Generalized model-checking over locally tree-decomposable
classes

Markus Frick

Institut fiir Mathematische Logik, Eckerstr.1, 79104 Freiburg, Germany
frick@sunpool.mathematik.uni-freiburg.de

Abstract. It has been proved in [12] that properties of graphs or other relational structures
that are definable in first-order logic can be decided in linear time when the input structures
are restricted to come from a locally tree-decomposable class of structures. Examples of such
classes are the class of planar graphs or classes of graphs of bounded valence.

In this paper, we consider more general computational problems than decision problems.
We prove that construction, listing, and counting problems definable in first-order logic can
be solved in linear time on locally tree-decomposable classes of structures.

1 Introduction

Model-checking problems are general algorithmic problems that can be used to model a wide
range of concrete problems from different areas of computer science, among them database theory,
algorithm theory and constraint satisfaction (AI). In the basic version of model-checking, we have
given a relational structure 2 and a sentence ¢ of some logic £ and ask if ¢ is satisfied by .
We call this problem the basic model-checking problem for L. Note that the basic model-checking
problem can only be used to model decision problems. But in practice, we are not only confronted
with decision problems. For example, in the context of databases, we usually do not want to know,
whether some employee lives in London, but want the system to return these employees, or at
least one of them.

An area where model-checking turned out to be a very successful tool is algorithm theory.
Standard algorithmic problems like 3-COLORABILITY, CLIQUE or SET-COVER are instances
of model-checking. Consider, for instance, the clique-problem that is, we have given a k > 1 and a
graph G = (G, E) and want to decide if there is a clique of size k in G. This problem is equivalent
to decide if the sentence @’gﬁque =dry,..., Tk /\1§i<jsk Ex;x; holds in G, hence, k-clique can be
seen as a special case of the model-checking problem.

Up to now, we only considered decision problems. As already mentioned, it is natural not only
to ask if there is a k-clique but, if so, construct a solution, e.g. return a k-clique of G. On the
logic side, this can be modeled by using formulas with free variables instead of sentences, and by
finding a satisfying assignment. We call this problem the construction problem for model-checking.
Other natural extensions are the listing problem, which asks for all satisfying assignments and the
counting problem asking for the number of satisfying assignments. In this taxonomy, the basic
model-checking problem is called the decision problem, or just model-checking problem (cf. [15] for
a survey).

We consider these generalized model-checking problems of first-order logic. In the realm of
databases this logic has a predominant role, since it closely resembles the commercial standard
query language SQL. Unfortunately, model-checking for first-order logic is of very high complexity.
Already over structures with only two elements it is PSPACE-complete [18]. This suggests that the
bulk of complexity is contributed by the query and not by the structure. One way to explore this
in more detail is to exhibit which part of the input contributes to what extend to the complexity
of the problem. In a general setting this has been done systematically by Downey and Fellows in
[6]. Applied to our problem, we declare ¢ to be the parameter and look if there is an algorithm
working in time O(f(|l¢]) - ||2L||°) for some function f : N — N and ¢ > 0. If this is the case,

we call a problem fized-parameter tractable. In some sense this corresponds to our intuition that
we evaluate “small” formulas in “big” structures. In [7] it is shown that parameterized model-
checking for first-order logic is AW[1]-complete, which makes it very unlikely for model-checking
to be fixed-parameter tractable.

One way to overcome this negative news is to consider certain restrictions on the admitted input
structures. A landmark in this direction is Courcelle’s result: over graphs of tree-width bounded
by some constant w, monadic second-order model-checking can be done in fized-parameter linear
time, i.e. in time O(f(||¢|l) - ||&]]) for some (here fast growing) function f [5]. This result was
extended to the counting case [2] and recently to the construction and listing case [10]. Note that
for the listing problem, linear time means linear in the size of the input plus the output.

There exist other successful restrictions take make algorithms more efficient. Planarity and
bounded valence are two important and natural examples. It is hopeless to expect for these classes
such a strong result like Courcelle’s, since 3-COLORABILITY, which is definable in monadic
second-order logic, remains NP-complete over planar graphs of valence at most 4 [14].

