b̄t)t∈T) of width w of A, the corresponding Γ(w, τ)-tree T ∗ can be com-
puted in time

f(τ, w) · ‖T ‖

for some function f .

Proof: By lemma 8, we dispose of the substructures 〈Bt〉 induced by the
block of the tree-decomposition. From those substructures, it is easy to
compute the sets itype(R, t) for all R ∈ τ and t ∈ T . The way we compute
the sets id(t, t) for t ∈ T and id(t, s) for t ∈ T with parent s is obvious. 2

2.3. EVALUATION ON TREE-LIKE STRUCTURES 43

T ∗ does not contain any reference to the structure A, hence the problem
arises of how to “speak” about subsets and elements of A in the colored tree
T ∗. Thereto, we code each element a ∈ A by a canonical tuple of subsets of
T . This tuple defines a unique (t, i) such that a = bti.

For an element a ∈ A we let node(a) be the minimal t ∈ T with respect
to ≤T such that a ∈ {bt0, . . . , btw}. We define Ū(a) := (U1(a), . . . , Uw(a)) by

Ui(a) :=

{
{node(a)} if b

node(a)
i = a and b

node(a)
j 6= a for 1 ≤ j < i,

∅ otherwise,

for 0 ≤ i ≤ w. This tuple is a unique representative for the element a: it
encodes in which b̄t the element a occurs first (w.r.t ≤T), and its minimal
place (w.r.t. the ordered tuple) in the tuple b̄t. For a subset B ⊆ A we
let Ui(B) :=

⋃
a∈B Ui(a) and Ū(B) := (U0(B), . . . , Uw(B)). Note that for

subsets U0, . . . , Uw ⊆ T there exists an a ∈ A such that Ū = Ū(a) if, and
only if,

(1)
⋃w
i=0 Ui is a singleton.

(2) For all t ∈ T and 0 ≤ i < j ≤ w: If t ∈ Uj then (i, j) /∈ γ1(t).

(3) For all t ∈ T , t 6= rT , with parent s and 0 ≤ i, j ≤ w: If t ∈ Ui then
(i, j) /∈ γ2(t).

Moreover, there is a subset B ⊆ A with Ū = Ū(B) just in case the
conditions (2) and (3) are fulfilled.

To be able to talk about A in T ∗ we define MSO-formulas
Elem(X0, . . . , Xw) and Set(X0, . . . , Xw) such that for arbitrary U0, . . . , Uw ⊆
T we have

T ∗ |= Elem(Ū) ⇐⇒ there is an a ∈ A with Ū = Ū(a);

T ∗ |= Set(Ū) ⇐⇒ there is a subset B ⊆ A with Ū = Ū(B).

The formula

Set(Ū) := ∀t
(∧

0≤i<j≤w

Ujt→
∧

γ∈Γ(w,τ)
(i,j)∈γ1

¬Pγt ∧
∧

0≤i,j≤w

Uit→
∧

γ∈Γ(w,τ)
(i,j)∈γ2

¬Pγt
)

realizes the recognition of sets. For Elem(Ū) we just add the condition that
U0 ∪ · · · ∪ Uw is a singleton. The next lemma completes the reduction.

44 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

Lemma 19. Every MSO-formula ϕ(X1, . . . , Xk, y1, . . . , yl) can be effectively
translated to a formula ϕ∗(X̄1, . . . , X̄k, Ȳ1, . . . , Ȳl) such that:

(1) For all B1, . . . , Bk ⊆ A, a1, . . . , al ∈ A we have

A |= ϕ(B1, . . . , Bk, a1, . . . , al)

⇐⇒ T ∗ |= ϕ∗(Ū(B1), . . . , Ū(Bk), Ū(a1), . . . , Ū(al)).

(2) For all Ū1, . . . , Ūk, V̄1, . . . , V̄l ⊆ T such that T ∗ |=
ϕ∗(Ū1, . . . , Ūk, V̄1, . . . , V̄l) there exist B1, . . . , Bk ⊆ A, a1, . . . , al ∈ A
such that Ūi = Ū(Bi) for 1 ≤ i ≤ k and V̄i = Ū(ai) for 1 ≤ i ≤ l.

Proof: The proof of the first statement proceeds by induction over ϕ, hence
is effective. The cases of Boolean connectives are trivial, and for an existential
quantifier ∃Y ϕ(Y) we take the formula ∃Ȳ (Set(Ȳ) → ϕ∗(Ȳ)). Likewise, we
proceed for first-order quantifications. The only non-trivial part is the case
of atomic ϕ.

Let R ∈ τ be an r-ary relation symbol and ϕ = Ry1 . . . , yr. The variables
y1, . . . , yr are assumed to be represented by tuples Ȳ1, . . . , Ȳr ⊆ T , which
canonically encode vertices of A. In general, the components ai of a tuple
ā ∈ A are not coded by the same minimal node in T , hence using Ȳ1, . . . , Ȳr
we cannot decide whether the tuple is contained in RA or not (since we only
dispose of the relation on elements of a common block).

To bypass this problem, we extend tuples V̄ ⊆ T to maximally “consis-
tent” ones. We say that V̄ = (V1, . . . , Vw) ⊆ T is closed, if the following
hold:

• If t ∈ Vi and (i, j) ∈ γ1(t) then t ∈ Vj.

• If t has parent s, s ∈ Vj and (i, j) ∈ γ2(t) then t ∈ Vi.

Clearly, in a similar way as for Elem(X̄) we can define an MSO-formula
Closed(X0, . . . , Xw) such that

T ∗ |= Closed(V̄) ⇐⇒ V̄ is closed.

Note that, for a ∈ A and closed V̄ , if Ū(a) ⊆ V̄ , t ∈ T , 0 ≤ i ≤ w and

2.3. EVALUATION ON TREE-LIKE STRUCTURES 45

ati = a then t ∈ Vi. Now ϕ is translated to the formula

ϕ∗(Ȳ1, . . . , Ȳr) := Elem(Ȳ1) ∧ . . . ∧ Elem(Ȳr)∧

∀Z̄1 . . . Z̄r

(r∧
i=1

(
Ȳi ⊆ Z̄i ∧ Closed(Z̄i)

)
→

∃x
(w∨
i1,...,ir=0

(Z1,i1x ∧ . . . ∧ Zr,irx ∧
∨

γ∈Γ(τ,w)
(i1,...,ir)∈γ3(R)

Pγx)
))
.

By definition, it is obvious that for this case we have

A |= ϕ(a1, . . . , ar)⇔ T ∗ |= ϕ∗(Ū(a1), . . . , Ū(ar)).

Recall that, since for every occurrence of a tuple of variables X̄, Ȳ we addi-
tionally impose Set(Ȳ) and Elem(X̄), respectively, the second claim trivially
holds. This completes the proof of the lemma. 2

Now the sought theorem is immediate.

Theorem 20. There exists a function f : N2 → N and an algorithm that
solves the evaluation problem for MSO-formulas in time

f(‖ϕ‖, tw(A)) · (‖A‖+ ‖ϕ(A)‖)

with inputs ϕ ∈ MSO and the structure A.

Proof: The main procedure is displayed as algorithm 11.

Algorithm 11: Computing ϕ(A)

Input: A structure A, an MSO-formula ϕ(X̄, ȳ)
Output: ϕ(A)

1. Check if A and ϕ have the same vocabulary, say τ ; if this is not the
case then return ∅.

2. Compute a special tree-decomposition (T , r, (b̄t)t∈T) of tree-width w :=
tw(A) of A.

3. Compute the corresponding Γ(τ, w)-tree T ∗.

4. Compute the formula ϕ∗.

5. Compute ϕ∗(T ∗).

6. Compute ϕ(A).

46 CHAPTER 2. EVALUATION ON TREE-LIKE STRUCTURES

The first line needs time linear in the size of the input. By theorem 6,
line 2 requires time f1(‖τ‖, w)|A| for some suitable f1. The same holds for
line 3 (by lemma 18).

The time needed by the forth line only depends on the size of ϕ (by
the construction in the proof of lemma 19) and line 5 can be done in
f3(‖ϕ∗‖) · (|T | + ‖ϕ∗(T ∗)‖) steps by theorem 15. Finally, given the set
ϕ∗(T ∗), the output ϕ(A) can be computed by applying the map Ū(a) 7→ a
in time ‖ϕ∗(T)‖ = f(w)‖ϕ(A)‖. For that, we first create arrays ui such that
ui[t] = a iff t ∈ Ui(a). This is done by a breadth-first search through T in
which we gradually fill up the arrays ui. We have an Boolean array a initial-
ized to false, and at each tree node t we perform a loop from i = 0, . . . , w
and if a[i] = false we set ui[t] = bti, otherwise we do nothing (because then
bti has already its code).

Using this, for each Ū ⊆ T we can do look-ups in constant time and find
the corresponding U ⊆ A in time ‖Ū‖ = f(w) · |U |. Thus ϕ(T) is translated
to ϕ(A) within the claimed time bound.

Altogether, we get the desired time bound. 2

Like in the case of trees, we easily get

Theorem 21. There exists a function f : N2 → N and an algorithm that
solves the evaluation problem for MSO-formulas without free second-order
variables in time

f(‖ϕ‖, tw(A)) · (‖A‖+ |ϕ(A)|)

with inputs ϕ ∈ MSO and a structure A.

as well as the witness case.

Theorem 22. There exists a function f : N2 → N and an algorithm that
solves the witness problem for MSO-formulas in time

f(‖ϕ‖, tw(A)) · ‖A‖

with the formula ϕ(X1, . . . , Xl, x1, . . . , xm) and the structure A as inputs.

Finally, for completeness, we state a theorem proven by Arnborg, Lager-
gren and Seese [ALS91], saying that the counting problem for structures of
bounded tree-width is solvable in linear time. For this theorem we have
to take the uniform cost model, which allows arithmetical operations (∗,+)
being done in constant time (independently from their size).

2.3. EVALUATION ON TREE-LIKE STRUCTURES 47

Theorem 23 ([ALS91]). There exists a function f : N2 → N and an
algorithm that solves the counting problem for MSO-formulas in time

O(f(‖ϕ‖, tw(A)) · ‖A‖)

with the formula ϕ(X1, . . . , Xl, x1, . . . , xm) and the structure A as inputs.

Note that this theorem can easily be proved using the machinery devel-
oped here. The only difference is that in algorithm 6, instead of Satt,q, we
calculate its cardinality (and this can be done by a simple multiplication in-
stead of a merge). Since the reduction of tree-like structures to binary trees
conserves the cardinality of the solutions, this part is trivial.

Chapter 3

First-order Properties over
Tree-decomposable Structures

In this chapter we present an extension of the notion of bounded tree-width
motivated by the observation that common structures have the property that
the tree-width only depends on the diameter of the structure. To capture
this behaviour, Eppstein [Epp99] introduced the diameter-treewidth property
of graph classes.

Another way to look at this is that for these structures the tree-width of
a neighborhood of radius r ≥ 1 of an arbitrary vertex is bounded by f(r)
for some suitable function f : N → N. We say that classes of structures
satisfying this property have bounded local tree-width. It turns out that over
such classes the model checking problem is fixed parameter tractable. In
particular, for each k ≥ 1 there is an f : N → N and an algorithm that
decides A |= ϕ in time f(‖ϕ‖) · |A|1+1/k for ϕ ∈ FO.

Later on, we further restrict this notion to obtain a linear time algorithm
for the decision problem of FO on so called locally tree-decomposable classes.
At the end of the chapter we examine the complexity of special versions of
the presented algorithm and exhibit the crucial bottlenecks.

3.1 Local tree-likeness

Let A be a τ -structure for some vocabulary τ . Recall that by G(A) we denote
its Gaifman graph. The distance dA(a, b) between two elements a, b ∈ A
in A is the length dA(a, b) of the shortest path in G(A) connecting a and
b. For r ≥ 1 and a ∈ A we define the r-neighborhood of a in A to be
NA
r (a) := {b ∈ A | dA(a, b) ≤ r}.

48

3.1. LOCAL TREE-LIKENESS 49

Definition 24. (1) The local tree-width of a structure A is the function
ltwA : N→ N defined by

ltwA(r) := max
{

tw(〈NA
r (a)〉)

 a ∈ A}.
(2) A class C of structures has bounded local tree-width, if there is a func-

tion f : N→ N such that ltwA(r) ≤ f(r) for all A ∈ C, r ∈ N.

There are several important classes of structures (graphs) that have
bounded local tree-width.

Example 25. Structures of bounded tree-width. Let A be a structure with
tw(A) ≤ w. Then ltwA(r) ≤ w for all r ≥ 1.

The degree of an element a ∈ A of a structure A is the size of its 1-
neighborhood, |NA

1 (a)|. The degree of a structure A is the maximal degree
realized by an element of A.

Example 26. Structures of bounded degree. Let A be a structure of degree
at most d, for a d ≥ 1. Then ltwA(r) ≤ d(d− 1)r−1 for all r ≥ 1.

With reference to the Gaifman graph we can extend the notion of pla-
narity to arbitrary structures. We say that a structure A is planar if the
corresponding Gaifman graph G(A) is planar. Observe that a structure al-
ways has the same local tree-width as its Gaifman graph. Hence, all bounds
on graph classes presented in the sequel extend to the corresponding classes
of structures.

Example 27 (Robertson and Seymour [RS84]). Planar graphs. The
class of planar graphs has bounded local tree-width. More precisely, for
every planar graph G and r ≥ 1 we have ltwG(r) ≤ 3r.

Example 28 (Eppstein [Epp99]). Graphs of bounded genus. Let S be a
surface. Then the class of all graphs embeddable in S has bounded local
tree-width. More precisely, there is a constant c ≥ 1 such that for all graphs
G embeddable in S and for all r ≥ 1 we have ltwG(r) ≤ c · g(S) · r (here g(S)
denotes the genus of the surface S).

A minor of a graph G is a graph H that is obtained from a subgraph
of G by contracting edges. Classes of embeddable graphs (these include
planar graphs) are examples of minor-closed graph classes. Eppstein gave
the following characterization of all classes of bounded local tree-width that
are closed under taking minors. An apex graph is a graph G that has a vertex
v ∈ G such that G \ {v} is planar.

50 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

Theorem 29 (Eppstein [Epp95, Epp99]). Let C be a minor-closed class
of graphs. Then C has bounded local tree-width if, and only if, C does not
contain all apex graphs.

Let Km,n be the complete bipartite graph with parts of size n and m,
respectively.

Example 30. K3,m free graphs. Let C be a class of graphs that do not
contain all K3,m as minors. Then C has bounded local tree-width.

This follows immediately from the observation that K3,m, for m ≥ 3, is
an apex graph.

Observe that the class of structures of bounded degree is the only example
that is not closed under taking minors.

Neighborhood and tree covers: A successful way to examine local prop-
erties of structures is to cover them by small neighborhoods. This has been
done systematically in, for instance, [ABCP93, AP90, Pel93].

Definition 31. Let r, s ≥ 1. An (r, s)-neighborhood cover of a structure A

is a family N of subsets of A with the following properties:

(1) For every a ∈ A there exists an N ∈ N such that NA
r (a) ⊆ N .

(2) For every N ∈ N there exists an a ∈ A such that N ⊆ NA
s (a).

For a subset N of the universe of a structure A, the set of vertices a ∈ N
such that NA

r (a) ⊆ N is denoted by Kr(N). Covers are coded as lists of lists
(recall the definition of big objects in section A.3). Hence the size of a family
N of sets is ‖N‖ :=

∑
N∈N |N |. The algorithm in the following lemma is an

adaptation of an algorithm due to Peleg [Pel93] to our situation.

Lemma 32 (Peleg [Pel93]). Let k ≥ 1. Then there is an algorithm that,
given a graph G and an r ≥ 1, computes an (r, 2kr)-neighborhood cover N
of G of size ‖N‖ = O(|G|1+1/k) in time O(

∑
N∈N ‖〈N〉G‖).

Proof: We compute the cover as it is displayed in algorithm 12. We iter-
atively compute a neighborhood cover N , maintaining a set H of vertices
whose r-neighborhood has not yet been covered by a set in N . In each it-
eration step of the main loop (lines 4-14), the algorithm picks an arbitrary
vertex a from H (actually the first in the list) and starts to compute increas-
ing neighborhoods of a (in lines 7-11) until a certain threshold is reached
(line 11). Then it adds the computed set N to the cover N and removes

3.1. LOCAL TREE-LIKENESS 51

1 proc comp cover(G, r)
2 H := copy(G); n := |G|
3 N := ∅;
4 while H 6= ∅ do
5 a := first(H);
6 N := {a};
7 do
8 M := copy(N);
9 L := NGr (M) ∩H;

10 N := NGr (L);
11 od while |N | > n1/k|M |
12 N := N ∪ {N};
13 H := H \ L;
14 od
15 .

Algorithm 12. Computing a neighborhood-cover of G

all points whose neighborhood has now been covered from H, before it goes
to the next iteration of the main loop. This process is repeated until H is
empty.

Correctness: Let G be a graph, r ≥ 1 and N the cover computed by the
algorithm. We prove a series of claims which entail the statement of the
lemma.

Claim 1: For every a ∈ G there exists an N ∈ N such that Nr(a) ⊆ N .

Proof: An element a is removed from the set H of uncovered elements of
A in line 13 only if it belongs to a set L such that N := NGr (L) has been
added to N . Hence this N contains NGr (a). This proves Claim 1.

Claim 2: For every N ∈ N there exists an a ∈ G such that N ⊆ NG2kr(a).

Proof: We consider the iteration of the main loop that leads to N . Let a
be the element chosen in line 5, and let N0 := {a}. Let l ≥ 1 be the number
of times the loop in lines 7-11 is repeated. For 1 ≤ i ≤ l, let Ni be the value
of N after the ith iteration. Then for 1 ≤ i ≤ l−1 we have |Ni| > n1/k|Ni−1|,
and therefore |Ni| > ni/k. Thus l ≤ k.

Furthermore, it is easy to see that for 1 ≤ i ≤ l we have Ni ⊆ NG2ir(a).
This implies Claim 2.

52 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

Claims 1 and 2 show that N is indeed an (r, 2kr)-neighborhood cover of
G. The following Claim 3 shows that the cover is not too large.

Claim 3. ‖N‖ ≤ n1+(1/k).

Proof: For N ∈ N , let M be the corresponding set that is computed in
the last iteration of the loop in lines 7-11 that let to N (i.e. M is the value
of N after the second but last iteration of the loop).

We first show that for distinct N1, N2 ∈ N we have M1 ∩M2 = ∅. To
see this, suppose that N1 is computed first. Let H1 be the value of H after
the iteration of the main loop in which N1 has been computed. Note that
for every a ∈ M1 and b ∈ H1 we have dG(a, b) > r. Moreover, M2 ⊆ N2 ⊆
NGr (H1). Thus M1 ∩M2 = ∅.

By the condition in line 11, we have |N | ≤ n1/k|M | for all N ∈ N , hence
obtain

‖N‖ =
∑
N∈N

|N | ≤ n1/k
∑
N∈N

|M | ≤ n1/k · n.

The last inequality holds because the M are disjoint subsets of G. This
proves Claim 3.

Running time: To estimate the running time of the algorithm, we claim
that each iteration of the main loop requires time O(‖〈N〉‖), for the vertex
set N added to N in the corresponding iteration pass. Then the entire
algorithm runs in the claimed time bound.

All sets except for H are implemented as lists. For H we must be able to
compute set differences H \L for some list L (line 13) and to check whether
H 6= ∅ (and if so, provide an example). We fit these requirements by using a
referenced list as described in appendix A on page 108.

We prove the claimed time bound for each single iteration. To calculate
L in line 9 we perform a multi-source breadth-first search starting in M . To
assure that we stay within H, we additionally check for new vertices, if they
belong to H (this takes constant time). Observe that we possibly consider
edges that are not contained in 〈L〉G, but these are all contained in N , which
is built in the subsequent line. Furthermore, each of these edges is considered
at most r many times (the depth of the search tree). Thus, together we need
at most O(‖〈N〉‖) steps.