Nevertheless, such graphs share the nice property that their tree-width only depends on the
diameter. This was first exploited by Baker [3] and later investigated more systematically by
Eppstein [9]. Their ideas led Frick and Grohe [12] to the notion of locally tree-decomposable classes
of structures. Important locally tree-decomposable classes are graphs of bounded genus, bounded
valence and of bounded tree-width. For such classes they it was furthermore shown that model-
checking for first-order logic is in fixed-parameter linear time [12]. Observe here that this result
only concerns the decision problem.

We prove that all generalized model-checking problems, that is, the construction, listing, and
counting problem over locally tree-decomposable classes' C are in fixed-parameter linear time. In
particular, there are fixed-parameter linear time algorithms for the following problems: given a
first-order formula ¢(Z) and a structure 2l € C:

(1) compute an a such that 2 |= ¢(a) (construction)
(2) compute all @ such that 2 = ¢(a) (listing)
(3) compute the number of @ such that 2 = ¢(a) (counting)

These results can be seen as a further step in a systematic analysis of the parameterized
complexity of model-checking: given a logical language £, which restrictions on the inputs allow
fixed-parameter tractability. Or with more emphasis on combinatorics, it can be considered as one
of the first systematic studies of fixed parameter tractability of construction, listing and counting
problems.

But apart from the systematic importance of these results, there are several practical impli-
cations on standard algorithmic problems. For example, our result shows that there is a linear
time algorithm that counts the number of 4-cliques in a given graph of valence 5, or a linear time
algorithm counting the number of dominating sets of size 10 in a given planar graph.

More generally, we see that a dominating set of size k in planar graphs not only can be computed
(this was shown in [6]), but we can also list and count them in linear time. Another example is
k-SET-COVER, which asks whether a given familiy F of sets has a subfamily S of size k such
that |JS = U F. Its first-order formulation restricted to structures of bounded valence implies
that for instances F, such that each « € |JF is contained in at most constant many F' € F and
all F' € F having bounded size, we get linear time algorithms for the mentioned tasks. The same
holds for all first-order properties like H-HOMOMORPHISM (is there a homomorphic copy of
H?), k-DOMINATING-SET and so forth.

Organization: After the preliminaries, we introduce the concept of locally tree-decomposable
classes (section 3). In section 4, we present the main results and give an overview of the structure

! Actually we use a slightly more restrictive notion. But this notion still comprises all important examples.

of the proofs. The outline of these proofs occupy the rest of the paper, i.e. section 5 exhibits a
normal form for local first-order formulas. Then section 6 provides an alternative characterization
for satisfying assignments, which will be used to solve the listing problem and construction problem
in section 7. Finally, in section 8, we sketch the algorithm for the counting problem. Due to space
limitations, we have deferred exact proofs of the theorems and proofs of helping lemmas to an
appendix.

2 Preliminaries

For n > 1, we set [n] := {1,...,n}. By Pow(A) we denote the power set of A and Pow='(A) is
the set of elements of Pow(A) that have cardinality < [.

A wocabulary is a finite set 7 of relation symbols each of which has an associated natural
number, its arity. A T-structure 2 consists of a non-empty, finite set A called the universe of 2
and a relation R®* C A" for each r-ary R € 7. For B C A (B)* denotes the substructure of 2
induced by B. If the context is clear we omit superscripts. We only consider finite structures.

A graph is an {E}-structure (G, EY) where EY is an anti-reflexive and symmetric binary
relation (in other words: we consider simple undirected graphs without loops). A colored graph
is a structure B = (B,E®, PP ... P2), where (B,E®) is a graph and the unary relations
P3®, ..., P® form a partition of the universe B.