Note the impact of the usage of referenced lists on the running time:
we remove a set L (given as a list) from H calling the subroutine remove()
displayed as algorithm 29 (in the appendix). Removing m vertices takes time
O(m). The emptiness check in line 4 and providing an example a ∈ H in
line 5 needs constant time.

3.1. LOCAL TREE-LIKENESS 53

So the overall running time to compute N is O(‖〈N〉‖).

It may seem that to check the condition of line 11 we need multiplication,
which is not available as basic operation in our machine model (cf. chapter
A). However, before we start the main computation, we can produce tables
that store the values ml and ml · n for 1 ≤ l ≤ k, 1 ≤ m ≤ n in linear time
on a standard RAM. We use the fact that

(m+ 1)l =
∑

(ε1,...,εl)∈{0,1}l
m
∑l
i=1 εi

to inductively compute the tables. Remember that we treat k as a constant,
hence the sum can be evaluated in constant time. We use these tables to
check the condition of line 11 in constant time. 2

Let us apply this lemma to arbitrary structures. Let τ be a vocabulary
and C be a class of τ structures of bounded local tree-width (witnessed by
f : N → N). Assume furthermore that N is an (r, 2kr) neighborhood cover
of the Gaifman graph G(A) computed by algorithm 12. Pick some N ∈ N :
we know that tw(〈N〉A) ≤ f(2kr), hence by lemma 3 there is an l such
that ‖〈N〉A‖ ≤ l|N |. Hence ‖A‖ = O(‖N‖) and we get the time bound for
the subsequent corollary (observe that the constant behind the O-notation
depends on k, r and τ).

Corollary 33. Let k, r ≥ 1, τ a vocabulary, and C a class of τ -structures of
bounded local tree-width. Then there is an algorithm that, given a structure
A ∈ C, computes an (r, 2kr)-neighborhood cover N of A of size ‖N‖ =
O(|A|1+(1/k)) in time O(|A|1+(1/k)).

It is worth to mention the following immediate consequence of the pre-
ceding discussion.

Corollary 34. Let τ be a vocabulary and C be a class of τ -structures of
bounded local tree-width. Then for every k ≥ 1 there is a constant c such
that for all structures A ∈ C we have ‖A‖ ≤ c|A|1+(1/k).

As already mentioned, the constant c depends on k, τ and the function
f bounding the local tree-width for C. For most algorithmical purposes, a
neighborhood cover is more than we need. To do local computations quickly,
we can cover a structure by subsets of bounded tree-width (which is an
immediate consequence, if we have bounded local tree-width and cover sets
of bounded radius). This is captured by the next definition.

Definition 35. Let r, w ≥ 1. An (r, w)-tree cover of a structure A is a
family T of subsets of A with the following properties:

54 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

(1) For every a ∈ A there exists a T ∈ T such that NA
r (a) ⊆ T .

(2) For every T ∈ T we have tw(〈T 〉A) ≤ w.

The next lemma concerns computing the substructures induced by the
sets of a tree cover. This computation is necessary for most algorithms that
work on the cover sets.

Lemma 36. Let T be an (r + 1, w)-tree cover for a structure A, r, w ≥
1. Then an (r, w)-tree cover T ′ and the set {〈T ′〉A | T ′ ∈ T ′} of induced
structures can be computed in time

O
(∑
T∈T

‖〈T 〉A‖
)
.

Proof: Let T be an (r+ 1, w)-tree cover of a structure A for some r, w ≥ 1.
Take an arbitrary T ∈ T . We call a vertex v ∈ T outermost, if there is an
adjacent vertex u ∈ A \ T . In a first step, we copy all but the outermost
vertices in T , to a separate list T ′. This is done by a breadth-first search,
which terminates a branch, when a vertex outside T is to be put into the
queue (cf. the standard implementation of a breadth-first search tree using
queues). Then for each v ∈ T ′ we copy its adjacency list, leaving out the
edges to vertices not in T ′. Obviously, we obtain 〈T ′〉 and furthermore all
the T ′ form an (r, w)-neighborhood cover of A.

Concerning the running time, observe that the set T ′ can be found in
time O(‖〈T ′〉‖) (since for the outermost vertices we only consider one edge
per vertex that is not contained in E〈T 〉). The same time bound holds for
the second step. 2

The construction of tree covers defined in the next lemma is implicit in
[Epp99].

Lemma 37 (Eppstein [Epp99]). Let r ≥ 1 and C be a class of graphs
that is closed under taking minors and has bounded local tree-width. Let
f : N→ N be a function bounding the local tree-width of the graphs in C.

Then there is an algorithm that, given a graph G ∈ C, computes an
(r, f(2r + 1))-tree cover T of G of size ‖T ‖ = O(|G|) in time O(|G|).

Proof: Let G ∈ C and choose an arbitrary vertex a0 ∈ G. For 0 ≤ i ≤ j, let
G[i, j] := {a ∈ G | i ≤ dG(a0, a) ≤ j}.

We claim that tw(〈G[i, j]〉) ≤ f(j − i + 1). This is immediate if i = 0
or i = 1, because then G[i, j] ⊆ NGj (a0). If i > 1, we simply contract the
connected subgraph 〈G[0, i − 1]〉G to a single vertex b0. We obtain a minor

3.1. LOCAL TREE-LIKENESS 55

G ′ of G, which is also an element of C by our assumption that C is closed
under taking minors. G ′ still contains the set G[i, j] as it is, but now this set
is contained in NG

′

j−i+1(b0). This proves the claim.

The claim implies that for all r ≥ 1, the family T := {G[i, i+ 2r] | i ≥ 0}
is an (r, f(2r+1))-tree cover of G of size at most (2r+1)|G|. On input G, we
can choose an arbitrary a0 and then compute this tree cover in linear time
by a breadth-first search. 2

It is not clear at all, whether we can find an (r, s)-neighborhood cover
N for planar graphs G in O(|G|) steps, for fixed r, s ≥ 1, while the above
construction offers an easy and effective way to compute tree covers. Tree
covers of size linear in the size of the structure and a linear time algorithm
computing such a cover is exactly what we need in our algorithms. The
following definition makes this precise.

Definition 38. A class C of structures is locally tree-decomposable, if there
is an algorithm that, given an r ≥ 1 and a structure A ∈ C, computes an
(r, w)-tree cover T of A (for some suitable w ≥ 1 depending only on r) such
that ‖T ‖ = O(|A|) in time O(|A|).

Immediately, we get a lemma corresponding to lemma 3 saying that lo-
cally tree-decomposable classes are sparse.

Corollary 39. Let τ be a vocabulary and C be a locally tree-decomposable
class of τ -structures. Then there is a c ≥ 1 such that for all structures A ∈ C
we have ‖A‖ = c · |A|.

Observe that the constant c depends on τ and the value w bounding the
tree-width of the parts of the cover.

Example 40. Classes closed under taking minors. Classes of planar graphs,
of graphs of bounded genus, andK3,m-free classes that are closed under taking
minors are locally tree-decomposable.

This follows immediately from lemma 37 and the fact that all these classes
have bounded local tree-width. Although not closed under minors, classes
of graphs of bounded degree are locally tree-decomposable. Let C be a class
of graphs with degree bounded by, say, d and r ≥ 1. Then the family
{NGr (v) | v ∈ G} is an (r, d(d− 1)r−1)-tree cover of G of size |G| · d(d− 1)r−1.

Example 41. Graphs of bounded degree. The class of graphs of bounded
degree is locally tree-decomposable.

56 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

Remark: If we carefully analyse the covers constructed in all examples,
we find that either a cover consists of subsets with constant radius, or of
rings of constant breadth. For the rings, to deduce bounded tree-width, we
contract their interior to a single vertex and apply the bounded local tree-
width property. For subsets with constant radius, the only example is the
class of graphs of bounded degree. This appears to be a “natural” dichotomy,
since only artificial classes of locally bounded tree-width, not closed under
minors, with unbounded valence are known (e.g. bounded degree plus all
trees). Recently Eppstein [Epp99] asked, if at all there is any other “natural”
family of graphs, not minor-closed, but with bounded local tree-width.

Naturally the question arises, if classes of bounded local tree-width are
sparse (recall that corollary 34 gave an upper bound of the size of such
structures). The following counter example was provided by Grohe [FG99]
and shows that local tree-decomposability is a proper restriction of bounded
local tree-width.

Example 42. We construct a class C of graphs of bounded local tree-width
such that for every constant c there is a graph G ∈ C with ‖G‖ ≥ c|G|.

We use the following theorem due to Erdös [Erd59]: For all g, k ≥ 1 there
exists a graph of girth greater than g and chromatic number greater than k.
Remember that the girth g(G) of a graph G is the length of the shortest cycle
in G and the chromatic number χ(G) of G is the least number of colors needed
to color the vertices of G such that no two adjacent vertices have the same
color. It is easy to see that every graph G with χ(G) ≥ k has a connected
subgraph H with average degree

2|EH|
|H|

≥ k − 1

(cf. [Die97], p. 98). The diameter of a connected graph G is the number
diam(G) := max{dG(a, b) | a, b ∈ G}.

We inductively construct a family (Gi)i≥1 of graphs as follows: G1 is the
graph consisting of two vertices and an edge between them. Suppose now
that Gi is already defined. Let G ′i+1 be a graph with g(G ′i+1) ≥ 2diam(Gi) + 1
and χ(G ′i+1) ≥ 2i+ 3. Let Gi+1 be a connected subgraph of G ′i+1 with

2|EGi+1|
|Gi+1|

≥ 2i+ 2.

Clearly, g(Gi+1) ≥ g(G ′i+1) ≥ 2diam(Gi) + 1.
Observe that for every r ≥ 1 and every graph G, if 2r + 1 < g(G) then

ltwG(r) ≤ 1. Moreover, if G is connected then ltwG(r) = tw(G) for all

3.2. GAIFMAN’S THEOREM 57

r ≥ diam(G). For every i ≥ 1 and diam(Gi) ≤ r < diam(Gi+1), we let
f(r) := max{tw(Gi), ltwGi+1(r)}. We claim that ltwGi(r) ≤ f(r) for all i, r ≥
1. This is obvious for i = 1. For i ≥ 2, we have to distinguish between
three cases: If r < diam(Gi−1) ≤ 1

2
(g(Gi) − 1), then ltwGi(r) ≤ 1 ≤ f(r).

If diam(Gi−1) ≤ r < diam(Gi), then ltwGi(r) ≤ f(r) immediately by the
definition of f . If r ≥ diam(Gi), then ltwGi(r) = tw(Gi) ≤ f(r).

Thus the class C := {Gi | i ≥ 1} has bounded local tree-width. On the
other hand, for every i ≥ 2 we have ‖Gi‖ ≥ |EGi| ≥ i|Gi|.

3.2 Gaifman’s theorem

Recall the definition of the distance between two elements of a relational
structure. Let τ be a vocabulary. Then for every r ≥ 1 there is a formula
δr(x, y) ∈ FO[τ] such that for all τ -structures A and a, b ∈ A we have A |=
δr(a, b) ⇔ dA(a, b) ≤ r. Within formulas we write d(x, y) ≤ r instead of
δr(x, y) and d(x, y) > r instead of ¬δr(x, y).

If ϕ(x) is a first-order formula, then ϕNr(x)(x) is the formula obtained
from ϕ(x) by relativizing all quantifiers to Nr(x), that is, by replacing every
subformula of the form ∃yψ(x, y, z̄) by ∃y(d(x, y) ≤ r ∧ψ(x, y, z̄)) and every
subformula of the form ∀yψ(x, y, z̄) by ∀y(d(x, y) ≤ r → ψ(x, y, z̄)). A
formula ψ(x) of the form ϕNr(x)(x), for some ϕ(x), is called r-local . The
basic property of r-local formulas ψ(x) is that it only depends on the r-
neighborhood of x whether they hold at x or not, that is, for all structures
A and a ∈ A we have A |= ψ(a) ⇐⇒

〈
NA
r (a)

〉
|= ψ(a).

The next theorem is due to Gaifman and states that properties expressible
in first-order logic are local.

Theorem 43 (Gaifman [Gai82]). Every first-order sentence is equivalent
to a Boolean combination χ of sentences of the form

∃x1 . . . ∃xm
(∧

1≤i<j≤m

d(xi, xj) > 2r ∧
∧

1≤i≤m

ψ(xi)
)
, (3.1)

for suitable r,m ≥ 1 and an r-local ψ(x). The minimal r satisfying the above
properties is called the locality rank of ϕ.

In other words, for every sentence ϕ ∈ FO there is a Boolean formula F
and sentences χ1, . . . , χl of the form (3.1) such that F (χ1, . . . , χl) is equivalent
to ϕ.

Recall that rk(ϕ) denotes the maximal number of quantifier nestings in
ϕ. The original proof of Gaifman yielded r ≤ 7rk(ϕ)−1 and m ≤ rk(ϕ).

58 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

Gaifman presented an explicit inductive construction of the formula χ. This
enables the effective computation of this formula by an algorithm in time,
say, f(‖ϕ‖), for some suitable f : N → N (this function is assumed to be
non-elementary [Woe00a]).

3.3 The main algorithm

In this final section we will present the main result of this chapter, namely, an
algorithm that decides A |= ϕ for structures A of bounded local tree-width
and first-order sentences ϕ.

Roughly, we first compute the formula χ (from Gaifman’s theorem) that
w.l.o.g. has the form (3.1). Then, using a tree cover T of A, we mark those
elements a ∈ A for which we have A |= ψ(a). In a last step we try to find
elements a1, . . . , am ∈ A such that dA(ai, aj) > 2r for all i 6= j. If there are
such elements, we accept and reject, otherwise.

We start with two lemmas comprising the main difficulties of the algo-
rithm. Assume that we have a family T of subsets of A. The first lemma
is needed to recognize those elements a of a T ∈ T for which A |= ψ(a) is
equivalent to 〈T 〉A |= ψ(a) (ψ(x) is assumed to be r-local), i.e. the sets of
elements a ∈ T such that NA

r (a) ⊆ T .

Lemma 44. Let A be a τ -structure and T a family of subsets of A. Then
there exists an algorithm that computes the sets Kr(T) for all T ∈ T in time

O(
∑
t∈T

‖〈T 〉A‖).

Proof: Recall that Kr(T) := {a ∈ T | NA
r (a) ⊆ T}. Let G := G(A) be the

Gaifman graph of A. We present an algorithm that computes Kr(T) in time
O(‖〈T 〉A‖) for each T ∈ T .

Sets T of a cover are given as a list a1, . . . , al. The pseudo-code for
our algorithm is displayed as algorithm 13. We compute Kr(T) iteratively,
maintaining a set K that, in the ith pass, contains the set {a ∈ T | NA

i (a) ⊆
T}. We code K by a referenced list (see page 108) what allows containment
checks a ∈ K and removing elements in constant time. For simplicity, we
denote the entire data structure by kernel and remove elements by a call of
remove.

Observe that, in contrast to the last usage of a referenced list, we do not
require to read out single elements from K. Hence, it would suffice to code
K by the two arrays refc, contr (cf. the definition of referenced lists).

3.3. THE MAIN ALGORITHM 59

1 proc comp kernel(T, r)
2 kernel := copy(T); /* working copy of T */
3 ref init(kernel); /* initialize referenced array */
4 for i = 1 to r do
5 aux := ∅;
6 for a ∈ kernel do
7 if a has a neighbor b /∈ kernel
8 then
9 append(aux, a);

10 fi
11 od
12 for b ∈ aux do remove(kernel, b) od
13 od
14 return(kernel);
15 .

Algorithm 13. Compute Kr(T) for some T .

It is quite obvious that function comp kernel works correctly. Observe
that the condition in line 7 characterizes the elements of kernel that lie on
the outermost ring. To check this condition we have to go through the list of
vertices adjacent to a, hence this requires constant time for each such edge
(the append in the subsequent line also takes constant time).

Running time: So let us analyse the running time of the algorithm. Each
pass of the outer loop over i needs time O(|T |): in particular we need O(|EA∩
T 2|) steps for line 7 plus O(|T |) for line 12. Together this is O(|T | + |EA ∩
T 2|) = O(‖〈T 〉‖) = O(|T |).

Since r is treated as a constant, the overall time need for the subroutine
is O(|T |) as claimed above. 2

The next lemma allow to determine, whether there is a certain number
of elements whose pairwise distance is bigger than a given r.

Lemma 45. Let C be a class of τ -structures of bounded local tree-width and
r,m ≥ 1. Then there is an algorithm that, given a structure A ∈ C and a set
P ⊆ A, decides if there are a1, . . . , am ∈ P such that

dA(ai, aj) > r for 1 ≤ i < j ≤ m. (*)

Furthermore, this algorithm needs time O(|A|).

60 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

1 proc find remotes(A, P,m, r)
2 valid := copy(P); p := 0;
3 ref init(valid);
4 while valid 6= ∅ and p < m do
5 p := p+ 1; ap := first(valid);
6 valid := valid \NA

r (ap);
7 od
8 if p = m then
9 accept

10 else if l = 0 then reject fi
11 fi
12 H := (NA

2r({a1, . . . , ap}), P);
13 if there are pairwise remote a1, . . . , am ∈ H
14 then
15 accept;
16 else
17 reject;
18 fi
19 .

Algorithm 14. Decide if the are m remote vertices in P .

Proof: Let f : N → N be a function that guarantees that C is of bounded
local tree-width. The decision procedure is displayed as algorithm 14

Correctness: The algorithm essentially involves two phases. In the first
phase (lines 2-7) we compute elements a1, . . . , ap such that dA(ai, aj) > r for
some p ≤ m. If p = m then we are done and the algorithm accepts, if p = 0
(this means P = ∅) we reject. Otherwise (p < m), we pass over to the second
phase.

When we enter the second phase, we have P ⊆ NA
r ({a1, . . . , ap}), since

otherwise we would find another ap+1 remote (with distance > r) to all
preceding ai. Let H := (〈NA

2r({a1, . . . , ap}), P)〉. Then for all b, b′ ∈ P we
have dA(b, b′) ≤ r ⇐⇒ dH(b, b′) ≤ r (since we included the r-neighborhood
of P). Thus, there are a1, . . . , am ∈ P satisfying (*) in A if and only if they
satisfy (*) in H. This proves the correctness of the algorithm.

Running time: The first phase requires O(|A|) steps, since the loop is
passed through at most m times and each pass requires at most O(|A|) steps
(set minus is done using a referenced list). For the second phase, note that for

3.3. THE MAIN ALGORITHM 61

B of constant size and s ≥ 1 we have ‖〈NA
s (B)〉‖ = O(|NA

s (B)|) (by bounded
local tree-width). Thus H can be calulated in time O(‖〈H〉‖) = O(|H|).

Furthermore we have tw(H) ≤ ltwA(2pr) ≤ f(2pr), hence the condition
in line 13 is equivalent to the satisfaction of the first-order formula

∃x1, . . . , xm
∧

1≤i<j≤m

d(xi, xj) > r ∧
m∧
i=1

Pxi

in H, and can thus be checked in time O(|H|) by Courcelle’s theorem (theo-
rem 9). 2

Now we are ready to state and prove the main theorems.

Theorem 46. Let C be a class of structures of bounded local tree-width. Then
for every k there is an algorithm that, on input A ∈ C and ϕ ∈ FO, decides
A |= ϕ in time

f(‖ϕ‖) · |A|1+(1/k)

for some suitable function f : N→ N.

Proof: Algorithm 15 is claimed to do the job.

Algorithm 15: Deciding A |= ϕ

Input: Structure A ∈ C, FO-sentence ϕ
Output: A |= ϕ?