Let 7 be a vocabulary. The set FO[7] of first-order formulas is built up in the usual way from
an infinite supply of variables z,y, x1, x2, ..., the relation symbols R € 7 and =, the connectives
V, A, n, — and the quantifiers Vx, 3x ranging over elements of the universe of the structure. A free
variable in a formula ¢ is a variable z occurring in ¢ that is not in the scope of a quantifier 3z, V.
We write p(21, ..., 2,) to indicate that the free variables in ¢ are exactly x1,... , 2. A sentence
is a formula that contains no free variables. The semantics of FO should be clear. For instance,
o(1,22) := Jzg(Ex129 A Exgws A Exszzy) says that x; and zo are part of a triangle.

For a 7-structure 2, ai,...,ay, € A and a formula ¢(x1,...,2,) € FO[T] we write % £
o(al,. .. ,anm) tosay that A satisfies @, if the x1, ... , ¥y, are interpreted by the elements ay, .. . , ap,
respectively. For a structure 2 and a formula p(z1,... ,) we let

o) :={(a1,... ,am) € A™ | A E (a,... ,am)}.

In case of no free variables in ¢, we define p(A) := {0}, if A = ¢ and :=) otherwise. If the
vocabularies of 2 and ¢ do not agree, we set p(2) := (). Here the convention that all variables of
o enclosed within the brackets actually occur freely in ¢ becomes crucial.

Algorithms: Our underlying model of computation is the standard RAM-model with addition and
subtraction as arithmetic operations [1]. We assume the uniform cost measure, hence arithmetics
can always be done in constant time. Observe here that the results concerning construction and
listing also hold under the assumption of the logrithmic cost measure.

A relational structure % is coded by a word w consisting of the vocabulary, the elements of the
universe A, and the relations R* for R € 7. This is considered the standard coding for algorithms.
It becomes particular important due to the fact that we aim at algorithms running in time linear
in the size of the input structure. For graphs, we use its adjacency list representation, i.e. we code
a graph by the list of its vertices, and associated with each vertex the list of its adjacent vertices.
Formulas are coded in some reasonable way, e.g. by a string or its parse tree. For further details,
the reader is referred to [10]. To improve readibility, we sometimes omit the O-notation, despite
that there are always constants involved depending on the hardware and used data structures.

In running time estimations we use ||o|| to denote the actual size of the object o, w.r.t some
encoding, whereas |o| refers to the cardinality of the set 0. To emphasize the difference let 7 be a
familiy of sets. Then |77 refers to the cardinality of 7", while ||7|| stands for »_ s, || X]|.

Model-checking problems: The basic model-checking problem asks if a given structure satisfies
a given sentence. Here we shall also consider formulas with free variables. For each class C of finite
structures this gives rise to the following four problems: the input is a structure 2 € C and a
formula ¢(Z) € FO

The decision problem. Decide if ¢(2A) # (). For sentences, this problem coincides with the basic
model-checking problem, and therefore we refer to it as FO-MODEL-CHECKING on C.

The construction problem. Compute one tuple a € p(2), if one exists. We refer to this problem as
FO-CONSTRUCTION on C.

The listing problem. Compute the set (). Because of its important application in database the-
ory, we refer to this problem as FO-EVALUATION on C.

The counting problem. Compute the cardinality of the set o(2). We refer to this problem as FO-
COUNTING on C.

Note that we always investigate the parameterized complexity of these problems. We call a
model-checking problem on C fized-parameter linear time, if there is an algorithm that, given
»(Z) € FO and 2 € C solves the problem in time linear in the size of the structure 2 plus the
size of output. Observe that for the listing problem it is necessary to include the output in the
running time estimation. For further details and examples of generalized model-checking the reader
is referred to [15]. For more general background on this taxonomy of combinatorial problems, see
[16,17].

Although our algorithms depend heavily on the notion of tree-width, it is not necessary to intro-
duce it formally. The interested reader is referred to [?.5,10]. Intuitively, the tree-width measures
the similarity of a structure with a tree. For instance, a tree 7 has tree-width tw(7) = 1 and a
cycle of arbitrary length has treewidth = 2. In contrast to these structures of “small” tree-width,
an n X n-grid has treewidth = n. To exploit tree-likeness in algorithms we need to compute so
called tree-decompositions. By a result of Bodlaender [?] this can be done in time linear in the size
of the input structure.