1. Compute F (χ1, . . . , χl) according to the recipe given by Gaifman’s the-
orem; let r and m denote the values from Gaifman’s theorem

2. Compute an (r + 1, 2k(r + 1)) neighborhood-cover N ′ of A

3. Compute an (r, w)-tree cover N from N ′ (for some suitable w ≥ 1)
plus the corresponding induced structures

4. Compute Kr(N) for all N ∈ N

5. for all i = 1, . . . , l: (ψi denotes the local formula in χi)

i. Compute PN := {a ∈ N | NA
r (a) ⊆ N, 〈N〉 |= ψi(a)} for all

N ∈ N
ii. Compute P :=

⋃
N∈N PN

iii. if there are a1, . . . , am ∈ P such that dA(ai, aj) > 2r for i 6= j then
pi := true, else pi := false

6. if F (p1, . . . , pl) = true then accept, else reject

62 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

Correctness: Since C has bounded local tree-width, the (r + 1, 2k(r + 1))-
neighborhood cover N computed in line 2 is a (r + 1, w)-tree cover for some
suitable w ≥ 1 (only depending on C and r). Hence, we can apply lemma 36
to get a (r, w)-tree cover N with the corresponding induced substructures.
The remainder is obviously correct.

Running time: By Gaifman’s theorem and the subsequent remark, the first
line needs O(f(‖ϕ‖)) steps. Line 2 requires time O(|A|1+(1/k)) (by lemma 32).
Recall that the obtained neighborhood cover has size ‖N‖ = O(|A|1+(1/k)).
By lemma 44, step 4 needs time O(‖N‖).

l is bounded by a function on ‖ϕ‖, hence we restrict attention to one
cycle of the loop. Step 5i is performed by a call of the algorithm from lemma
12 for all N ∈ N , each of which requires O(g(‖ϕ‖) · |N |) time. Together, this
takes O(‖ϕ‖·‖N‖) time. Line 5ii takes time O(|N |) and finally, using lemma
45 we can decide if the sought elements exist in time O(|A|). Altogether, we
get the desired time bound. 2

If we have a locally tree-decomposable class C, we can do even better.

Theorem 47. Let C be a locally tree-decomposable class of structures. Then
there exists an algorithm that, on input A ∈ C and ϕ ∈ FO, decides A |= ϕ
in time

f(‖ϕ‖) · ‖A‖
for some suitable function f : N→ N.

Proof: The algorithm works exactly like in the previous theorem with the
only difference that now, instead of computing a neighborhood-cover, we
directly compute a tree cover T and the corresponding induced substructures.
By the assumption on C being locally tree-decomposable this can be done in
time O(|A|) (cf. the definition). Since T has size O(|A|) and the rest of the
algorithm works in time O(‖T ‖), we are done. 2

Remark: The constants involved in the running time depend on the class
C, that is, on a function g such that for r ≥ 1,A ∈ C there is a (r, g(r))-tree
cover of A.

3.4 Remarks on special cases

The results of the previous section cover a big variety of different problems.
Due to their meta character, there are important drawbacks on the efficiency

3.4. REMARKS ON SPECIAL CASES 63

of the algorithms. These are caused by their design, which followed the
guideline of being as universal as possible.

For particular cases, these general algorithms can be adjusted to get bet-
ter constants. We are going to discuss the restriction of both, the class of
admitted structures as well as the admitted formulas.

Recall the algorithm from theorem 47. Essentially, given a structure
A and an FO-sentence ϕ, the algorithm proceeds in four steps. First, we
compute the Gaifman normal form for ϕ, which is w.l.o.g. of the form

∃x1 . . . ∃xm
(∧

1≤i<j≤m

d(xi, xj) > 2r ∧
∧

1≤i≤m

ψ(xi)
)
,

where ψ(x) is an r-local formula for some suitable r ≥ 1 (the locality rank).
Then, in the second step, a suitable cover for A (this part depends on the
admitted class; cf. the definition of locally tree-decomposable) is computed.

Using theorem 21, we compute the set P := {a ∈ A | A |= ψ(a)} in the
third step, and finally, we try to find a constant number of pairwise “remote”
elements from P . A closer look shows that each step bears its problems with
respect to the running time.

(i) For the computation of the Gaifman normal form, there is no exact
bound known, but already easy formulas tend to yield big and complicated
local formulas. For more details the reader is referred to the original work
of Gaifman in which an inductive construction of the sought formula is pre-
sented.

(ii) Well known is the problem of computing a tree decomposition for a
structure. As already discussed in the preceding chapter (cf. page 18) no
practical algorithm is known for the general case.

(iii) Essentially the same holds for the Courcelle-like evaluation algorithm
employed to compute P . But although the worst case analysis yields a lower
bound consisting of a tower of height q, if q is the number of quantifier
alternations of ψ, it turned out that for most cases the algorithm behaves
well. Hence, apart from the problem of getting a tree-decomposition, this
part can be considered as practical (or at least more practical than the other
parts).

(iv) Since for the last step we again need Courcelle’s method, there are
the same objections against practicability as in (ii) and (iii).

64 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

In the remainder of this section, we exemplarily show how different restric-
tions affect the algorithms and their running time. In particular, we consider
the restricitions to structures of bounded degree, planar structures and exis-
tential formulas.

Structures of bounded degree: For this case, the Gaifman part remains
the same since we treat arbitrary first-order formula ϕ. Assume that A

denotes the input structure. In part (ii) and (iii), we first compute the sets
NA
r (a) for all v ∈ A and suitable r ≥ 1, and then apply Courcelle’s algorithm

to determine whether or not ψ(a) holds in A. The application of Courcelle’s
theorem is possible due to the fact that each NA

r (a) has size at most f(r) for
some function f , hence has tree-width only depending on r. An alternative
to Courcelle’s algorithm on tree-width f(r) is the ad-hoc algorithm for first-
order logic with l variables (see theorem 1) requiring time O(f(r)l) with
very low constants hidden behind the O-notation (cf. the description of the
algorithm on page 13).

Note that this does not necessarily provide a better running time. But it
looks more feasible than the general approach. The same can be said about
the last step of the algorithm, where we tried to find pairwise remote vertices.
Here we similarly adapt the general algorithm to the special case and decide
line 13 in algorithm 14 by an exhaustive search in the substructure H (since
the size of H only depends on r). Another possiblity would be to adjust
Dijkstra’s algorithm to our setting.

The same ideas led Grohe [Gro00] to the definition of structure classes
of low degree. We say that a class of structures C is of low degree, if for
every k ≥ 1 there is an nk ≥ 1 such that for all A ∈ C with |A| ≥ nk
we have deg(A) ≤ |A|1/k. It is easy to see that the above modification of
the algorithm also works for this class (observe that tree decompositions do
not occur any more in the description of the algorithm). Given a k ≥ 1,
the complexity analysis yields the upper time bound f(‖ϕ‖, k) · |A|1+1/k to
decide A |= ϕ for some suitable function f .

Planar graphs: For planar graphs there are essentially two places where
we can (apparently) speed-up the general algorithm. The first place is where
we compute the tree-decomposition of a planar graph of bounded diameter.
In [Epp95] an algorithm was described that computes a tree-decomposition
of width O(diam(G)) of a planar graph G in time O(|G|). This algorithm
essentially consists of a depth-first search through G and is thus quite effi-
cient (in contrast to the algorithm from [Bod96] the constants hidden behind
the O-notation are low). Unfortunately, this algorithm does not provide a

3.4. REMARKS ON SPECIAL CASES 65

decomposition of optimal width. Hence it is not clear whether the savings
for the computation of the decomposition outweight the additional costs in
the third part of the algorithm (caused by the bigger width of the decompo-
sition).

Existential formulas: The restrictions described until now both lacked
of an efficient treatment of the first step, the computation of the Gaifman
normal form. There is a class of formulas that admit a fast recognition of
the locality rank as well as the computation of a local formula. In the rest
of the section we restrict our attention to existential first-order formulas, i.e.
formulas of the form

ϕ := ∃x1 . . . ∃xkψ(x1, . . . , xk),

such that ψ(x̄) is quantifier free. The most restrictive version is to allow only
conjunctive queries, that is, positive existential formulas without disjunc-
tions. It is well known that satisfaction of conjunctive queries is essentially
the same as finding homomorphic copies of a pattern structure. This problem
has first been adressed by Eppstein [Epp95].

Let ϕ := ∃x̄ψ(x̄) be a conjunctive query, for convenience, over the vocab-
ulary of graphs (the extension to arbitrary vocabularies is straightforward).
Then ϕ induces a graph Gϕ with universe {x1, . . . , xk} and an edge between
xi and xj iff Exixj occurs in ψ(x̄). Assuming that Gϕ is connected, it is
easy to see that χ(x1) := ∃x2 . . . ∃xkψ(x̄) is k-local around x1. Hence, we
can omit the first step in the above algorithm (finding a local formula). For
the second step, all objections made above remain valid. For the third step
observe that there exists an efficient algorithm that finds homomorpic copies
of a pattern graph in a graph of bounded treewidth [Epp95, Bod98]. This al-
gorithm can easily be adjusted to our setting and runs in time O(2k · |A|). By
definition, the last step boils down to finding a single element of the universe
that satisfies χ(x1).

Now assume that Gϕ is not connected and splits up into the components
C1, . . . , Cl. With each component we associate the induced conjunctive query
ϕi. We define

ϕi := ∃Ci
∧

free(λ)⊆Ci

λ,

where ∃Ci stands for the existiential quantification of all xi that are in Ci
and the λ range over all atoms occuring in ϕ. Then ϕ holds in a graph iff all
ϕi hold. Observe that this approach can be extended to positive existential
formulas (e.g. given in disjunctive normal form), but it does not work in the
presence of negative conjuncts.

66 CHAPTER 3. FIRST-ORDER DECISION PROBLEMS

In his Master Thesis [Woe00b], Wöhrle exhibited a bigger fragment of
existential first-order logic that admits an easy treatment with respect to
local behaviour. Recall the definition of Gϕ for a positive existential formula
ϕ. For existential formulas ϕ, we define Gϕ to be equal to Gϕ′ , where ϕ′

results from ϕ by deleting all negative literals. Then ϕ is called guarded, if
for each ¬Exixj occuring in ϕ, the variables xi, xj are both contained in the
same component of Gϕ. In the thesis he was able to show that the algorithm
for positive existential formulas also works for guarded ones.

Conclusion: Are these specialized algorithms really practical? The com-
putation of the Gaifman normal form in the first step not only takes a long
time, but also returns a huge formula, which afterwards has to be translated
to a finite automaton (including a further blow up). So the only practical
way seems to combine the above proposals, e.g. checking guarded existential
formulas over planar structures or structures of bounded degree.

Chapter 4

First-order Formulas with free
Variables

In the last section we haved showed that we can decide first-order proper-
ties over locally tree-decomposable structures in linear time. Naturally, the
question turns up, if the techniques applied successfully to the decision prob-
lem, can be extended to get good algorithms for the evaluation and counting
problems.

Recall the problem: We are given a first-order formula ϕ(x̄) with free
variables x̄ and a structure A. Our task is to design efficient algorithms
that solve the evaluation, witness and counting problem, respectively, i.e.
calculate the set ϕ(A), find a tuple ā ∈ A such that A |= ϕ(ā), or calculate
the number |ϕ(A)|.

We will proceed in three steps. In the first step, we develop a normal form
for local formulas ϕ(x̄). This normal form partitions the set ϕ(ā) with respect
to “distance-patterns” realized by the free variables x̄. Second, we include a
special form of a tree cover T for A to get an alternative description of ϕ(A).
This characterization describes how local solutions (computed in the cover
sets) are assembled to obtain the entire solution, which is accomplished by a
combination of the locality properties of first-order logic and the respective
properties of neighborhood covers. These ingredients will yield an alternative
characterization of ϕ(A), which will be the starting point for the solution of
the three mentioned problems.

The particular solutions will be provided in a third step. While the eval-
uation and witness case can be solved more or less straightforwardly, the
counting case requires a bit more effort.

67

68 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

4.1 A normal form for local formulas

Let k ≥ 1 and t ≥ 1. The t-distance-type of a k-tuple ā ∈ A in a structure A

is the undirected graph ε := ([k], Eε), where there is an edge between distinct
vertices i and j if and only if dA(ai, aj) ≤ 2t + 1. We denote this situation
by ā |=A,t ε and, if the context is clear, we will frequently omit A and t.

The satisfaction of t-distance-types can be expressed in first-order logic
by the formula

ρt,ε(x̄) :=
∧

(i,j)∈ε,i<j

d(xi, xj) ≤ 2t+ 1 ∧
∧

(i,j)/∈ε,i<j

d(xi, xj) > 2t+ 1,

i.e. we have ā |=A,t ε iff A |= ρt,ε(ā). The sets {ā | ā |= ε} of tuples satisfying
a certain distance-type ε form a partition of Ak.

A formula ϕ(x̄) is called t-local if it is equivalent to a formula of the
form ψNt(x̄)(x̄) for some ψ(x̄). Observe that ρt,ε(x̄) is t-local around x̄ (since
dA(x, y) ≤ 2t+ 1 iff A |= ∃z1 ∈ Nt(x)∃z2 ∈ Nt(y) Ez1z2).

Now, assume that ε splits into connected components ε1, . . . , εp. We let
εi,ν stand for the ν-th coordinate of the i-th component (with respect to the
natural ordering on the indices). With ā � εi we denote the projection of ā
onto the coordinates contained in εi.

The restriction to tuples ā satisfying some distance-type ε provides us
with important a-priori information about how the t-ball around ā looks like.
The principal feature is that t-neighborhoods of elements corresponding to
different components εi do not touch. We say that two subsets U, V ⊆ A do
not touch in A if in the Gaifman graph of A there are no edges between U
and V , or equivalently, 〈U〉G(A) ∪ 〈V 〉G(A) = 〈U ∪ V 〉G(A). The next lemma
provides the abovementioned normal form for t-local formulas, which will
allow a separate treatment of the variables from different ε-components.

Lemma 48. Given a t-local ϕ(x̄) ∈ FO for some t ≥ 1. Then for every
distance-type ε with connected components ε1, . . . , εp we can find a Boolean
combination F (ϕ̄1(x̄), . . . , ϕ̄p(x̄)) of formulas ϕi,j(x̄), 1 ≤ i ≤ p and 1 ≤ j ≤
mi such that

(1) the ϕi,j(x̄) are t-local around their free variables,

(2) for all i, the free variables of ϕi,j(x̄) are among x̄�εi, and

(3) ρt,ε(x̄) |= (ϕ(x̄)↔ F (ϕ̄1(x̄), . . . , ϕ̄p(x̄)))

4.1. A NORMAL FORM FOR LOCAL FORMULAS 69

To prove this recall the definition of MSO-Ehrenfeucht-Fraisse games de-
fined in section 2.2. If we restrict the MSO game to point moves, we get
a game that exactly characterizes FO [EF95]. For a structure A and a k-
tuple ā ∈ A we let the q-type tpq(A, ā) be the set of all formulas ψ(x̄) ∈ FO
of quantifier-rank ≤ q such that A |= ψ(ā). For two structures A,B and
k-tuples ā, b̄ we write (A, ā) ≡FO

q (B, b̄), if tpq(A, ā) = tpq(B, b̄). It is
well known that the Duplicator wins the q-round FO-EF-game on (A, ā) and
(B, b̄) iff (A, ā) ≡q (B, b̄), and that for all q-types tpq(A, ā) there is a formula
χqA,ā(x̄) of quantifier-rank q such that B |= χqA,ā(b̄) iff (A, ā) ≡q (B, b̄).

Proof: Let ϕ(x̄) be a t-local first-order formula of quantifier-rank q. We
claim that for a structure A and a k-tuple ā ∈ A realizing ε, the type of
〈Nt(ā)〉 is already determined by the types of 〈Nt(ā � εi)〉 for i = 1, . . . , p.
Since the latter types are determined by t-local formulas around the variables
x̄�εi, this yields the lemma.

Observe that, if we restrict the EF-game on (A, ā) and (B, b̄) such that
both players are only allowed to put pebbles into NA

t (ā) and NB
t (b̄) respec-

tively, then this game characterizes exactly the formulas ψ(x̄) which are
t-local around x̄. Now suppose (〈Nt(ā � εi)〉, ā � εi) ≡q (〈Nt(b̄ � εi)〉, b̄ � εi)
for two tuples ā, b̄ and i = 1, . . . , p. We have to show that this implies
(〈Nt(ā)〉, ā) ≡q (〈Nt(b̄)〉, b̄), or equivalently, that the Duplicator has a win-
ning strategy for the q-round EF-game. But this is obvious, since the t-balls
around ā�εi do not touch mutually, and therefore the assumed local strategies
on the disjoint t-balls extend to a global strategy. Suppose, for instance, that
in round j ≤ q the Spoiler puts a pebble onto vertex a, with a ∈ Nt(ā � εi)
for a unique i ≤ p. Then the Duplicator responds with a pebble in Nt(b̄�εi)
according to his local winning strategy (which exists by assumption). 2

For a Boolean formula F we denote with SAT(F) the set of assignments
satisfying F . For a t-local formula ϕ(x̄) and a distance-type ε = ε1 ∪ . . . ∪
εp denote the formula obtained in lemma 48 by ϕt,ε(x̄) (being of the form
F t,ε(ϕ̄1(x̄), . . . , ϕ̄p(x̄)) for some Boolean formula F t,ε).

Let ϕ(x̄) be t-local around x̄ and ε a t-distance-type. For a Boolean
assignment αi,j (1 ≤ i ≤ p and 1 ≤ j ≤ mi) for F t,ε define

ϕt,εiᾱi (x̄) := ρt,εi(x̄) ∧
∧

ν:αi,ν=true

ϕi,ν(x̄) ∧
∧

ν:αi,ν=false

¬ϕi,ν(x̄).

Furthermore, we define ϕt,εᾱ1,...,ᾱp(x̄) :=

ϕt,ε1ᾱ1
(x̄�ε1) ∧ · · · ∧ ϕt,εpᾱp (x̄�εp) ∧

∧
1≤i<j≤p

d(x̄�εi, x̄�εj) > 2t+ 1). (4.2)

70 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

With this notation the next corollary follows directly from the last lemma
and easy Boolean transformations:

Corollary 49. Under the above assumptions, ϕ(x̄) is equivalent to∨
ε

∨
(ᾱ1,...,ᾱp)
∈ SAT(F t,ε)

ϕt,εᾱ1,...,ᾱp(x̄).

The next lemma is the key to exploit locality of formulas in the presence of
a suitable neighborhood-cover. It will be used in the next section in slightly
different contexts.

Lemma 50. Let A be a structure, ϕ(x̄) be a t-local FO-formula and ε a
distance-type over the free variables of ϕ(x̄). Assume we have a family
U1, . . . , Up of subsets of A with the property that Nt(Ui) and Nt(Uj) do not
touch for all 1 ≤ i < j ≤ p. Then the set B := {ā | ā � εi ∈ Ui and A |=
(ϕ ∧ ρt,ε)(ā)} can be characterized as follows:

B =
⋃

(ᾱ1,...,ᾱp)∈SAT(F t,ε)

p∏
i=1

{c̄ | c̄ ∈ Ui and 〈Nt(Ui)〉 |= ϕt,εiᾱi (c̄)}, (4.4)

The main feature provided by this lemma is that B is the union of a
constant number of disjoint Cartesian products of locally computable sets.
This representation will prove very useful later on where we are given a cover
of a structure A by subsets Ui such that 〈Ui〉 has bounded treewidth. In
particular, this admits local computations to be done in optimal time (cf.
for instance algorithm 21).

Proof: Observe that, since Nt(Ui) and Nt(Uj) do not touch, we know that
vertices x ∈ Ui and y ∈ Uj have distance more than 2t + 1, hence elements
corresponding to different ε-components satisfy their claimed remoteness.

Take an ā ∈ B, hence A |= (ϕ ∧ ρt,ε)(ā), which implies A |=
F t,ε(ϕ̄1(ā), . . . , ϕ̄p(ā)). We denote the truth-value of ϕi,j(ā � εi) in A by αi,j,
yielding a satisfying assignment ᾱ1, . . . , ᾱp for F t,ε. Knowing that all ϕi,j(x̄)
are t-local around x̄�εi, we get

〈Nt(Ui)〉 |= ϕi,j(ā�εi) iff A |= ϕi,j(ā�εi).