In the context of model-checking, tree-decompositions allow the application of automata. This
led to the following results, which actually have been proved for monadic second-order logic. All
model-checking algorithms that will be presented in the sequel will use these results.

Theorem 1 ([5,2,10]). Let C be a class of structures of bounded tree-width. FO-MODEL-CHECKING,
FO-CONSTRUCTION, FO-EVALUATION and FO-COUNTING on C are all in fixed-parameter
linear time.

3 Locally tree-decomposable classes

Let 7 be a vocabulary and 2 a 7-structure. The Gaifman graph G(2() of 2 is the graph (G, EY)
with G = A and EY := {(a,b) | there is a k-ary R € 7 and @ € R® such that a,b € {a1,... ,ar}}.
Then d*(a,b) denotes the distance between a and b € A in G(A). Consequently, for r > 1 we
define N2 (a) := {b € A | d*(a,b) <r}, the r-neighborhood of a € A and N*(X) := U,cx N (a)
for some X C A.

It is easy to see that for every r > 1 there is a formula 6,(z,y) € FO[r] such that for all
r-structures 2 and a,b € A we have 2 = §,(a,b) < d*(a,b) < r. Within formulas we write
d(z,y) < r instead of é,(x,y) and d(x,y) > r instead of =4, (z,y).

If p(z) is a first-order formula, then o"N~(*)(x) is the formula obtained from ¢(z) by rela-
tivizing all quantifiers to N,(z), that is, by replacing every subformula of the form Iy (z,y, 2)
by Jy(d(z,y) < r A(z,y,Z)) and every subformula of the form Vyiy(z,y,z) by Vy(d(z,y) <
r — ¢(x,y,z)). Generally, we consider formulas relativized to neighborhoods around tuples, in
particular a formula 1)(Z) of the form ¢™N*(*)(z), for some o(Z), is called r-local around .

The next theorem is due to Gaifman and states that properties expressible in first-order logic
are local.

Theorem 2 (Gaifman [13]). Every first-order formula is equivalent to a Boolean combination
x of t-local formulas and sentences of the form

Hxl...ﬂxm(/\ d($i,$j)>27“/\ /\ 1/)(131))7

1<i<j<m 1<i<m
for suitable t,r,m > 1 and an r-local ¥ (x).

In [12] the notion of locally tree-decomposable classes of structures was introduced. We use a
slightly more restrictive version of this notion (condition (3) is new).

Definition 3. Let r,l > 1 and g : N — N. A nice (1,1, g)-tree cover of a structure 2 is a family
T of subsets of A such that

(1) For every a € A there exists a U € T such that N*(a) CU.
(2) for each U € T there are less than |l many V € T such that UNV #)
(8) for allUy,... .U, € T and q > 1 we have

tw({Uy U---UU)%) < g(q).

A class C of structures is nicely locally tree-decomposable, if there is a linear time algorithm that,
given 2 € C and r > 1, computes a nice (r,l, g)-tree cover of A, for suitable [, g.

The intention of this notion is to cover a structure 2 by subsets U such that each a € A is
covered together with some sufficiently big neighborhood (condition (1)). This makes it possible
to evaluate an r-local formula o(a) correctly in (U)®. Additionally, we have a bound on the
treewidth of (U)#, which allows efficient model-checking in this part (condition (3)). Finally,
the second condition limits the dependency of the different parts of the cover. This is a merely
pragmatic definition whose objective is to allow efficient model-checking, while at the same time
being general enough to comprise sufficiently rich classes.

Examples of nicely locally tree-decomposable classes ([9,12,11]).

(1) Structures of bounded tree-width
A class of structures of bounded tree-width is trivially nicely locally tree-decomposable.