Together with A |= ρt,εi(ā � εi), we get 〈Nt(Ui)〉 |= ϕt,εiᾱi (ā � εi), hence, by
definition, ā is in the right side of equation (4.4).

Assume that ā is in the right-side term, witnessed by ᾱ1, . . . , ᾱp ∈
SAT(F t,ε). Then, by the satisfaction of ρt,εi(ā�εi), all components ā�εi satisfy

4.1. A NORMAL FORM FOR LOCAL FORMULAS 71

εi, and, by the remark above, also remoteness is fulfilled, hence A |= ρt,ε(ā).
By corollary 49 we know that ϕ(x̄) ∧ ρt,ε(x̄) is equivalent to∨
ᾱ1,...,ᾱp∈SAT(F t,ε)

(
ϕt,ε1ᾱ1

(x̄) ∧ · · · ∧ ϕt,εpᾱp (x̄)
)
∧

∧
1≤i<j≤p

d(x̄�εi, x̄�εj) > 2t+ 1,

(4.5)
and this gives that A |= ϕ(ā). 2

We end this section by gathering what we have achieved so far to charac-
terize the target set ϕ(A) := {ā | A |= ϕ(x̄)} for a t-local formula ϕ(x̄) and
a structure A. The formula equivalent to ϕ(x̄) in the corollary is a disjoint
disjunction, hence

ϕ(A) =
⋃
ε

⋃
(ᾱ1,...,ᾱp)

ϕt,εᾱ1,...,ᾱp(A), (4.6)

where both unions are over disjoint sets. In addition, a formula of the form
ϕt,εᾱ (x̄) is a conjunction of formulas with the property that no variable occurs
freely in two different conjuncts. Hence, under certain additional conditions
(like in the previous lemma), the set of satisfying assignments is a Cartesian
product.

Computing the normal form: We close this section showing how to com-
pute the formula F t,ε from lemma 48. Recall that after this lemma, we
continued with a formula ϕt,ε(x̄) where ε = ε1 ∪ · · · ∪ εp is a distance-type
over the variables and t ≥ 1. Hence, in order to get uniform algorithms,
we need a procedure that effectively computes this formula. Assume that
we have given a t-local first-order formula ϕ(x̄) and a distance-type ε. We
have to compute a Boolean formula F and a family of formulas ϕi,j(x̄ � εi),
(1 ≤ i ≤ p and 1 ≤ j ≤ mi) such that:

ρt,ε(x̄) |= ϕ(x̄)↔ F (ϕ̄1(x̄�ε1), . . . , ϕ̄p(x̄�εp))

where the ϕi,j(x̄ � εi) have quantifier rank ≤ rk(ϕ). The set of all possible
candidates can be computed as follows. Define

Γi := {ψ(x̄�εi) ∈ FO | rk(ψ) ≤ rk(ϕ)}.

Modulo equivalence, Γi is finite, and a complete set of such formulas can be
computed by an algorithm closing the set of atoms under Boolean combina-
tions and existential quantification (the obtained set may contain equivalent
formulas). Then the possible candidates for ϕt,ε(x̄) are exactly the Boolean
combinations over

⋃p
i=1 Γi. We call this Boolean closure Γ.

72 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Now our problem is to find a ψ(x̄) ∈ Γ such that

ρt,ε(x̄) |= ϕ(x̄)↔ ψ(x̄).

Remember Gödels completeness theorem for the sequence calculus1. A for-
mula ψ is said to be derivable from ϕ (ϕ ` ψ), if there exists a sequence ∆
of sequence rules such that ϕ∆; ψ is a valid sequence (validness is a purely
syntactic notion).

Theorem 51 (Gödel 1928 [EFT95]). Let be ϕ and ψ first-order formulas.
Then the following holds:

ϕ |= ψ ⇐⇒ ϕ ` ψ.

This folklore theorem entails that there is an algorithm that enumerates
all logical consequences of a given first-order formula ϕ. This algorithm
enumerates all possible sequences ∆ and “applies” them to ϕ, printing out
the result. Note that we cannot decide, if a given formula ψ is a consequence
of ϕ. Hence, the ad-hoc algorithm, checking the equivalence above for all
ψ(x̄) ∈ Γ does not work.

Nonetheless, because of lemma 48, we know that such a formula ϕ(x̄)
exists, hence, by the completeness theorem, there must be a ∆ such that

∆;
(
(ρt,ε ∧ ϕ)(x̄)↔ (ρt,ε ∧ ψ)(x̄)

)
is a valid sequence. Since validness can be decided by a simple syntax check,
this offers the following solution to the problem:

For all sequences ∆, check if ∆;
(
(ρt,ε ∧ ϕ)(x̄) ↔ (ρt,ε ∧ ψ)(x̄)

)
is a valid sequence for some formula ψ(x̄) ∈ Γ. If so, return this
ψ(x̄).

Obviously, this algorithm is correct. And since we know that such a
formula ψ(x̄) exists and Γ is finite, we always terminate. This proves the
following lemma.

Lemma 52. There is an algorithm that, given t ≥ 1, a t-local first-order
formula ϕ(x̄) and a fitting distance-type ε, computes the formula ϕt,ε(x̄).

1Details about the sequence calculus can be found in every textbook about logic, for
instance [EFT95].

4.2. INCLUDING THE TREE COVER 73

4.2 Including the tree cover

What we have done so far only concerned the t-local formula ϕ(x̄). In this
section we bring together the normal form developed in the last section,
and the property of the input structures of being locally tree-decomposable.
These two ingredients will yield a characterization of ϕ(A) that only involves
local computations.

Unfortunately, we have to strengthen our requirements on tree covers to
be able to include the cover adequately. For instance, we need the property
that the union of a constant number of cover sets induces a structure of
bounded treewidth. This property holds for all example classes given in the
previous chapter.

Definition 53. Let r, l ≥ 1 and g : N→ N. A nice (r, l, g)-tree cover T of a
structure A is a (r, g(1))-tree cover T such that

(1) for each U ∈ T there are at most l many V ∈ T with U ∩ V 6= ∅

(2) for all U1, . . . , Uq ∈ T , q ≥ 1 we have

tw(〈U1 ∪ · · · ∪ Uq〉A) ≤ g(q)

A class C of structures is nicely locally tree-decomposable, if there exists a
linear time algorithm that, given an r ≥ 1 and a structure A ∈ C, computes
a nice (r, l, g)-tree cover T of A for some suitable l ≥ 1 and g : N→ N.

It is easy to see that all example classes C, introduced in the last section
admit nice tree covers, e.g. for the construction in lemma 37 we can choose
l = 3 and g(q) := f((2r + 1) · q), where f is the function bounding the local
treewidth for C. If C is a class of structures of degree bounded by d ≥ 1, then
choose g(q) := q ·d(d−1)r−1 (the maximum size of q many r-neighborhoods),
and l = d(d− 1)r−1.

Now adopt the assumptions from the end of the last section and let ϕ(x̄)
be of the form (4.2), i.e. ϕ(x̄) := ϕt,εᾱ1,...,ᾱp(x̄) for a distance type ε and a
matching assignment (ᾱ1, . . . , ᾱp). This means that we have a formula ϕ(x̄)
of the following form:

ϕ(x̄) :=
∧

1≤i<j≤p

d(x̄�εi, x̄�εj) > 2t+ 1 ∧ ϕ1(x̄�ε1) ∧ · · · ∧ ϕp(x̄�εp). (4.7)

Furthermore, a nice (r, l, g) tree cover T = {U1, . . . , Um} of the input struc-
ture A is given, for r := k(2t+ 1) and appropriate l ≥ 1, g : N→ N.

74 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

In the sequel, we state and prove a couple of alternative descriptions of
the target set ϕ(A). We use capital letters for the indices I ∈ [m] over the
tree cover. These indices often occur as tuples, which will be indexed by
lower-case letters (e.g. Ij ∈ [m]).

(i) Including the cover

ϕ(A) =
⋃

(J1,...,Jp)∈[m]p

AJ1,...,Jp , (4.8)

where

AJ1,...,Jp :=
{
ā
ā�εi ∩Kr(UJi) 6= ∅ and 〈UJ1 ∪ · · · ∪ UJp〉 |= ϕ(ā)

}
. (4.9)

Proof: This follows directly from the definitions. In fact, if A |= ϕ(ā),
then, by property (1) of tree covers, there are indices J1, . . . , Jp such that
ā�εi ∩Kr(UJi) 6= ∅.

For the tree cover U1, . . . , Um, we have chosen r (= k(2t + 1)) such that
for all ā with ā � εi ∩ Kr(UI) 6= ∅ we have Nt(ā � εi) ⊆ UI , hence Nt(ā) ⊆
UJ1 ∪ · · · ∪ UJp . Therefore, by t-locality

A |= ϕ(ā) iff 〈UJ1 ∪ · · · ∪ UJp〉 |= ϕ(ā).

This gives us the left to right inclusion of equation (4.8).
The other direction is trivial, by the definition of AJ1,...,Jp . 2

(ii) Structuring the cover
The graph c(T) serves to summarize the relevant topological information of
a tree cover T , and is the graph ([m], Ec(T)) with Ec(T) := {(I, J) | UI ∩
UJ 6= ∅}. To partition the set of indices, we introduce the p-contiguousness-
type of a tuple (J1, . . . , Jp) w.r.t. T as the graph κ = ([p], Eκ) such that
(i, j) ∈ Eκ if, and only if (Ji, Jj) ∈ Ec(T) (we write (J1, . . . , Jp) |= κ). By
ModT (κ) we denote the set of tuples of indices that realize κ: ModT (κ) :=
{(J1, . . . , Jp) | (J1, . . . , Jp) |= κ}.

Convention: We arrange the coordinates of a tuple (J1, . . . , Jp) realizing κ
according to the κ-components they belong to. Tacitly assuming that the
ordering remains unchanged, we will write (J̄1, . . . , J̄q) for the rearranged
tuple; e.g. AJ̄1,...,J̄q refers to the set defined in equation (4.9), although the
indices are permuted (actually, this definition depends on κ).

Furthermore, we declare that if we write Jj, this refers to the j’th coor-
dinate of J̄ , while Ji,ν refers to ν’th coordinate contained in κi.

4.2. INCLUDING THE TREE COVER 75

Now assume that we have given a tuple of indices (J1, . . . , Jp) ∈ [m]p

and that this tuple satisfies the p-contiguousness-type κ. The objective of
introducing κ is to deliver a priori information about the distances between
elements contained in the sets UJ1 , . . . , UJp : take two indices Ji, Jj not adja-
cent in κ, i.e. (i, j) /∈ Eκ. It is easy to see that

dA(Kr(UJi), y) > 2r for all y ∈ Kr(UJj)

follows directly from UJi ∩ UJj = ∅. Let κ be a p-contiguousness-type with
connected components κ1, . . . , κq. Then ε(κi) :=

⋃
j∈κi εj is the union of

the ε-components contained in κi. By the remark just made, we know that if
J̄ |= κ and Ji, Jj belong to different κ-components, then the distance between
elements of their respective kernels is > 2r. This fact will be used to get the
next characterization of ϕ(A).

Restricting the definition of AJ1,...,Jp to the indices corresponding to the
components ε(κi) we obtain the following definition:

Aκi
J̄i

:= {ā�ε(κi) | for all j, µ such that j is the µ’th element from κi :

ā�εj ∩Kr(UJi,µ) 6= ∅ and A |= ρt,ε(κi)(ā�ε(κi)) ∧
∧
j∈κi

ϕj(ā�εj)}. (4.10)

This set can be computed in the substructure of A induced by the set UJ̄i :=⋃l
ν=1 UJi,ν , where l denotes the size of the tuple J̄i. As a matter of fact, Aκi

J̄i
is the set of tuples satisfying the formula

ρt,ε(κi)(x̄�ε(κi)) ∧
∧
j∈κi

(
ϕj(x̄�εj) ∧

∨
ν∈εj

Pνxν
)
,

where the Pν are new unary relation variables, interpreted by the kernels of
the cover sets UJν . Observe that, by t-locality, this formula can be evalu-
ated correctly2 in 〈UJ̄i〉. The next lemma combines the above remark about
remoteness of indices and the definition of Aκi

J̄i
with lemma 50. It claims

that the set AJ̄1,...,J̄q is a Cartesian product of the locally computable sets
Aκ1

J̄1
, . . . , A

κq
J̄q

.

Lemma 54. Let be κ a contiguousness-type as above and (J̄1, . . . , J̄q) a tuple
of indices realising κ. Then

AJ̄1,...,J̄q = Aκ1

J̄1
× · · · × Aκq

J̄q

holds, using the above definitions.
2Note that, even if some xν ∈ x̄ � εi does not occur freely in ϕi, it must occur in the

set. This is against the convention made in the preliminaries, but is necessary here.

76 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Here we run into the problem already mentioned above. Since the group-
ing with respect to the components of κ permutes the coordinates of a tuple
J̄ this also happens to the Cartesian product in the lemma. Therefore, we
state that the Cartesian product × is just a notation for the operation that
takes care of this changes.

Now we rewrite equation (4.8) using the preceding lemma and obtain:

ϕ(A) =
⋃
κ

⋃
(J̄1,...,J̄q)|=κ

AJ̄1,...,J̄q

=
⋃
κ

⋃
(J̄1,...,J̄q)|=κ

Aκ1

J̄1
× · · · × Aκq

J̄q
. (4.11)

What did we gain with this reformulation? First of all, we grouped the indices
into parts that are mutually independent. Thereby, we opened the way up
to a classification of what parts are to be computed together and how these
have to be assembled afterwards. The crucial point is that dependent parts
are nearby neighborhoods, and thus the corresponding indices form small
connected subgraphs of c(T) (and as it will turn out in the next section,
there are only linearly many of them).

Proof: (of lemma 54) Let κ be given with components κ1, . . . , κq and
(J̄1, . . . , J̄q) be a tuple of indices realising κ. First, note that the condi-
tion ā�εj ∩Kr(UJj) 6= ∅ for all j ∈ [p] must be satisfied on both sides of the
equation, hence we can ignore it.

Thus, we have the following: ā ∈ AJ̄1,...,J̄q ⇔ A |= ρt,ε(ā) ∧ ϕ1(ā �
ε1) ∧ · · · ∧ ϕp(ā�εp). This directly implies ā�ε(κi) ∈ AκiJ̄i (equation (4.10)).

To prove the other direction, assume a tuple ā with ā � ε(κi) ∈ Aκi
J̄i

,
for all i = 1, . . . , q. We show that for j1, j2 from different κ-components,
remoteness is satisfied, i.e. d(ā � εj1 , ā � εj2) > 2t + 1. This gives ā |= ε, since
ā�ε(κi) |= ε(κi), for all i, is explicitly claimed in the definition of Aκi

J̄i
.

For j1 6= j2 there are ν1 ∈ εj1 , ν2 ∈ εj2 such that aν1 ∈ Kr(UJj1) and
aν2 ∈ Kr(UJj2). Using the definition of kernels (cf. the above remark)
this gives us the inequality d(aν1 , aν2) > 2r = 2k(2t + 1). On the other
hand, the connectedness of the ε-components yields ā � εj1 ⊆ Nk(2t+1)(aν1),
ā � εj2 ⊆ Nk(2t+1)(aν2), which together give us the desired inequality d(ā �
εj1 , ā�εj2) > 2t+ 1 (since either of the ε-components has length less than k).
The definition of Aκi

J̄i
claims

〈UJ̄i〉 |= ρt,ε(κi)(ā�ε(κi)) ∧
∧
j∈κi

ϕj(ā�εj),

4.2. INCLUDING THE TREE COVER 77

for all i = 1, . . . , q, hence A |= ρt,ε(x̄) ∧ ϕ1(ā�ε1) ∧ · · · ∧ ϕp(ā�εp). 2

4.2.1 The contiguousness-graph

Recall the last characterization of our target set ϕ(A)

ϕ(A) =
⋃
κ

⋃
(J̄1,...,J̄q)|=κ

Aκ1

J̄1
× · · · × Aκq

J̄q
. (4.12)

The goal of this section is to provide a characterization of the set of admissible
indices (J̄1, . . . , J̄q) in the above equation. The graph introduced in the next
definition captures the combinatorial properties of this index set.

Definition 55. Let κ be a p-contiguousness-type with components κ1, . . . , κq
and T be a neighborhood cover. The contiguousness graph c(T , κ) of T with

respect to κ has vertex set Mod(κ1)
·
∪ · · ·

·
∪Mod(κq) and edge relation Ec(T ,κ)

defined as follows:

(J̄i, J̄j) ∈ Ec(T ,κ) iff there are ν, µ : (Ji,ν , Jj,µ) ∈ Ec(T)

Additionally, we give the vertices corresponding to Mod(κi) the color i, or

more formally, we add unary relations C1, . . . , Cq with C
c(T ,κ)
i := Mod(κi).

Remark: It is easy to see that a tuple (J̄1, . . . , J̄q) is admitted in the above
union (4.12) for κ if, and only if, J̄i ∈ Ci for all i, and {J̄1, . . . , J̄q} is indepen-
dent in c(T , κ). We call tuples satisfying these two conditions independent
tuples . Thus our problems translates to the problem of finding independent
tuples in a graph. This is, apart from the constraints J̄i ∈ Ci, a classical
NP-complete problem [GJ79] in the general case.

The solution, we will provide, takes advantage of the specific combinato-
rial structure of c(T , κ) induced by the restrictions on T . (r, l, g)-tree covers
have the crucial property that each U ∈ T has at most l contiguous V ∈ T (or
equivalently: c(T) has degree bounded by l). The next lemma summarizes
the properties of c(T , κ).

Lemma 56. Let T be a nice (r, l, g)-tree cover of A. Then for all κ:

(1) c(T , κ) can be calculated in time O(|T |).

(2) c(T , κ) has maximal degree bounded by some function on l, k.

(3) for all i = 1, . . . , q: {UJ̄i | J̄i ∈ C
c(T ,κ)
i } is a (r, kl, g ◦ hi)-tree cover of

A, where hi(n) := |κi| · n.

78 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Proof: Let T = {U1, . . . , Um} be an (r, l, g)-tree cover of A and κ a
contiguousness-type with components κ1, . . . , κq. Denote the size of κi by
pi, and recall that c(T) has maximal degree ≤ l.

Let J ∈ [m] and i ≤ q. We define κi(J) := {J̄ | J̄ |= κi and Jj =

J for some j}, the set of all vertices in C
c(T ,κ)
i that contain J as a part.

For the proof of (1), we give an algorithm at a quite low level. A non-
primitive operation will be the loop over all J̄ ∈ κi(J) for J ∈ [m]. This loop
can be implemented in the following straightforward manner: calculate κi(J),
sort it, and identify the set elements with integers from an initial segment
of the naturals. Since J̄ ∈ κi(J) can be checked in constant time, we do not
lose any time (see also the complexity analysis at the end of the proof, where
we show that |κi(J)| ≤ lpi(pi−1)).

1 proc calc cgraph(T , κ)
2 comment: calculate the vertex set
3 for i = 1 to q do /* the colors */
4 n := 1;
5 for J = 1 to m do
6 for J̄ ∈ κi(J) do
7 vertex[i, n] := J̄ ;
8 comment: calculate the adjacency list
9 adj[i, n] := NULL;

10 for µ = 1 to pi do
11 for I ∈ N c(T)(Jµ) do
12 for j = 1 to q do
13 for Ī ∈ κj(I) do
14 append(adj[i, n], Ī);
15 od
16 od
17 od
18 od
19 n := n+ 1;
20 od
21 od
22 od
23 .

Algorithm 16. Calculate c(T , κ)

At the end of the algorithm c(T , κ) is contained in the arrays vertex

4.3. THE EVALUATION- AND WITNESS PROBLEM 79

and adj. Their semantics is as follows: vertex[i, j] = J̄ means that the j′th
vertex of color i is J̄ . adj[i, j] represents a list of the vertices adjacent to the
J̄ .