(2) Planar graphs
Let G be a planar graph, r > 1 and v € G an arbitrary vertex. For i > 1 define G; := {z €
G| (i—1)r < d9uv,z) < (i +1)r}. Then the family {G; | i > 1,G; # 0} forms a nice
(r,5,q — 9qr)-tree cover of G. To see this, first note that a planar graph with diameter r has
tree-width at most 3r [?]. For k > 3 consider the graph induced by Ule G; and contract the
inner k—2 rings G, ... , Gi—2 to the vertex v; we obtain (Gj) with v in the middle. Since this
graph is still planar and has diameter < 3r, we get 9r as an upper bound on the tree-width of
(Gg). This argumentation easily extends to unions of several G;.
Note that in this way we get nice tree covers for all minor-closed classes C of graphs whose
local tree-width is bounded uniformly by some function f : N — N, i.e. for all G € C and
r > 1: maxyeq tw((NZ(v))) < f(r). This holds e.g. for graphs of bounded crossing number
and graphs embeddable into some fixed surface.

(3) Structures of bounded valence
For structures 2 of valence bounded by d > 1, we simply take the cover {N,(x) | z € A}. It is
easy to confirm that this forms a nice (r, (d — 1)d"~!,q — ¢ - (d — 1)d"~!)-tree cover.

In the sequel we always omit the term nice and just use tree cover. Nevertheless, all covers we
use here are actually nice. The starting point for our investigation is the following theorem

Theorem 4 ([12,11]). Let C be a locally tree-decomposable class of structures. Then FO-MODEL-
CHECKING on C is in fized-parameter linear time.

4 The main results

Our main result extends the previous theorem and essentially says that all four generalized model-
checking problems over locally tree-decomposable classes are in fixed-parameter linear time. This
is particularly surprising, since generally counting is assumed to be more difficult than the other
problems.

Theorem 5. LetC be a locally tree-decomposable class of structures. Then FO-CONSTRUCTION,
FO-EVALUATION and FO-COUNTING on C is in fized-parameter linear time.

The crucial observation is that otherwise intractable local problems can be efficiently solved
on structures that are locally tree-like. In [12] this observation has been applied to first-order
logic and yielded a fixed-parameter linear time algorithm which decides if a first-order sentence
holds in a locally tree-decomposable structure (cf. theorem 4). Our results require the treatment of
formulas. As a matter of fact, by Gaifman’s theorem and the model-checking result for sentences,
we can restrict our attention to formulas ¢(Z) € FO being t-local around Z for some ¢t > 1. The
proof of theorem 5 is structured as follows: in section 5, we provide a suitable normal form for
©(Z), i.e. we represent ¢(Z) as a disjoint disjunction of ¢-local conjunctions ng .a, (T) (formula
(2)). The parts of these conjunctions have (i) disjoint sets of free variables and (ii) these sets Z;
of free variables are forced to be pairwise “far” away (cf. formula (4) for the appearance of these
conjunctions).

Then section 6 combines this normal form with a suitable tree cover 7 of the input structure A €
C. For that, we define an equivalence relation on the cover sets to track their mutual dependency
(w.r.t. evaluation of the local conjuncts). This gives us an alternative characterization of the
objective set ¢(2A) as a union of Cartesian products (cf. formula (8)), each of which is locally
computable (hence efficiently computable, by local tree-likeness). Finally, we exhibit that the
indices admitted in the aforemention union correspond to independent tuples of a colored graph G
of bounded valence. In this context, independent tuples are independent sets ordered with respect
to their color.

Based on this transformation of the starting problem, the algorithms solving the listing and the
construction problems are presented in section 7. These algorithms essentially mimic the mentioned
transformation and reduce the problem to finding all or a single of those independent tuples in G.
Since G has bounded valence, these are easy to enumerate and find, respectively.

The counting algorithm needs further effort. After a more involved transformation of the initial
problem (not presented in detail), it is reduced to the problem of computing the sum over all
independent tuples of a new colored graph G’ with integers attached to its vertices (lemma 12).
Then, by a dynamic programming approach, this sum is evaluated in linear time completing the
sought result (theorem 13).

5 A normal form for local formulas

Let k > 1. A k-distance-type is an undirected graph e := ([k], E€). For a natural number ¢ and a
structure A we say that a k-tuple @ € A* realizes € w.r.t. 2 and t (@ =g €), if there is an edge
between distinct vertices ¢ and j of e if, and only if d(a;, a;) < 2t + 1.

Note that realization of a k-distance type € w.r.t. ¢ can be defined in first-order logic by a
t-local formula pt,e(i‘). Now assume that € splits into connected components €1,... ,¢,. We let ¢;,,
stand for the v-th coordinate of the i-th component (with respect to the natural ordering on the
indices). With a[e; we denote the projection of @ onto the coordinates contained in ¢;.

The next lemma provides a normal form for ¢-local formulas, which will allow a separate
treatment of the variables corresponding to different e-components. The proof is a straightforward
application of Ehrenfeucht-Fraisse games, using the fact that local strategies on non-intersecting
substructures extend to strategies on their union (see [8]).

Lemma 6. Given a t-local p(Z) € FO for some t > 1. Then for every distance-type e with
connected components €1, ... €, we can find a Boolean combination F(¢1(Z [€1),...,0p(T 1 €p))
of formulas ¢; j(z[e;), 1 <i<p and 1l <j<m; such that

(1) for all i, the free variables of @;(T) are among T [¢;,
(2) the ¢;(T) are t-local around their free variables, and

(3) pre(T) | (p(T) = F(@1(2), .-, pp(T)))

Observe that using Gédel’s completeness theorem, we can effectively compute this normal form.
Let ¢(Z) be a t-local formula, € = €1 U--- U€, a distance-type and let F,¢; ;(Z [€;) denote the
formulas obtained by lemma 6. Next we transform F'((¢1(Z [€1),...,%p(Z [€p)) into disjunctive
normal form, such that variables from different e-components never occur in the same conjunct.
This we prove very useful in the remainder. For that, denote the set of satisfying assignments of
F by SAT(F'). Given a Boolean assignment «; ; (1 <¢<pand 1< j<m;) for F' define

var (@) = pe @A N eii@A N\ @)

jiai j=true J:a,j=rfalse
To put these formulas together, we let
t,
(@) = k@) A AGEP @) A\ d@lenzle) > 2t, (1)
1<i<j<p

where d(a,b) > s means that for all v, yu : d(a,,b,) > s. Using these definitions, it is not difficult
to see that ¢(Z) is equivalent to

V2 VAR) (2)

€ (ai,...,0p)ESAT(F)

which is of the desired form.

6 Including the tree cover

Adopt the assumptions at the end of the last section. The last equivalence gives us an alternative
characterization of ¢(2), i.e.

M= U & a®). (3)
€ (ai,...,ap)

Since both unions are disjoint, it is convenient to assume henceforth that the input formula ¢(Z)
is of the form wgf a,(2) for some € (cf. equation (1)), i.e.

@) =prElea) A Nep@Elep) A N\ dETenTleg) >2+1, (4)
1<i<yj<p

with ©;(Z | €;) being t-local around Z [¢;. To introduce the input structure appropriately, let
7 = {Ui,...,Un} be a nice (r,l,g)-tree cover of the input structure 2, for r := k(2t + 1) and
appropriate [> 1,9 : N — N (recall that & is the number of free variables).

We use capital letters for the indices I € [m] over the tree cover. These indices often occur as
tuples, which will be indexed by lower-case letters (e.g. I; € [m]).