It is important for the algorithm to work that the arrays vertex and adj

have only one unbounded dimension (the one that corresponds to the index
j). The others are bounded, hence the arrays are essentially one dimensional.
Observe here that vertices can occur multiple times and the vertices of the
graph are not an initial segment of the natural numbers. But with the
algorithm described at the end of section A.3 we get a normalized version.
The correctness of the algorithm is immediate.

The running time: For the linear time bound, note that |κi(J)| ≤
(lpi)pi−1 = lpi(pi−1), for all J ∈ [m]; we simply choose pi many indices from the
p1−1-neigborhood (in c(T)) of J . Thus every loop, apart from the loop over
J , is constant. Hence the algorithm needs time O(m). Implicitly, this forces

c(T , κ) to have linear size, in fact, |Cc(T)
i | ≤

∑
J∈c(T) |κi(J)| ≤ m · lpi(pi−1) =

O(m) (this is the maximum value of the variable n).
Finally for the normalization of the graph we need time O(p · m +

‖c(T , κ)‖) which is, by the previous considerations, equal to O(m).

To prove (2) consider the loop from line 10 to line 18. Recall that N(J) is
the set of all vertices adjacent to J . In this loop, we generate the adjacency
list for each vertex J̄ , which has size ≤ pi · l · lpi(pi−1).

At last, for (3), we have to confirm the conditions of definition 53. Con-
dition (1) of definition 35 transfers immediately to covers with the property
that each set in the old cover is contained in a set of the new cover.

To examine the treewidth, fix some i and J̄ |= κi. Because T is a nice
(r, l, g)-tree cover, the set 〈UJ̄〉 has treewidth bounded by g(pi). Building the
union over s such sets we get g(pi · s) as an upper bound on the treewidth.

Furthermore, there is an edge between J̄ and J̄ ′ iff UJ̄ ∩ UJ̄ ′ 6= ∅, hence
property (1) of definition 53 is satisfied (a bound on the non-empty intersec-
tions). 2

4.3 The evaluation- and witness problem

In this section we present an algorithm that solves the FO-evaluation problem
over nicely tree-decomposable classes C. The running time of the algorithm
is linear in the size of the input structure plus the size of the output, hence
optimal.

80 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

We use two steps to describe the algorithm. First, we show that the
reduction described in the first two sections of this chapter is feasible in linear
time. In fact, we provide an algorithm in the style of a Turing reduction,
where the oracle is assumed to be an algorithm computing ϕεᾱ1,...,ᾱp

(A) for
the input structure A.

Second, we present a subroutine that fills the gap in the above program
(i.e. calculates the sets ϕt,εᾱ1,...,ᾱp and their union). This completes the algo-
rithm.

4.3.1 The evaluation problem

We can evaluate an FO-formula on nicely tree-decomposable structures in
optimal time.

Theorem 57. Let C be a class of structures being nicely tree-decomposable.
Then there exists a function f : N → N and an algorithm that solves the
evaluation problem for FO-formulas ϕ(x̄) on structures A ∈ C in time

f(‖ϕ‖) · (‖A‖+ |ϕ(A)|).

The algorithm evaluating FO-queries looks as follows:

Algorithm 17: Computing ϕ(A)

Input: Structure A ∈ C, FO-formula ϕ(x̄)
Output: ϕ(A)

1. Compute the Boolean combination ϕ′(x̄) =
F (ϕ1(x̄), . . . , ϕl1(x̄), ψ1, . . . , ψl2) equivalent to ϕ(x̄), where all ϕi(x̄)
are t-local around x̄ (lemma 48).

2. For all i = 1, . . . , l2 decide, if A |= ψi and replace ψi in ϕ′(x̄) with its
truth value. Denote the resulting formula with ϕ′′(x̄).

3. Compute a nice (k(2t + 1), l, g)-tree cover T for appropriate l ≥ 1, g :
N→ N.

4. For all distance-types ε = ε1 ∪ · · · ∪ εp

i. calculate ϕt,ε(x̄) = F (ϕ̄1(x̄), . . . , ϕ̄p(x̄)) from lemma 48

ii. For all (ᾱ1, . . . , ᾱp) ∈ SAT(F), calculate ϕt,εᾱ1,...,ᾱp(A)

5. Return
⋃
ε

⋃
ᾱ ϕ

t,ε
ᾱ1,...,ᾱp(A)

4.3. THE EVALUATION- AND WITNESS PROBLEM 81

The first line needs time linear in ‖ϕ′(x̄)‖, which itself only depends on
‖ϕ(x̄)‖ (cf. the end of section 4.1, where we explained how to calculate the
normal form from lemma 48).

By definition, a nice (k(2t + 1), l, g)-tree cover can be computed in time
O(|A|), the same holds for the decision of A |= χi (by theorem 47). Thus
line 2 and line 3 need time linear in the structure size.

The loop in line 4 is the crucial one. First, the number of different ε is
constant (depends only on k). Calculating ϕt,ε(x̄) needs time only depending
on ‖ϕ‖, and the number of different Boolean assignments (ᾱ1, . . . , ᾱp) which
have to be considered is also bounded by a constant. Hence, the subroutine
calculating ϕt,εᾱ1,...,ᾱp(A) is called constantly often.

By a result, being proved later on, ϕt,εᾱ1,...,ᾱp(A) can be calculated in time

O(|ϕ(A)|) (actually in time O(|ϕt,εᾱ1,...,ᾱp(A)|)), hence the entire loop is per-
formed in time O(

∑
ε

∑
ᾱ |ϕ(A)|) = O(|ϕ(A)|). The last step, finally, outputs

the just computed sets.

Enumerating independent tuples: Consider the assumptions in algo-
rithm 17 before the call of the subroutine in line 4ii, which does the main
computation. That is, we have given a formula ϕ(x̄) of the form ϕt,εᾱ1,...,ᾱp(x̄)
(recall formula 4.7), and a tree cover T of A. The procedure enum assign

that enumerates all tuples ā such that A |= ϕ(ā) is displayed as algorithm
18.

Correctness: enum assign first calculates G := c(T , κ) and then elimi-

nates all vertices J̄ ∈ Cc(T ,κ)
i with Aκi

J̄
= ∅. Note that a Cartesian product

is empty if, and only if, one of its parts is empty. This means that we
throw away those indices that, in any case, do not contribute to the re-
sult. Calling indep tuples(G) (displayed as algorithm 19) then computes
the set of independent tuples I (line 9), which directly provides the set⋃

(J̄1,...,J̄q)∈I A
κ1

J̄1
× · · · × A

κq
J̄q

. This proves the correctness of the algorithm.

And as it will turn out, this, performed in a clever way, is enough to obtain
an optimal time bound.

Running time: Concerning the running time, we have to go more into
details: Note that the outermost loop over κ is passed through a constant
number of times. Consider the first part between line 4 and line 8: by
definition, Aκi

J̄i
= ∅ can be decided in the structure 〈UJ̄i〉, which, by the

additional property of nice tree covers, has bounded treewidth (by g(|κi|), cf.
lemma 56). Hence, we can apply the algorithm from theorem 23 and decide
emptiness in time f ′(‖ϕ‖) · |UJ̄i|, for some f ′ : N → N. Furthermore, each
a ∈ A is contained in at most l sets UJ , hence

∑
J̄i∈CGi

|UJ̄i| ≤ l|ε(κi)| · |A|

82 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

1 proc enum assign(T , ϕ(x̄))
2 for κ a p-contiguousness-type do
3 G := c(T , κ);
4 for i = 1 to q do
5 for J̄ ∈ CGi do
6 if Aκi

J̄
= ∅ then G := G \ {J̄} fi

7 od
8 od
9 I := indep tuples(G);

10 for i = 1 to q do
11 Ii := I � i;
12 for J̄ ∈ Ii do
13 calculate Aκi

J̄
;

14 od
15 od
16 B := ∅;
17 for (J̄1, . . . , J̄q) ∈ I do
18 B := B ∪ Aκ1

J̄1
× · · · × Aκq

J̄q
;

19 od
20 od
21 return(B);
22 .

Algorithm 18. Evaluating a t-local formula

for all i ∈ [q]. Therefore, the running time for this loop is linear in the size
of A. From now on, G denotes the graph after removing these “superflous”
vertices.

In line 9, we call the function indep tuples(G) (algorithm 19) to compute
the set of independent tuples of G.

Claim: indep tuples(G) returns all independent tuples of G and needs time
O(|indep tuples(G)|).

Proof of the Claim: Consider algorithm 19 and assume that G has maximal
degree d (it is an induced subgraph of a contiguousness-graph). In a first
loop, we partition the set of indices into “big” and “small” ones (lines 4 to
8). The actual computation proceeds in two steps. In the first step, we look
exhaustively for all independent tuples over small indices (note that there
are at most (2dq)q many of them).

4.3. THE EVALUATION- AND WITNESS PROBLEM 83

1 proc indep tuples(G)
2 I := ∅;
3 d := max-degree(G); big = NULL; small = NULL;
4 for i = 1 to q do
5 if |CGi | > 2dq
6 then append(big, i) else append(small, i)
7 fi
8 od
9 if small = NULL

10 then
11 Is := {()} else
12 Is := all independent v̄ ∈

∏
i∈smallC

G
i

13 fi
14 for v̄ ∈ Is do
15 for ū ∈

∏
i∈big C

G
i

16 if (v̄, ū) independent
17 then I := I ∪ {(v̄, ū)}
18 fi
19 od
20 od
21 return(I);
22 .

Algorithm 19. Calculate all independent tuples

Then, in the second step, we extend these “partial” tuples to tuples over
[q], which gives the sought result. The code should be clear.

Let us estimate the time necessary for the second part of the search (the
first part trivially needs constant time): for simplicity, we assume that all
indices are big; the set of all possible tuples of indices (J̄1, . . . , J̄q) has size∏q

i=1 |C
G
i |. A lower bound for the number of independent tuples is easily seen

to be |CG1 | · (|CG2 | − d) · · · (|CGq | − (q − 1)d). Since our loop goes through all

tuples in
∏q

i=1 C
G
i , it is enough to show that there is a c > 0 (actually, we

choose c := 2q) such that

q∏
i=1

|Ci| ≤ c ·
q∏
i=1

(|Ci| − dq).

To prove this, observe that by |Ci| > 2dq we have |Ci| ≤ 2 · (|Ci| − dq).

84 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Applied to the above situation we get

q∏
i=1

|Ci| ≤ 2(|C1| − dq) ·
q∏
i=2

|Ci| ≤ · · · ≤ 2q
q∏
i=1

(|Ci| − dq)

as an upper bound on the number of times the loop (between lines 14 and
20) is passed. Checking, if a tuple (J̄1, . . . , J̄q) is independent can be done
in constant time (a simple lookup in q adjacency lists, all of constant size).
Together, we need time

∏q
i=1 |C

G
i | = O(

∏q
i=1(|Ci| − dq)). 2

So let us revert to the analysis of the running time of enum assign.
We just computed the set I of independent tuples of G = c(T , κ) in time
O(|I|) (line 9). Because Aκi

J̄
6= ∅, for all J̄ ∈ CGi , the set I has at most∑

(J̄1,...,J̄q)∈I |A
κ1

J̄1
× · · · × Aκq

J̄q
| = O(|ϕ(A)|) elements. Hence the loop needs

O(|ϕ(A)|) time.

Now consider the subsequent loop for each i (lines 10 to 15): first, we
calculate the projection of I onto coordinate i. This can be done in O(|I|)
steps. A bit more involved, and actually the reason for the first simplifica-
tions is the loop over Ii. Observe that Aκi

J̄i
can be calculated in 〈UJ̄i〉. This

substructure has bounded treewidth (recall the first loop), thus we can cal-
culate Aκi

J̄i
in time O(|UJ̄i|+ |A

κi
J̄i
|) (recall theorem 21). Hence, the entire loop

requires ∑
J̄i∈Ii

(
|UJ̄i|+ |A

κi
J̄i
|)
)

= O(|A|+
∑
J̄i∈Ii

|Aκi
J̄i
|)

steps (for the equality, cf. the first loop). It remains to show that∑
J̄i∈Ii |A

κi
J̄i
| = O(|ϕ(A)|). For a tuple b̄ define I(b̄) := {J̄i | b̄ ∈ UJ̄i} the

number of times a b̄ is computed. Assume J̄i ∈ I(b̄). This entails for all
ν : J̄i ∩ {J | bν ∈ UJ} 6= ∅, hence

|I(b̄)| ≤
(
|κi| · l|ε(κi)|

)|κi|
.

Thus, each tuple occurring in
⋃
J̄i∈Ii A

κi
J̄i

is computed at most a constant
number times, i.e. ∑

J̄i∈Ii

|Aκi
J̄i
| ≤

(
|κi| · l|ε(κi)|

)|κi| · | ⋃
J̄i∈Ii

Aκi
J̄i
|.

The same argument gives us: I = O(|ϕ(A)|). Finally, we injectively map
each b̄ ∈

⋃
J̄i∈Ii A

κi
J̄i

to the lexicographically minimal ā ∈ ϕ(A) such that

b̄ = ā � ε(κi), hence the last term is O(|ϕ(A)|). Such a minimal ā exists,

4.3. THE EVALUATION- AND WITNESS PROBLEM 85

since (i) we removed all J̄i with empty Aκi
J̄i

and (ii) in Ii there are only

indices, which are part of an independent tuple (actually, this was the reason
for calculating the projections Ii). For else, we would possibly compute
“big” sets Aκi

J̄i
that do not contribute to ϕ(A) (because J̄i is not part of a

independent tuple).

To finish, we sum up the times we just estimated. We have c1 · |A| for the
first loop, and O(|ϕ(A)|) for the second one. As we have seen, the last two
loops need time O(|ϕ(A)|). This amounts to O(‖A‖+ |ϕ(A)|), as claimed in
the theorem. 2

4.3.2 Finding a witnessing tuple

The task of finding a witness for a formula reduces to the task of finding
an independent tuple (J̄1, . . . , J̄q) in the contiguousness graph c(T , κ) for
some κ. We describe a pigeonhole-like trick, which immediately provides the
algorithm.

Theorem 58. Let C be a class of nicely tree-decomposable structures. Then
there is a function f : N → N and an algorithm that solves the witness
problem for FO-formulas ϕ(x̄) on structures A ∈ C in time

f(‖ϕ‖) · ‖A‖.

Proof: The algorithm resembles very much the one of the evaluation case.
It is displayed as algorithm 20. The analysis of the evaluation case shows
that step 1 to step 3 can be done in linear time. For the last step, assume
that, given a tree cover T , and a formula of the form ϕt,εᾱ1,...,ᾱq(x̄), we find a
witness in linear time. Then the entire algorithm works in linear time (again
by the already known fact that there are only constantly many different ε
and corresponding Boolean assignments ᾱ).

Algorithm 20: Computing an ā ∈ ϕ(A)

Input: Structure A ∈ C, FO-formula ϕ(x̄)
Output: an ā with A |= ϕ(ā)

86 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

1. Compute the Boolean combination ϕ′(x̄) =
F (ϕ1(x̄), . . . , ϕl1(x̄), ψ1, . . . , ψl2) equivalent to ϕ(x̄), where all ϕi(x̄)
are t-local around x̄.

2. For all i = 1, . . . , l2 decide, if A |= ψi and replace ψi in ϕ′(x̄) with its
truth value. Denote the resulting formula with ϕ′′(x̄).

3. Compute a nice (k(2t + 1), l, g)-tree cover T for appropriate l ≥ 1, g :
N→ N.

4. For all distance-types ε = ε1 ∪ · · · ∪ εp

i. calculate ϕt,ε(x̄) = F (ϕ̄1(x̄), . . . , ϕ̄p(x̄)) from lemma 48

ii. For all (ᾱ1, . . . , ᾱp) ∈ SAT(F), calculate a witness for ϕt,εᾱ1,...,ᾱp(x̄)
in A

5. return one of the found witnesses, if it exists

So it remains to show that finding a witness for formulas of the special
form ϕt,εᾱ (x̄) can be done in linear time. We already saw in the evaluation case
that satisfying tuples roughly correspond to independent tuples in the con-
tiguousness graph. Fortunately, in graphs of bounded valence, independent
tuples are easy to find.

Lemma 59. Let (G, C1, . . . , Cq) be a q-colored graph with maximal degree
d. Then there is an algorithm that finds an independent tuple (v1, . . . , vq) ∈∏q

i=1 C
G
i in linear time.

Proof: At the beginning, the subroutine partitions the colors into “big” and
“small” ones. The point is that small colors have constant size, hence we can
try all possibilities to find a partial independent tuple. On the other hand,
big colors are sufficiently big that, by any means, there exists an extension
of the formerly found partial independent tuple.

The subroutine indep tuple is displayed as algorithm 21. Lines 2 to 8 do
the partitioning. Then the routine exhaustively searches for an independent
tuple in the subgraph induced by

⋃
i∈smallC

G
i . Obviously, this requires ≤

O((d · q)q) steps. The following claim is the key to the correctness of the
algorithm:

Claim: If ū is an independent tuple in 〈
⋃
i∈smallC

G
i 〉, then line 15 to 23

expand ū to an independent tuple of G.

Proof of the claim: Observe that i ≤ q vertices in G have together at most
d · i neighbors. Of each “big” color there are more than d · q vertices, thus

4.3. THE EVALUATION- AND WITNESS PROBLEM 87

1 proc indep tuple(G) G is a q-colored graph
2 d := max-degree(G); big = NULL; small = NULL;
3 for i = 1 to q do
4 if |CGi | > d · q
5 then append(big, i) else append(small, i)
6 fi
7 if small = NULL then go 16 fi
8 od
9 found := false;

10 for v̄ ∈
∏

i∈smallC
G
i do

11 if v̄ is independent in G then found := true; break;
12 fi
13 od
14 if found = false then return(NULL) fi
15 marked := NG(v̄);
16 for i ∈ big do
17 for ui ∈ CGi do
18 if ui /∈ marked
19 then
20 append(marked, NG(ui)); break;
21 fi
22 od
23 od
24 return((v̄, ū));
25 .

Algorithm 21. Finding an independent tuple

we always find a new vertex not adjacent to all the vertices already in the
tuple. In that way we definitely find an independent q-tuple. 2

Having proved this claim, assume that there is an independent tu-
ple (u1, . . . , uq) in G. The projection onto small colors is independent in⋃
i∈smallC

G
i , hence the exhaustive search in the algorithm finds an indepen-

dent tuple w̄ (maybe this is another one). By the claim, this tuple is extended
to a q-tuple for G, and we are done.

The running time is easily estimated. We partition the colors in c · q
steps, the search for the “small” independent tuple needs c · (d · q)q steps (for
some c ≥ 0), and finally, the expansion proceeds in at most c · q · (q · d) steps.
Determining the size of CGi depends on the way the relation is given but, in
any case, it can be done in linear time. 2

88 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

We now turn to the routine that finds a witnessing tuple for ϕt,εᾱ1,...,ᾱp(x̄).
This subroutine is displayed as algorithm 22. The correctness of
witness assign is obvious.

1 proc witness assign(T , ϕ(x̄))
2 for κ a p-contiguousness-type do
3 G := c(T , κ);
4 for i = 1 to q do
5 for J̄ ∈ CGi do
6 if Aκi

J̄
= ∅ then G := G \ {J̄} fi

7 od
8 od
9 (J̄1, . . . , J̄q) := indep tuple(G);

10 if (J̄1, . . . , J̄q) 6= NULL
11 then
12 calculate an ā ∈

∏q
i=1 A

κi
J̄i

13 return(ā)
14 fi
15 od
16 return(NULL);
17 .

Algorithm 22. Finding a witness

Concerning the running time, recall that the first loop needs linear time
(cf. evaluation case). Then, by a subroutine call, we determine an indepen-
dent tuple (J̄1, . . . , J̄q) (if one exists!). The last step calculates a represen-
tative āi ∈ Aκi

J̄i
, for each i ≤ q. By theorem 22, this requires linear time.

Altogether, we stay within linear time. 2

4.4 The counting problem

The last problem remaining open for first-order formulas over nicely tree-
decomposable structures is counting the number of satisfying assignments.
We proceed in two steps. In the first one, we reduce the counting problem
to the calculation of a sum over integers associated with independent sets of
a graph. Then, in the last section, we show how this sum can be evaluated
quickly.

Remember that, in the context of counting algorithms, we assume that
arithmetical operations can be done in constant time. Like before we reduce

4.4. THE COUNTING PROBLEM 89

the question for an FO-formula ϕ(x̄) to the case where ϕ(x̄) is of the form
ϕt,εᾱ1,...,ᾱp(x̄) for a k-distance-type ε = ε1 ∪ · · · ∪ εp, the locality rank t of ϕ(x̄),
and a fitting Boolean assignment (ᾱ1, . . . , ᾱp). Recall formula (4.6) on page
71:

ϕ(A) =
⋃
ε

⋃
(ᾱ1,...,ᾱp)

ϕt,εᾱ1,...,ᾱp(A). (4.13)

This union goes over disjoint sets, hence

|ϕ(A)| =
∑
ε

∑
(ᾱ1,...,ᾱp)

|ϕt,εᾱ1,...,ᾱp(A)|.

This immediately leads to algorithm 4.4 for the counting problem, leaving
open how to calculate the values |ϕt,εᾱ1,...,ᾱp(A)| of the double sum. The lines
until line 3 are already familiar. After that, we simply cycle over all possible
ε and fitting ᾱ, and sum up the respective |ϕt,εᾱ1,...,ᾱp(A)|.

Algorithm 23: Computing |ϕ(A)|

Input: Structure A ∈ C, FO-formula ϕ(x̄)
Output: |ϕ(A)|

1. Compute the Boolean combination ϕ′(x̄) =
F (ϕ1(x̄), . . . , ϕl1(x̄), ψ1, . . . , ψl2) equivalent to ϕ(x̄), where all ϕi(x̄)
are t-local around x̄.

2. For all i = 1, . . . , l2 decide, if A |= ψi and replace ψi in ϕ′(x̄) with its
truth value. Denote the resulting formula with ϕ′′(x̄).

3. Compute a nice (k(2t + 1), l, g)-tree cover T for appropriate l ≥ 1, g :
N→ N.

4. For all distance-types ε = ε1 ∪ · · · ∪ εp

i. calculate ϕt,ε(x̄) = F (ϕ̄1(x̄), . . . , ϕ̄p(x̄)) (cf. 48)

ii. for all (ᾱ1, . . . , ᾱp) ∈ SAT(F), calculate γεᾱ := |ϕt,εᾱ1,...,ᾱp(A)|

5. Return
∑

ε

∑
ᾱ γ

ε
ᾱ

Like in the algorithm for the evaluation problem the lines until line 3 need
linear time. The subsequent loop goes over a constant number of distance
types ε and respective Boolean assignments ᾱ. Hence, assuming that γεᾱ can
be computed in linear time, we are done. 2

This algorithm, together with theorem 67 (in the next subsection), which
allows us to evaluate the double sum, yield the intended counting result:

90 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Theorem 60. Let C be a class of nicely tree-decomposable structures. Then
there is a function f : N → N and an algorithm that solves the counting
problem for FO-formulas ϕ(x̄) on structures A ∈ C in time

f(‖ϕ‖) · ‖A‖.

4.4.1 Reducing the starting problem

In the sequel, let ϕ(x̄) be of the form ϕt,εᾱ1,...,ᾱp(x̄) for t being the locality rank
of ϕ, a distance type ε with components ε1, . . . , εp, together with a suitable
Boolean assignment (ᾱ1, . . . , ᾱp). k denotes the number of free variables of
ϕ(x̄) and T = {U1, . . . , Um} is a nice (r, l, g)-tree cover for A.

We will develop a procedure that involves two steps: First, we reduce the
problem of computing |ϕ(A)| to computing a sum over the independent tuples
of a q-colored graph G. Essentially, this sum will look as follows:

γ =
∑

v̄ independent
vi∈Ci

γ(v1) · · · γ(vq),

where γ(v) is an integer attached to vertex v in the graph G. This reduction
is described in the next section, which resembles the evaluation case, but is
a bit more complicated. In particular, we give an algorithm that calculates
the graph G (an extension of the contiguousness graph c(T , κ) from section
4.2) and the labels γ(v). The section ends with a procedure that calculates
the above sum in linear time, completing the proof of theorem 60.

Let us start with the first part. The following equation characterizes the
cardinality of ϕ(A) and is a consequence of equation (4.8) on page 74 and
the principle of inclusion and exclusion (PIE). We define AJ :=

⋂
J∈J AJ for

an arbitrary index set J .

|ϕ(A)| = |
⋃

(J1,...,Jp)∈[m]p

AJ1,...,Jp |
PIE
=

∑
∅6=J⊆[m]p

(−1)|J |+1|AJ | (4.14)

It is worthwhile to compare the situation with the one we had in the evalua-
tion case. After including the tree cover into equation (4.8) we grouped the
indices (J1, . . . , Jp) with respect to their mutual dependence in the computa-
tion of AJ1,...,Jp (cf. lemma 50). In the present case this looks more difficult,
because now we have sets of tuples, which apparently lost the relevant topo-
logical information.

4.4. THE COUNTING PROBLEM 91

To circumvent this problem, we pass from sets of indices to their projec-
tions. More formally, for ∅ 6= J ⊆ [m]p we define J � j := {Jj | there is a
(J1, . . . , Jj, . . . , Jp) ∈ J }, the projection of J onto coordinate j.

The natural extension of the definition of AJ1,...,Jp (4.9) to sets of indices
relates these projections to the sets AJ . We set

AJ1,...,Jp := AJ1×···×Jp ,

which receives further justification by the next lemma, stating that Cartesian
product and projection are inverse to each other.

Lemma 61. With the above notation, the following holds for all J ⊆ [m]p:

AJ = AJ�1,...,J�p.

Proof: The sets on both sides only contain tuples ā with A |= ϕ(ā), hence it
is not necessary to state that explicitly, and we can restrict the argumentation
on the requirements imposed by the index sets.

Now, let be J ⊆ [m]p and ā ∈ AJ . By definition, this is equivalent to
ā � εi ∩Kr(UJi) 6= ∅ for all i = 1, . . . , p and all (J1, . . . , Jp) ∈ J . The same
holds for all (J1, . . . , Jp) ∈ J � 1 × · · · × J � p. The backward direction is
trivial because J ⊆ J �1× · · · × J �p implies AJ ⊇ AJ�1,...,J�p. 2

We rewrite equation (4.14) as follows:

|ϕ(A)| =
mp∑
j=1

(−1)j+1
∑

J⊆[m]p,|J |=j

|AJ |

=
mp∑
j=1

(−1)j+1
∑

J1,...,Jp⊆[m]

∑
J ,|J |=j
J�i=Ji

|AJ |. (4.15)

To examine the last equation fix some 1 ≤ j ≤ mp and index sets
J1, . . . ,Jp ⊆ [m]. We claim that the number of addends of the inner-
most sum (the sum over the sets J ⊆ [m]p) only depends on the sizes
m1 := |J1|, . . . ,mp := |Jp| and j. Thereto, take new index sets J ′i ⊆ [m] with
mi = |J ′i | for i = 1, . . . , p. By assumption, there are bijections βi : Ji → J ′i .
These bijections lead to a bijection β from the admitted sets for J1, . . . ,Jp
to the admitted sets for J ′1, . . . ,J ′p by the following definition:

β : J 7→ {(β1(J1), . . . , βp(Jp)) | (J1, . . . , Jp) ∈ J }.

Observe that this mapping preserves the size, i.e. |J | = |β(J)|. If we denote
the number of sets J with |J | = j and |J � i| = mi by µj(m1, . . . ,mp), i.e.

µj(m1, . . . ,mp) := |{J ⊆ [m]p | |J � i| = mi, i = 1, . . . , p and |J | = j}|,

92 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

then we get |ϕ(A)| =

∑
J1,...,Jp⊆[m]

|J1|···|Jp|∑
j=1

(−1)j+1 · µj(|J1|, . . . , |Jp|) · |AJ1,...,Jp |. (4.16)

The next lemma gathers the combinatorial properties important for the eval-
uation of the formula. Recall that l is the maximal degree of c(T).

Lemma 62. Let J1, . . . ,Jp be subsets of [m]. If AJ1,...,Jp 6= ∅ then |Ji| ≤ k · l
for all i = 1, . . . , p. For j > (k · l)p the function µj vanishes, and for
j ≤ (k · l)p, µj is a function from [k · l]p to [2(k·l)p].

Proof: Let J1, . . . ,Jp be given and assume that |Ji| > k · l for an i. By
contradiction, assume further that there is an ā ∈ AJ1,...,Jp , particularly,
ā � εi ∩ UJi 6= ∅ for all Ji ∈ Ji and A |= ϕ(ā). But each coordinate of
ā � εi may be contained in at most l neighborhoods, summing up to at most
|εi| · l ≤ k · l neighborhoods (under the assumption that all coordinates lie in
different neighborhoods). This contradicts the assumption |Ji| > k · l.

Assume |J | > (k · l)p. Then there must exist an i such that |J � i| > k · l,
hence AJ = ∅ (by the first claim).

For the last claim J1, . . . ,Jp ⊆ [m] are given. By the first claim, all Ji
have ≤ k · l elements. So fix the cardinalities mi := |Ji|. We are looking for
the number of sets J ⊆ [m]p such that J � i = Ji, for all i = 1, . . . , p. If
(J1, . . . , Jp) ∈ J then Ji ∈ Ji, hence there are at most m1 · · ·mp ≤ (k · l)p
many such tuples, hence less than 2(k·l)p sets of such tuples. This proves the
lemma. 2

This lemma implies that (i) the outer sum of (4.16) goes over index sets
Ji of size ≤ k · l, and (ii) the inner sum only has a constant number of
addends. Furthermore, the functions µj can be calculated in time bounded
by g(k, l, p), for some function g.

In order to continue like in the evaluation case, we partition the set of
admissible indices (now sets instead of simple indices) into disjoint parts,
according to their mutual dependence (i.e. which ones are pairwise far away,
and which ones are not).

Let us introduce the contiguousness-type of a tuple (J1, . . . ,Jp) ∈
Pow([m])p w.r.t T . Recall the definition of c(T) on page 74. We define
c̃(T) to be the graph (Pow≤kl([m]) \ {∅}, E c̃(T)) where

(I,J) ∈ E c̃(T) iff for all I ∈ I and J ∈ J : (I, J) ∈ Ec(T).

4.4. THE COUNTING PROBLEM 93

The p-contiguousness-type of a tuple (J1, . . . ,Jp) ∈ Pow([m])p w.r.t. T is
the graph κ := ([p], Eκ), such that (i, j) ∈ Eκ iff (Ji,Jj) ∈ E c̃(T) (again, we
write (J1, . . . ,Jp) |= κ in this situation).

Let κ be a contiguousness-type with components κ1, . . . , κq. Like before,
we group tuples (J1, . . . ,Jp) according to the κ-components the coordinates
belong to (cf. the evaluation case). With the easy fact that p-contiguousness-
types κ partition the set of index tuples we get

|ϕ(A)| =
∑
κ

∑
(J̄1,...,J̄q)|=κ

(kl)p∑
j=1

(−1)j+1 · µj(|J1|, . . . , |Jp|) · |AJ̄1,...,J̄q |.

We fix the arguments of the µj, pull the sum over the tuples (J1, . . . ,Jp)
inwards and obtain

=

(kl)p∑
j=1

(−1)j+1 ·
∑

m̄∈[kl]p

µj(m̄) ·
∑
κ

∑
(J̄1,...,J̄q)|=κ,|Jν |=mν

|AJ̄1,...,J̄q |. (4.17)

Our intention is to replace global computations (of AJ̄1,...,J̄q) by local ones.
For that, we restrict the definition of AJ̄1,...,J̄q to the indices that correspond
to a connected component κi of κ. In particular, we define

AκiJ̄i := {ā�ε(κi) | for all j, µ s.t. j is the µ’th element from κi

we have ā�εj ∩Kr(UJ) 6= ∅ for all J ∈ Ji,µ and

A |= ρt,ε(κi)(ā�ε(κi)) ∧
∧
j∈κi

ϕj(ā�εj)}. (4.18)

Observe that the definition of these sets conform with the sets Aκi
J̄i

(cf. equa-

tion (4.10)) and their extension to sets of indices, i.e. we have

AκiJ̄i =
⋂

J̄i∈Ji,1×···×Ji,pi

Aκi
J̄i

= AκiJi,1×···×Ji,pi
.

This property justifies the shortcut J̄i ∈ J̄i which stands for J̄i ∈ Ji,1×· · ·×
Ji,pi , where pi is the size of the component κi. With this terminology, we
can state the next lemma, which essentially is an extension of lemma 54 and
allows us to substitute AJ̄1,...,J̄q by a Cartesian product.

Lemma 63. Let κ be a contiguousness-type with components κ1, . . . , κq and
(J̄1, . . . , J̄q) ∈ Pow([m])p be a tuple realising κ. Then

AJ̄1,...,J̄q = Aκ1

J̄1
× · · · × AκqJ̄q

holds.

94 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

Proof: To prove the lemma we reduce the problem to the case where we
have indices instead of sets of indices (as in lemma 54). Thereto recall that,
by definition, we have

AJ̄1,...,J̄q := AJ̄1×···×J̄q =
⋂

J̄1,...,J̄q∈J̄1×···×J̄q

AJ̄1,...,J̄q .

For arbitrary (J̄1, . . . , J̄q) ∈ J̄1 × · · · × J̄q we have (J̄1, . . . , J̄q) |= κ (by
definition). For such tuples, lemma 54 yields AJ̄1,...,J̄q = Aκ1

J̄1
× · · · × A

κq
J̄q

,

hence

AJ̄1,...,J̄q =
⋂

(J̄1,...,J̄q)∈J̄1×···×J̄q

Aκ1

J̄1
× · · · × Aκq

J̄q
=
⋂
J̄1∈J̄1

Aκ1

J̄1
× · · · ×

⋂
J̄q∈J̄q

A
κq
J̄q
,

which is equal to Aκ1

J̄1
× · · · × AκqJ̄q . 2

In the sequel, we treat sets of the form AκiJ̄i . These sets are empty, if at

least for one of the indices Ji,ν we have: UJi,ν = ∅. Since these sets do not
contribute to the result, we omit them, i.e. if (J̄1, . . . , J̄q) |= κ, we implicitly
assume that UJi 6= ∅ for i = 1, . . . , p. Later, we will see that this restriction
has crucial impact on the tractability of c̃(T).

With the above lemma, equation (4.17) can be transformed to

=

(kl)p∑
j

(−1)j+1
∑

m̄∈[kl]p

µj(m̄) ·
∑
κ

∑
(J̄1,...,J̄q)|=κ,|Jν |=mν

|Aκ1

J̄1
| · · · |AκqJ̄q |. (4.19)

Since the outer sums have a constant number of addends and µj can be cal-
culated easily, this characterization of |ϕ(A)| gives us immediatly a reduction
of the starting problem to the calculation of

γ(m̄, κ) :=
∑

(J̄1,...,J̄q)|=κ,|Jν |=mν

|Aκ1

J̄1
| · · · |AκqJ̄q |. (4.20)

4.4.2 Counting

In this last section, we show how to calculate the value

γ(m̄, κ) :=
∑

(J̄1,...,J̄q)|=κ,|Jν |=mν

|Aκ1

J̄1
| · · · |AκqJ̄q | (4.21)

in linear time. Therefore, like in the evaluation case, we translate this ques-
tion to a graph theoretic one. What follows is a slight variation of section

4.4. THE COUNTING PROBLEM 95

4.2.1. Let T = {U1, . . . , Um} be a nice (r, l, g)-tree cover. For a contiguous-
ness graph κ and m̄ ∈ [k · l]p define PModT (κ, m̄) := {J̄ | J̄ |= κ, UJi 6=
∅ and |Ji| = mi}. This is the obvious extension of ModT (κ) to the present
case.

Definition 64. Let κ be a p-contiguousness-type with components κ1, . . . , κq
and (m̄1, . . . m̄q) ∈ [k · l]p. The contiguousness graph c̃(T , κ, m̄) of T with

respect to κ and m̄ has vertex set PModT (κ1, m̄1)
·
∪ · · ·

·
∪PModT (κq, m̄q) and

edge relation E c̃(T ,κ,m̄) defined as follows:

(J̄i, J̄j) ∈ E c̃(T ,κ,m̄) iff there are ν, µ : (Ji,ν ,Jj,µ) ∈ E c̃(T).

Additionally, we give the vertices corresponding to PModT (κi, m̄i) the color

i or, more formally, we add unary relations C1, . . . , Cq with C
c̃(T ,κ,m̄)
i :=

PModT (κi, m̄i).

The next lemma corresponds to lemma 56 and gathers the relevant prop-
erties of contiguousness graphs c̃(T , κ, m̄) for a tree cover T .

Lemma 65. Let T be an (r, l, g)-tree cover of a structure A. Then for all κ
and m̄ ∈ [k · l]p:

(1) c̃(T , κ, m̄) can be calculated in time O(|T |).

(2) c̃(T , κ, m̄) has maximal degree bounded by some function on l.

Proof: To prove (1) we present an algorithm computing c̃(T , κ, m̄). In the
first step we compute the graph c̃(T) without the unnecessary vertices J
(those for which UJ = ∅). This procedure is displayed as algorithm 24. For
the correctness, note that if for J ⊆ [m] we have UJ 6= ∅, then there is
a J ∈ J with J ⊆ N c(T)(J). Hence, we really get all relevant vertices of
c̃(T). For the loop which generates the adjacency lists, note further that
I × J ⊆ Ec(T) coincides with the definition of E c̃(T). Furthermore, any two
adjacent I,J there must be I ∈ I and J ∈ J such that I and J are adjacent
in c(T).

It is easy to see that the running time is bounded by m · 2l · l · 2l · c where
c is the time necessary to check I ×J ⊆ Ec(T) in a graph of bounded degree,
given in adjacency list representation (this constant is independent from m).

To continue, recall algorithm 16, which calculates the contiguousness
graph c(T , κ), and the definition of κi(J) for J ∈ [m] and 1 ≤ i ≤ q. This
definition is naturally extended to

κi(J , m̄) := {J̄ ∈ PModT (κi, m̄) | J = Jj for some j}.

96 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

1 proc calc pgraph(T)
2 for J = 1 to m do
3 i := 1;
4 for I ⊆ N c(T)(J) do
5 vertex[i] := I; adj[i] := NULL;
6 /* add adjacencies */
7 for I ∈ N c(T)(J) do
8 for J ⊆ N c(T)(I) do
9 if I × J ⊆ Ec(T)

10 then
11 append(adj[i],J);
12 fi
13 od
14 od
15 i := i+ 1;
16 od
17 od
18 normalize the graph (vertex[·], adj[·]);
19 .

Algorithm 24. Calculate c̃(T)

Algorithm 25 essentially works like algorithm 16, with roles of c̃(T) and c(T)
interchanged.

Correctness is immediate by the definition of the c̃(T , κ, m̄). For example,
there is an edge between Ī and J̄ iff there are µ,ν such that (Iν ,Jµ) ∈ E c̃(T).
The µ is delivered by the corresponding for-loop, and ν is implicit in the
expression Ī ∈ κl(I, m̄l) (the ν such that I = Iν). Finally I ∈ N c̃(T)(Jµ)
assures that the tuples are adjacent.

For the running time, recall that J̄ ∈ κi(J , m̄i) can be checked in con-
stant time (cf. the case of primitive vertices). Thus, all loops except from
the one cycling over J ∈ c̃(T) are bounded by a constant of the form f(q, l)
for a function f : N2 → N. Together, we get the running time dominated by
f(q, l) · 2l ·m.

To prove (2), note that c̃(T) has maximum degree 2l. Thus, |κi(J , m̄i)| ≤
((2l)pi)pi−1 for a vertex J ∈ c̃(T). Thus, summing up over all loops that
compute the adjacency list, we get pi · q · 2l · ((2l)p)p−1 as an upper bound on
the degree (the maximal number of different Ī the algorithm can choose in
the loops between line 10 and line 18). 2

Finally, by the following lemma, we can assume the values |AκiJ̄i| being

4.4. THE COUNTING PROBLEM 97

1 proc calc cgraph(T , κ)
2 comment: calculate the vertex set
3 for i = 1 to q do /* the colors */
4 j := 1;
5 for J ∈ c̃(T) do
6 for J̄ ∈ κi(J , m̄i) do
7 vertex[i, j] := J̄ ;
8 comment: calculate the adjacency list
9 adj[i, j] := NULL;

10 for µ = 1 to pi do
11 for l = 1 to q do
12 for I ∈ N c̃(T)(Jµ) do
13 for Ī ∈ κl(I, m̄l) do
14 append(adj[i, j], Ī);
15 od
16 od
17 od
18 od
19 j := j + 1;
20 od
21 od
22 od
23 normalize the graph (vertex[·, ·], adj[·, ·]);
24 .

Algorithm 25. Calculate c̃(T , κ, m̄)

known. Observe that only here we really need that our tree covers are nice.

Lemma 66. The values |AκiJ̄i| for i = 1, . . . , q and J̄i ∈ C c̃(T ,κ,m̄) can be
computed in linear time.

Proof: We compute the |AκiJ̄i| for all J̄i ∈ Ci and fixed 1 ≤ i ≤ q straight-

forwardly by a simple loop over J̄i and calls of the procedure from theorem
23. For that, observe that |AκiJ̄i| can be computed in the structure 〈UJ̄〉A for

an index J̄ with Jν ∈ Ji,ν , for all ν. Furthermore, for an index J̄ there are at
most (2l)|κi| many J̄i satisfying this condition. Like before, since each index
J̄ is used constantly often, also each a ∈ A is contained constantly often in
a set 〈UJ̄〉, hence the entire computation needs linear time. 2

Now it is easy to see that we are done, if we are able to evaluate the
formula (4.21) in linear time. So fix an m̄ ∈ [k · l]q and a contiguousness-type

98 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

κ with components κ1, . . . , κq. Define G := c̃(T , κ, m̄) and set γ(J̄i) := |AκiJ̄i|
for J̄i ∈ CGi := PModT (κi, m̄i). Then the tuples (J̄1, . . . , J̄q) ∈ CG1 ×· · ·×CGq
admitted in the sum are exactly the ones that are independent in G.

By lemma 65 the q-colored graph (G, C1, . . . , Cq) has degree bounded by,
say, d ≥ 1. The next theorem fills the gap still missing in the proof of theorem
60

Theorem 67. There is an algorithm that, given G as above, calculates the
value

σ(G, γ) :=
∑

(v1,...,vq) independent

γ(v1) · · · γ(vq) (4.22)

in time O(‖G‖).

If we plug in this algorithm into the gap left open in algorithm 4.4, then
the counting problem for FO over classes that admit nice tree covers is solved.
We assume the uniform cost measure for arithmetic operations on integers.
To attack theorem 67 we need some new definitions.

Let G and a labelling γ be given as above. We group the tuples v̄ according
to the subgraph they induce in G. Fix a graph π over the set [q] and define
the subsets

Hom(π) := {v̄ | (i, j) ∈ Eπ ⇒ (vi, vj) ∈ EG}

and

Iso(π) := {v̄ | (i, j) ∈ Eπ ⇔ (vi, vj) ∈ EG}

of
∏q

i=1 C
G
i . It is easy to see that v̄ ∈ Iso(π) iff v̄ ∈ Hom(π) and for all π′) π:

v̄ /∈ Hom(π′). Using these index sets, we define cπ :=
∑

v̄∈Hom(π)

∏
i∈[q] γ(vi)

and dπ :=
∑

v̄∈Iso(π)

∏
i∈[q] γ(vi). It is easy to see that σ(G, γ) coincides with

dπ for π being the graph consisting of q isolated vertices.
We start with a lemma that allows us to calculate the values cπ.

Lemma 68. Let π be a arbitrary graph over [q]. Then cπ can be calculated
in time O(qdq · ‖G‖), where d is the maximal degree of G.

Proof: Let π be a graph over [q] splitting up into components π1, . . . , πr. By
definition, we have cπ = cπ1 · · · cπr (just apply the distributive law). Hence
it is enough to show that the claim holds for connected π.

So assume that π is connected and take an arbitrary j ∈ [q]. If v̄ ∈
Hom(π) then, by connectedness, vi ∈ NGq (v) ∩ Ci for all i 6= j. Since G has
degree at most d, NGq (v) contains ≤ dq elements. Observe that the situation

4.4. THE COUNTING PROBLEM 99

is similar to that in lemma 56 where we calculated c(T , κ) for a tree cover T
and a contiguousness-type κ.

Now the algorithm proceeds as follows: In a first phase, using the
just derived characterization, we compute a list containing all tuples v̄
that are in Hom(π). This list may contain multiples. Then we remove
multiple occurences from the list, and, in a last step, we sum up the
γ(v̄) := γ(v1) · · · γ(vq) for v̄ from the list. This is displayed as algorithm
26.

1 proc calc pi(G, γ)
2 comment: calculate the vertex set
3 h := ∅; j ∈ [q];
4 for v ∈ Cj do
5 for v̄ such that vj = v and all vi ∈ Nq(v) ∩ Ci do
6 if v̄ ∈ Hom(π) then
7 append(h, v̄);
8 fi
9 od

10 od
11 remove multiples from h;
12 return(

∑
v̄∈h γ(v1) · · · γ(vq))

13 .

Algorithm 26. Calculate cπ

It is easy to see that the algorithm works correctly. The time bounds
are easily verified. For instance, the loops require time O(|G| · dq) (since
|Nq(v)| ≤ dq). Multiple occurrences of tuples can be removed by a simple
Radix-sort (cf. the appendix) and the sum in the last line is computed in
time linear in the size of h. 2

With this lemma we are almost finished. By the above observation on
the relation between homomorphisms and isomorphisms, we have

dπ = cπ −
∑
π′)π

dπ′ , (4.23)

which leads us to the following procedure:

Algorithm 27: Computing σ(G, γ)

Input: A graph (G, C1, . . . , Cq) and γ : G→ N

Output: σ(G, γ)

100 CHAPTER 4. FIRST-ORDER WITH FREE VARIABLES

1. Compute cπ for all π over [q]

2. Compute dπ for all π using formula (4.23)

3. Return dπ for π the empty graph

The correctness is immediate. Since there are ≤ 2q
2

different π the first
line needs time O(‖G‖) (by lemma 68). Line 2 needs some more explanations:
by induction, we proceed downwards starting with the complete graph π (for
which we have cπ = dπ). Having computed all dπ for π with l + 1 edges, we
can compute dπ for π with l edges in constant time (simply using formula
(4.23)).

Altogether we stay within the time bounds claimed in theorem 67. 2

Appendix A

The Machine Model

This appendix is dedicated to a detailed definition of the machine model
used. This is of particular interest, because linear time classes depend heavily
on the model, and still there is no agreement on which one is the most
appropriate. We will use Random Access Machines (RAM) that have an
infinite supply of registers, each of which may contain a natural number.

The choice for RAMs is motivated by the fact that most algorithms,
considered to run in linear time, depend on pointers and direct access to
data, a feature that is not provided by Turing machines. Essentially, there
are two ways to charge time for a single operation. The uniform time measure
charges one time unit for each operation, whatever the size of the involved
registers is. In this framework, the content of a register is considered to have
constant size. To some extend this model is justified by the fact that most
objects in algorithms are represented by pointers, which in a real computer
have constant size.

In contrast to that, the logarithmic cost measure charges the logarithm
of the values of the registers involved in the operation. This cost measure
reflects the fact that logarithmic space is necessary to store numbers. For
most algorithms (that do not involve too much arithmetic) this difference is
neglected because of the following reason: the collection of primitive input
objects (e.g. the vertices of a graph) is assumed to be an initial segment of
the natural numbers. This problem of normalized inputs will be addressed
later.

We slightly modify the model defined by Grandjean in a series of papers
[Gra94a, Gra94b, Gra96]. This model is an extension of the basic RAM-
model described in, for example, [CR73], based on the logarithmic cost mea-
sure. We present the definition of the model in the first section. Then we
address the problem of relational structures as inputs of machines, and its

101

102 APPENDIX A. THE MACHINE MODEL

impact on the model checking problem. There we encounter the problem of
normalizing the input.

Finally we give some sample algorithms to illustrate the used pseudo-code
and frequently used data structures.

A.1 The Definition

The following definition of a DRAM is essentially due to Grandjean and
Schwentick [GS99]. We fix an ordered finite alphabet Σ = {1, . . . , d}. We
identify a word w ∈ Σn with the integer it represents in d-adic notation, that
is

w =
n∑
i=1

wid
i.

The empty word is identified with zero.

A {+,−}-DRAM M is a Random Access Machine with two accumulators
A,B, a special register N and registers Rν(i), for every i, ν ≥ 0. Each of
these registers contains a non-negative integer. Its program is a sequence
I(1), . . . , I(r) of instructions, each of which is of one of the following forms:

• A := c, for some constant c

• A := A ∗B, where ∗ ∈ {+,−}

• A := N , N := A and B := A

• B := Rν(A) and Rν(A) := B, for ν ≥ 0

• IF A = B THEN I(i0) ELSE I(i1)

• HALT

• WRITE(Rν(A)) and READRµ(B)(R
ν(A))

Most of these instructions have the expected meaning. For instance, if A
contains a number i then the execution of Rν(A) := B copies the content of
B to register Rν(i). This is a kind of addressing mechanism, where A (or i
respectively) is the referred address.

The input-output operations need some explanations: WRITE(Rν(A))
writes the content of Rν(A) to the output-tape. If the length of Rµ(B) is l,
then READRµ(B)(R

ν(A)) stores in register Rν(A) the next l digits of the input
word and advances the input head accordingly. As input, a RAM expects

A.1. THE DEFINITION 103

a word w ∈ Σ∗. We define ‖w‖ to be the length of the word. If register
Rν(i) contains the number n then ‖Rν(i)‖ := log n. The space usage of a
computation of a DRAM is the maximal space used during the computation.
That is, the maximal

∑
i,ν≥0 ‖Rν(i)‖. Now, we are ready to define time

complexity classes.
Primarily, we are interested in linear time algorithms, which are a par-

ticularly delicate question. The models proposed in the literature, differ in
how they charge time, what primitive objects are, and how much space is
admitted. We propose a particularly restricted definition of linear time that
only allows as much space as time.

Definition 69. Let T (n) ≥ n be any time function. A function f : Σ∗ → Σ∗

(language A ⊆ Σ∗) belongs to class DTIME(T (n)), if f is computable (re-
spectively, A is recognizable) by a DRAM that executes O(T (n)) instructions
(logarithmic time criterion), where n denotes the length ‖w‖ of the input w.
Furthermore, the available space is restricted to c · T (n) for some c ≥ 1.

We do not admit multiplication as a primitive operation. For addresses,
multiplication and division by 2 can be done using precomputed tables
[GS99].

For counting problems we also allow multiplication to be done in linear
time, i.e. the operation A ·B is charged with ‖A ·B‖ steps.

Usually, we have structured input, that is input of the form w =
w1, . . . , wn, where w.l.o.g. , /∈ Σ is a separator. The normalization-problem
is defined as follows:

Input: a string w1, · · · , wm ∈ (Σ ∪ {, })∗
Output: a string v1, · · · , vm ∈ (Σ ∪ {, })∗, such that

(1) for all i, j : vi = vj if, and only if, wi = wj and

(2) considered as integers, we have {v1, . . . , vm} = [l]
for some l ≤ m.

Grandjean proved the following nice result:

Theorem 70 (Grandjean [Gra96]). There exists an algorithm that solves
the normalization problem for an input w in time O(‖w‖).

The algorithm is a generalization of the well-known Radix-sort to tuples
of arbitrary degree. Since it works in time linear in the size of the input,
it justifies the assumption that inputs are already normalized. By that, all

104 APPENDIX A. THE MACHINE MODEL

wi can be considered as addresses in the memory. This is an indispensable
feature for linear time algorithms. In section A.4 we present an easy version
of Grandjean’s algorithm, which does not tightly obey the linear time bound.
Nevertheless, there are reasons that this simplification is the right choice for
practice.

A.2 RAMs on relational structures

All our algorithms work on relational structures. Let τ := {R1, . . . , Rl} be a
vocabulary, where Ri is of arity ri ≥ 0. Let A ∈ Str(τ) be a finite τ -structure.
An encoding of A is composed of the following: It starts with an encoding
of the vocabulary, followed by the size of the universe A and the sizes of the
relations RA

i . The next |A| numbers are the elements of the universe followed
by enumerations of the tuples of the relations RA

1 , . . . , R
A
l .

In particular, the encoding enc(τ) of τ as above is a sequence of |τ | + 1
natural numbers. The first number is |τ |, followed by the numbers r1, . . . , rl.
The length of enc(τ) is ‖τ‖ := |τ |+ 1.

For τ as above, we say that a word w encodes a τ -structure A, if w has
the form

w = enc(τ), n,m1, . . . ,ml, x1, . . . , xn, ā
1
1, . . . , ā

1
m1
, . . . , āl1, . . . , ā

l
ml

where n = |A|, mi = |RA
i | and {āi1, . . . , āimi} = RA

i for all i = 1, . . . , l. The
tuples āij are represented as mere sequences of ri natural numbers (recall that
Ri is ri-ary). Observe that an encoding of a structure A is not unique, since
it depends on the ordering in which the elements of the universe appear. The
size ‖A‖ of the encoding of the structure A is the sum

‖enc(τ)‖+ ‖n‖+
n∑
j=1

(‖xi‖+ 1) +
l∑

i=1

((‖mi‖+ 1) +

mi∑
j=1

(‖āij‖+ 1)),

which coincides with the size of w (note the we have to count the ”,”s as
part of the input). Often it is assumed that elements of the universe are
primitive, what means that they need constant space. We think that this is
not realistic as the following example will show.

Querying against databases:
In database theory, we are given a countable set dom = {v1, v2, . . .} and
a database scheme τ , which corresponds to a relational vocabulary. An

A.3. DATA-STRUCTURES AND ALGORITHMS 105

instance of τ is a mapping I over domain τ , such that I(R) is a finite relation
over dom for each R ∈ τ . The active domain of I is the set of all elements
of dom that occur in a relation I(R), R ∈ τ . Now queries can be evaluated
over the active domain, which, in logical terms, is a finite τ -structure.

In practice, the domain elements correspond to maybe complex objects
like strings or even bitmaps. Thus, given a database instance I, it is not
realistic to assume that the active domain is an initial segment of the natural
numbers. This leads to the failure of techniques (e.g. using domain elements
as array indices) that are crucial for linear time algorithms.

Recall that, by theorem 70, we can normalize our input in linear time. In
our setting, algorithms will look as follows: first we compute a normalized
version of the input structure A, i.e. a structure B isomorphic to A, such that
B is an initial segment of the natural numbers. Then the actual algorithm
is applied to B.

Maybe, this algorithm produces some output in terms of B, e.g. tuples, or
sets of tuples from B. To provide an answer in terms of the input structure,
we have to retranslate these objects from B to A. This is done using a table
retrans[·] such that for b ∈ B retrans[b] is the pre-image of b in A according
to the isomorphism computed by the normalization. Note that Grandjean’s
algorithm provides this table as a by-product. With this table (which is of
linear size), the output OB can be translated to OA in time O(‖OA‖), i.e. in
time linear in the size of the output.

This justifies the next convention, which has been assumed in almost all
papers concerning algorithms on graphs and structures, but by the theorem
of Grandjean receives its validity without any further assumptions:

Convention:

Without loss of generality, we assume that the set of elements
of the universe of an input structure is an initial segment of the
natural numbers.

A.3 Data-structures and algorithms

In this section we describe the pseudo-code language used in presentation of
the algorithms and the data-structures we work with. At the end, we give
the implementation of radix-sort that illustrates the introduced concepts (the
data structures as well as the language elements). We always use typewriter
face to refer to variables and procedures.

106 APPENDIX A. THE MACHINE MODEL

Notice that the algorithmic problems we consider mostly have an input
of the form (A, ϕ) where A is a τ -structure for some relational vocabulary
τ and ϕ is a query. We consequently adopt the viewpoint of paramerized
complexity for algorithms and their running time (cf. the introduction). In
a typical situation, we express the running time of an algorithm on input
(A, ϕ) by functions on ‖ϕ‖, λ(A) for some numerical structure invariant1 λ,
and ‖A‖. In this context we call a data structure big if its size may depend
on ‖A‖, and small, otherwise. This convention is motivated by the fact that
the input structure is considered to be “big”, whereas queries or invariants
tend to be “small”. We focus on linear time bounds with respect to ‖A‖
and arbitrary dependence on the remaining parameters: hence, whatever
representation of small objects we choose, the running time will yield results
of essentially the same type.

Big objects comprise e.g. subsets of the universe A and data associated
with elements of the universe. For the latter, recall that the input is an initial
segment of the natural numbers. This permits arrays over the universe and
therefore constant time access to the data that corresponds to an a ∈ A.
Subsets of A or Ak for k ≥ 1 whose size depend on ‖A‖ are always represented
by doubly linked cursor lists. A list consists of a collection of list items, each
of which has a pointer to the preceding and the succeeding list item, and a
content field. The list data structure has a pointer to the first and the last
item of the list. Additionally, there is a pointer to some arbitrary item, the
cursor. An example of such a list is displayed in figure A.1. Observe that,
in this example, the contents are pointers to objects xi.

x1 x2 xr−1 xr

list-structure

objects

items

cursor

Figure A.1: The representation of lists.

The items: As displayed in figure A.1, a list consists of an ordered collection
of items. Each of these items contains two pointers (establishing the list

1Formally a numerical invariant for τ -structures is a function f : Str(τ)→ N that maps
isomorphic structures to the same value.

A.3. DATA-STRUCTURES AND ALGORITHMS 107

structure) and a content field. We give an example of the usage of pointers
to items at the end of the section. Let it denote a item variable; with the
following routines we can access items.

• content(it)

• next(it), previous(it)

• remove(it)

Observe that items are pointer-types, i.e. a variable it contains a pointer
to an item. Furthermore, we have a convention that items never occur isolat-
edly. This means that an item is always an item of a list, and thus removing
an item always means removing an item from a list.

The following procedures provide access to lists. Their semantics should
be clear. Let list denote a list, and x refer to some object.

• first(list) and last(list)

• append(list, x), push(list, x)

• append(list, it), push(list, it)

• append(list, list′), push(list, list′)

All this subroutines need constant time. This is remarkable for the case
append(list, list′), where we simply let the end-pointer of list point to
the last element of list′ and add a pointer from the last element of list
to the first element of list′. Observe that we do not copy the lists, instead
we incorporate one list into the other. For removing elements quickly, it is
crucial to have double links.

Observe that we do not support access via the content field. This would
involve a linear search through the list and thus make it useless for linear
time algorithms (of course only if the list codes a big object).

Convention:

In the bulk of applications we blur the difference between items
and elements of a list. This allows, for instance, statements like
remove(x) or next(x) (but nevertheless, one should assure that
the code can be rewritten just using items).

108 APPENDIX A. THE MACHINE MODEL

In the rest of the section we present examples that introduce our used
pseudo-code. These examples also describe repeatedly used simple data
structures and algorithms.

Example 1: Radix-sort. Assume that we are given a structure A and a set
X ⊆ Ak. As explained above, A is identified with an initial segment [n] of
the natural numbers, whereas X corresponds to a list list of k-size arrays a
where a[i] ∈ [n] for i = 1, . . . , k. The procedure radix sort(list, k, n) dis-
played as algorithm 28 sorts list with respect to the lexicographical ordering
in time

O(k · (‖X‖+ |A|)).
After the execution the sorted list is contained in the variable list. Notice
that we strictly distinguish between subroutine calls procedure(params) and
access to array elements array[index].

1 proc radix sort(list, k, n)
2 newsort[n]; /* initialize array of size n */
3 for ν := k to 1 do
4 temp := NULL;
5 for j := 1 to n do
6 sort[j] := NULL;
7 od
8 for it ∈ list do
9 append(sort[content(it)[ν]], it);

10 od
11 list := NULL; the empty list
12 for j := 1 to n do
13 for it ∈ sort[j] do
14 append(list, it);
15 od
16 od
17 od
18 return(sort)
19 .

Algorithm 28. radix-sort

The algorithm is well known, so we continue without further explanations
on the algorithm. The code itself should be clear.

Example 2: Referenced lists. The next example introduces a data structure
that allows to handle subsets of A (for a given structure A) in a very efficient

A.3. DATA-STRUCTURES AND ALGORITHMS 109

manner. After the initialization with some linked list (representing the set),
it supports (i) membership checks in constant time. On the other hand
it also allows to (ii) find an arbitrary element of the set in constant time
(this prevents us from simply taking an array). We call this data structure
referenced list.

Let X ⊆ A be given by a list list of size l and assume that A has size
n. Remember that, by our assumptions, we have A = [n] and X ⊆ [n].
Hence, elements of A can be used as array indices. We need three additional
arrays: ref of size n associates with each a ∈ X the corresponding item in
list (whose item content is a). Formally, for each item it of list with
content(it) = a we have ref[a] = it. But what happens if a /∈ X? In
general, we do not have the time to initialize the array ref to assure that the
ath entry does not accidently point to some valid position (maybe an item
of another list). For that we introduce new “control” arrays contr of size
|X| = l and refc of size n, and initialize them such that contr[i] = a ⇐⇒ a
is the ith element in list (at the time of initialization).

n i items

contr refc, ref

n

i

i

n

Figure A.2: Implementation of a referenced list.

An example of this construction is displayed as figure A.2. Observe
that a ∈ X if and only if contr[refc[a]] = a. We implement a couple of
subroutines that perform basic queries to a referenced list (algorithm 29).
ref init(list) initializes the auxiliary arrays for list, while remove(list)
removes the elements contained in list from the referenced list.

110 APPENDIX A. THE MACHINE MODEL

1 proc ref init(list)
2 i := 1;
3 for it ∈ list do
4 a := content(it);
5 ref[a] := it; refc[a] := i; contr[i] := a;
6 i := i+ 1;
7 od
8 .

10 proc remove(list)
11 for it ∈ list do
12 remove(ref[content(it)]);
13 a := content(it);
14 ref[a] := NULL; contr[refc[a]] := 0; refc[a] := 0;
15 od
16 .
18 proc is element(a)
19 return[contr[refc[a]] = a];
20 .

Algorithm 29. Accessing a referenced list.

Answering a ∈ list is done by the obvious check in an additional proce-
dure is elem(a). Observe that this can be done in constant time, while we
can remove k elements in time O(k).

A standard application of this data structure is a set that is made smaller
gradually, and each step depends on some elements still contained in the set
(cf. algorithm 12 on page 50).

We end this section with three easy, but useful procedures.

A structure prescan: We go through the whole input and assign to each
tuple ā occurring in a relation RA a unique index ι(ā). For a τ -structure A

as above and R ∈ τ of arity r we define arrays Eν
R for ν = 1, . . . , r each of

which has size |RA|. Eν
R[j] = k means that if ā has index ι(ā) = j, then

aν = k (recall that the universe is represented by an initial segment of the
natural numbers, hence each element can be seen as an array index). This
prescan requires linear time in the size of RA, and it enables us to associate
in constant time labels with vertices and hyperedges.

Graphs: Graphs admit a more structured representation, referred to as ad-
jacency list representation. This representation associates with each vertex

A.4. THE LINEAR TIME SORT 111

the list of adjacent vertices. Having given an {E}-structure G we can cal-
culate such a representation in linear time. Note that this representation is
necessary for techniques like depth-first-search and breadth-first-search to be
feasible in linear time.

Removing multiple edges: Let A be a set of size n. Assume that we just
have computed an auxiliary graph G such that G consists of a list of vertices
ā ∈ Ak for some k. Assume further that vertices as well as edges may occur
multiple times. To apply standard algorithms on G we have to compute a
normalized version of G without multiple vertices/edges. Let G be structured
as described in the previous section A.2 (the edges are an unstructured list
of pairs).

In a first step we separately sort the universe and the set of edges. This
is done using radix-sort explained above and requires O(k ·n+ |G|) steps for
the vertices and O(2k · n+ |EG|) steps for the edges. Then we normalize the
result applying the algorithm from theorem 70. We will use this procedure
in algorithm 16.

A.4 The linear time sort

In this last part of the appendix we present a simple version of the normaliza-
tion algorithm of Grandjean (theorem 70). In contrast to the normalization
explained before, this sorting procedure expects as input a list w of integer
arrays of arbitrary size and sorts these arrays with respect to their size and
lexicographical ordering. To see the connection between these procedures let
w = w1, . . . , wm ∈ ({0, 1}∪{, })∗ be an input of the normalization algorithm,
n := |w| and l := dlog |w|e. We explain how to build a list of integer arrays
w from the string w, which then can be sorted by the subsequent sorting
routine.

We define w′i to be the least word of size k · l (for some k ≥ 1) that results
from wi by introducing leading zeros. This naturally induces a partition of
wi into k blocks of size l, which itself corresponds to an k-array of integers.
Note that this array can be interpreted as the 2l-adic representation of wi (cf.
page 102). For convenience, we assume that the first array entry contains the
least significant bit. Note here that this transformation can easily be done
in linear time.

After this transformation, sorting w is essentially the same as normalizing
w. In particular, after sorting w, we assign numbers to all it ∈ w such that,
if the contents of two items are equal then they have the same associated
number. For that, assume that v is a sorted version of w (i.e. it contains the

112 APPENDIX A. THE MACHINE MODEL

same items, but in a different order). We loop over all it ∈ v maintaining
a counter c (intially set to 0), which is incremented in each step in which
changes the current item. In the loop body we assign c to the current list
item it, which gives us the desired isomorphism between the input and its
normalized version.

Our sorting procedure is displayed as algorithm 30 (and essentially is a
generalization of the Radix-sort). We claim that under the assumption that
the integers are of size O(log ‖w‖), this algorithm works in time O(‖w‖). After
an analysis of the procedure, we discuss why this algorithm doesn’t fit the
requirements of theorem 70, but nevertheless seems to be an adequate choice
for our purposes.

1 proc sort(w)
2 ν := 1; sorted := NULL;
3 compute used buckets[·]
4 while not-empty(w) do
5 ext radix sort(w, ν);
6 for x ∈ w do
7 if size(x) = ν
8 then
9 append(sorted, x); remove(w, x);

10 fi
11 od
12 ν := ν + 1;
13 od
14 return(sorted)

Algorithm 30. Sorting tuples of arbitrary length

The routine normalize(w) works in three steps. First we compute the
array used buckets, which is intended to contain in its ν-th field the indices
i such that there is an x ∈ w with x[ν] = i. This array of lists can be obtained
in linear time by a Radix-sort of the list {(ν, i) | there is a x ∈ w such that
x[ν] = i}.

In the second step, w is sorted. To see this, consider the loop between
lines 4 and 13. We have the following loop invariant at the top of the loop: w
contains all x with size(x) ≥ ν (size returns the number of array entries),
ordered with respect to their ν least significant digits. All other arrays are
already sorted in the list sorted. The call of ext radix sort(w, ν) corre-
sponds to the ν-th cycle in the known Radix-sort, and essentially sorts the

A.4. THE LINEAR TIME SORT 113

list with respect to the ν-digit, conserving the ordering between items having
identical ν-th digits.

Obviously, after leaving the loop, sorted is ordered as follows: x precedes
y in sorted, iff |x| < |y| or x < y with respect to the lexicographical ordering.

1 proc ext radix sort(ilist, ν)
2 for x ∈ ilist do
3 append(sort[x[ν]], x);
4 od
5 ilist := NULL; the empty list
6 for i ∈ used buckets[ν] do
7 for x ∈ sort[i] do
8 append(ilist, x);
9 od

10 delete(sort[i]);
11 od

Algorithm 31. One cycle of the extended radix-sort

To finish the proof, consider subroutine ext radix sort(ilist, ν) (dis-
played as algorithm 31), which behaves as follows: ν is expected to be a
natural number, and ilist is a list of arrays of size ≥ ν. It puts each
x ∈ ilist in the bucket x[ν] (the ν’th least significant digit). Then it looks
up in used buckets[ν] which buckets have been used and copies the items
back to (the previously deleted) ilist. Using this array we assure that in
fact we only look in those buckets, which contain relevant data. All other
buckets are ignored. It is important to note that for each x ∈ ilist this
procedure needs time O(l) (two append operations and an array lookup),
where l is the size of a pointer.

Analysis: Define n := ‖w‖ =
∑

x∈w ‖x‖, where ‖x‖ =
∑size(x)

ν=1 log x[ν],
because of the logarithmic cost measure. As mentioned at the beginning, we
assume that all x[ν] have the same size l, and take m = n/l to be the number
of integers in w.

It is easy to see that the array used buckets needs the same amout of
space as w and is computed in time O(n) (cf. Radix sort in the previous
section). Observe that we always refer with pointers to our objects (e.g. ar-
rays or list items), which are all of size O(log n) (this is sufficient to access
all objects). Consider the main loop of sort, let x ∈ w and assume that
size(x) = k. By the if-condition in line 7 it is obvious that x is treated

114 APPENDIX A. THE MACHINE MODEL

k-times in the procedure ext radix sort and the subsequent append opera-
tion, each of which costs time O(log n) (to move the pointers). Together, we
get O(m · log n) as an upper bound on the running time. With l = O(log n)
this proves the claim.

Discussion: As mentioned before, this algorithm does not fully fit the re-
quirements of theorem 70, although it looks very much alike. Consider the
transformation of the input w = w1, . . . , wm to a list of integer arrays. To
see that this is not sufficient assume that wi = 1 for i = 1, . . . ,m − 1
and wm = 1m. Then this transformation yields a data-structure of size
logm · (m− 1) +m = Ω(n log n), which already breaks the time bound.

Grandjean overcomes this problem by dividing the words wi into big and
small ones. The small words are sorted in a certain space saving manner,
while the big words are sorted as we just saw. Although Grandjean’s version
gives the desired theoretical result, the author believes that for practice (if
it applies) the normalization algorithm presented here is the adequate one.
First, the assumption that a natural number n has size log n is not realistic,
in particular, there is a minimal de-facto integer size (usually 32 bit, soon
becoming 64 bit). And this allows to adress the space for all sensible input
sizes (it allows to adress 232 ≈ 1010 registers). On the other hand, it is not
realistic to assume that inputs come as plain text (which is the reason that
e.g. 1 needs space 1); in all applications, algorithms receive their data in a
structured way.

Index

Aκi
J̄i

, 75
AJ1,...,Jp , 74
F t,ε, 69
UJ̄i , 75
‖A‖, 104
‖ · ‖, 103
ModT (κ), 74
SAT, 69
ā�ε, 68
block(t), 22
c(T), 74
c(T , κ), 77
enc(τ), 104
id(s, t), see equality type
itype(R, t), 24
itype(t), 24
Kr(N), 50
ltw, 48
|=A,t, see distance type
ϕ(A), 11
ϕt,εiᾱi (x̄), 69
ρt,ε(x̄), 68
rk, 57
stype(t), 22
tpq(A, ā), 22

active domain, 105
automaton

tree, 29

big, 19, 106
block, 17

chromatic number, 56

contiguousness type, 74
cost measure

logarithmic, 101
cost measure

uniform, 101
counting problem, 12
Courcelle, 61

theorem of, 21
cover

neighborhood, 50
nice tree, 73
tree, 53

decision problem, 11
degree, 49
derivable, 72
distance type, 68
DRAM, 102

edge, 10
Ehrenfeucht-Fraisse game, 21, 22
evaluation problem, 11

first-order logic, 10
formula

guarded existential, 66
local, 57

Gaifman
theorem, 57

Gaifman graph, 17
genus, 49
girth, 56
graph, 10

apex, 49

115

116 INDEX

colored, 10
complete bipartite, 50
contiguousness, see c(T , κ)
Gaifman, 17
planar, 49

indices
of a cover, 73

item, 106

linked list, 106
list

referenced, 58
local, see formula
local tree-width, see ltw
locality rank, 57
locally tree-decomposable, 55

nicely, 73

minor, 49
model-checking problem, 11

neighborhood, 48
nice tree cover, see cover
normalization problem, 103

outermost vertex, 54

radix sort, 108
RAM, 102
Random Access Machine, 102
rank, 57
recognizable, 29
referenced list, see list, 109
run

of a tree-automaton, 29

second-order logic, 11
sentence, 11
sequence

calculus, 72
valid, 72

small, 19, 106

sparse, 17
STD, see special tree-

decomposition
structure, 10

encoding of, 104
substructure, 10

touch, 68
tree, 17

Γ-, 29
colored, 29

tree-decomposition, 17
special, 19

tree-width, 17
tuples

independent, 77
type

q− of MSO, 22
contiguousness, 74
distance, see distance type
equality, 23
isomorphism, 24
realize a, 74

universe, 10

variable, 11
vertex, 10

width, 17
witness problem, 12

Bibliography

[ABCP93] B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost
sequential and distributed constructions of sparse neighborhood
covers. In Proceedings of the 34th Annual IEEE Symposium on
Fondations of Computer Science, pages 638–647, 1993.

[ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of
finding embeddings in a k-tree. SIAM Journal on Algebraic and
Discrete Methods, 8:277–284, 1987.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and anal-
ysis of computer algorithms. Addison-Wesley, 1974.

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12:308–340, 1991.

[AP90] B. Awerbuch and D. Peleg. Sparse partitions. In Proceedings of
the 31st Annual IEEE Symposium on Fondations of Computer
Science, pages 503–513, 1990.

[BDG95] J. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity 1.
Springer, Berlin, 1995.

[Bod96] H.L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM Journal on Computing,
25:1305–1317, 1996.

[Bod97] Hans L. Bodlaender. Treewidth: Algorithmic techniques and re-
sults. In Igor Privara and Peter Ruzicka, editors, Proceedings
22nd International Symposium on Mathematical Foundations of
Computer Science, volume 1295 of Lecture Notes in Computer
Science, pages 29–36. Springer-Verlag, Berlin, 1997.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, (209):1–45, 1998.

117

118 BIBLIOGRAPHY

[CH82] A. Chandra and D. Harel. Structure and complexity of relational
queries. Journal of Computer and System Sciences, 1982.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of con-
junctive queries in relational databases. In Proceedings of the 9th
ACM Symposium on Theory of Computing, pages 77–90, 1977.

[CM93] B. Courcelle and M. Mosbah. Monadic second-order evaluations
over on tree-decomposable graphs. Theoretical Computer Science,
103:49–82, 1993.

[Cou90] B. Courcelle. Graph rewriting: An algebraic and logic approach.
In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Elsevier Science Publishers, 2:194–242, 1990.

[CR73] S.A. Cook and R.A. Reckhow. Time bounded random access
machines. Journal of Computer and System Sciences, 7:354–375,
1973.

[DF99] R.G. Downey and M.R. Fellows. Parameterized Complexity.
Monographs in Computer Science. Springer-Verlag, 1999.

[DFT96] R.G. Downey, M.R. Fellows, and U. Taylor. On the parametric
complexity fo relational databases queries and a sharper char-
acterization of W [1]. In Combinatorics, Complexity and Logic,
DMTCS, pages 194–213. Springer-Verlag, 1996.

[Die97] R. Diestel. Graph theory. Graduate texts in mathematics.
Springer, 1997.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer
Verlag, 1995. ISBN 3-540-60149-X.

[EFT95] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer Verlag, 2 edition, 1995. ISBN 3-540-60149-X.

[Epp95] D. Eppstein. Subgraph isomorphism in planar graphs and related
problems. In Proceedings of the Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms and Applications, volume 3, pages
1–27, 1995.

[Epp99] D. Eppstein. Diameter and treewidth in minor-closed graph fam-
ilies. Algorithmica, 27(3):275–291, 1999.

BIBLIOGRAPHY 119

[Erd59] P. Erdös. Graph theory and probability. Canadian Journal of
Mathematics, (11):34–38, 1959.

[FG99] M. Frick and M. Grohe. Checking first-order properties of tree-
decomposable graphs. In Jiŕı Wiedermann, Peter van Emde Boas,
and Mogens Nielsen, editors, Automata, Languages and Program-
ming, 26th International Colloquium, ICALP’99, Prague, Czech
Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture
Notes in Computer Science, pages 331–340. Springer, 1999.

[FV93] T. Feder and M.Y. Vardi. Monotone monadic SNP and constraint
satisfaction. In Proceedings of the 25th ACM Symposium on The-
ory of Computing, pages 612–622, 1993.

[Gai82] H. Gaifman. On local and non-local properties. In J. Stern, editor,
Logic Colloquium ’81, pages 105–135. North Holland, 1982.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability -
A Guide to the Theory of NP-Completeness. W. H. Freeman and
Co., 1979.

[Gra94a] E. Grandjean. Invariance properties of RAMs and linear time.
Computational Complexity, 4:62–106, 1994.

[Gra94b] E. Grandjean. Linear time algortihms and NP-complete problems.
SIAM Journal of computing, 23:573–597, 1994.

[Gra96] E. Grandjean. Sorting, linear time and the satisfyability prob-
lem. Annals of Mathematics and Artificial Intelligence, 16:183–
236, 1996.

[Gro00] M. Grohe. Generalized model-checking problems for first-order
logic. to appear, 2000.

[GS99] E. Grandjean and T. Schwentick. Machine-independent charac-
terizations and complete problems for deterministic linear time.
to be published, 1999.

[Pel93] D. Peleg. Distance-dependent distributed directories. Information
and Computation, (103):270–298, 1993.

[PY97] C.H. Papadimitriou and M. Yannakakis. On the complexity of
database queries. In Proceedings of the 16th ACM Symposium on
Principles of Databases Systems, pages 12–19, 1997.

120 BIBLIOGRAPHY

[Ree92] B. Reed. Finding approximate separators and computing tree
width quickly. ACM Symposium on theory of computing, 1992.

[RS84] N. Robertson and P.D. Seymour. Graph minors III. planar tree-
width. Journal of Combinatorial Theory, Series B, (36):49–64,
1984.

[RS86] N. Robertson and P.D. Seymour. Graph minors II. algorithmic
aspects of tree-width. Journal of Algorithms, (7):309–322, 1986.

[Tho97] W. Thomas. Languages, automata, and logic. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, 3, 1997.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata with
an application to a decision problem of second order logic. Math.
Syst. Theory, (2):57–82, 1968.

[Var82] M.Y. Vardi. The complexity of relational query languages. In Pro-
ceedings of the 14th ACM Symposium on Theory of Computing,
pages 137–146, 1982.

[Var95] M.Y. Vardi. On the complexity of bounded-variable queries. In
Proceedings of the 14th ACM Symposium on Principles of Data
bases Systems, pages 266–276, 1995.

[Woe00a] A. Woehrle. private communication, 2000.

[Woe00b] A. Woehrle. Lokalität in der Logik und ihre algorithmis-
chen Anwendungen. Master’s thesis, Albert-Ludwigs-Universität
Freiburg, 2000.