Including the cover:
For aset X C Aand s > 1 we define K*(X) (the s-kernel of X) to be the set of vertices a € X such
that N®(a) € X. We have chosen r to assure that, if for some @ and J we have ale; N K" (Uy) # ()

then ale; C K'(Uy), hence (Up) | ¢i(ale;) iff A = @i(ale;). This follows from the t-locality of
©i(Z €;). Now it is easy to see that

pR) = U Agy gy (5)

where we let
Ag,.g,={a |aleNK"(Uy,) #0and (Uy, U---UU,,) = @(a)}. (6)

To capture the relevant topological information of a tree cover 7, we introduce the graph
e(7) := (Im], E°T)) with E<T) := {(I,J) | Uy NUy; # 0}. We let the p-ctype (contiguousness-
type) of a tuple (J1,...,Jp) w.r.t. 7 be the graph x = ([p], E*) such that (i,j) € E* if, and only
if (J;, J;) € E<T) (and write (J1,... ,J,) = k). By Mod” (k) we denote the set of tuples of indices
that realize k: Mod” (k) := {(J1,... , Jp) | (J1s--. ,Jp) = K}

Assume that we have given a tuple of indices (J1,...,Jp) € [m]P and that this tuple realize
the p-ctype k. It is easy to see that if ¢ and j belong to different k-components, then the distance
between elements of their respective kernels K"(Uy,), K"(Uy,) is > 2r. This fact will be the key
for the next characterization of ¢ ().

Convention: In the remainder, let & be a p-ctype with connected components x1,... ,xq. For
convenience, we arrange the coordinates of a tuple (Ji,...,J,) realizing x according to the k-
components they belong to. Tacitly assuming that the ordering remains unchanged, we will write
(J1,-..,Jq) for the rearranged tuple; e.g. Aj Ju,...,J, refers to the set defined in equation (6), al-
though the indices are permuted. Furthermore, we appoint the convention that if we write Jj;, this
refers to the j’th coordinate of J, while Ji refers to v'th coordinate contained in x;.

Let €(ri) == Uj,, €5 be the union of the e-components contained in r;. Then a straightfor-
ward restriction of the definition of Ay, .. j, (formula (6)) to the indices corresponding to the
components €(k;) gives rise to the following definition:

A’ := {ale(k;) | for all j, u such that j is the p’th element of k;,
ale; N K (Us,,) # 0 and % = py e, (@ AN eia (7)

JER

Observe that these sets can be computed in the substructure of 2 induced by the set Uy, :=
U._1 Uy, , where w is the size of the tuple J;. As a matter of fact, Aiji is the set of tuples
satisfying the formula

preen@le()) A N\ (pi@Te) A\ Pow),

JER; vEe;

where the P, are new unary relation symbols, interpreted by K" (U,). Observe that, by t-locality,
this formula can be evaluated correctly? in (Us,). These local parts AZ— are the projections of
Aj,, e The goal of the foregoing investigation was to show that the converse also holds.

Lemma 7. Let x be a ctype as above and (Ji, . .. ,jq) a tuple of indices realizing k. Then

Agyogy = Al X x AL

5

2 Note that, even if some x, € Z [e; does not occur freely in ¢;, it must occur in the set. This is against
the convention made in the preliminaries, but is necessary here.

Using this, we can rewrite equation (5) as follows:

) = U U Ajh---,fq = U U Aljl PERE XAz—q.

K (J1,.,Jq) R r (j'la"'ajq)‘:"i

This characterization already allows to build up ¢(2() from parts that are locally computable.
What remains is to provide some suitable characterization of the admissible index-tuples.

The contiguousness-graph: - -
Next we provide a characterization of the set of admissible indices (Ji,... ,Jy) in the foregoing
equation. Let k be a p-ctype with components K1,...,kq. The cgraph (contiguousness-graph)

(T, k) of T with respect to & has vertex set Mod(s;) U - - UMod(r,) and edge relation E<(7-)
defined as follows:

(Ji, Jj) € BT iff there are v, p: (Ji, Jj,) € BT,

Additionally, we give the vertices corresponding to Mod(x;) the color i, or more formally, we add
unary relations C1,... ,C, with CZ-C(T’K) := Mod(k;). Then it is easy to see that (Ji,...,J;) = &

iff (Ji,...,Jy,) is independent in ¢(7, k). So our problem essentially reduces to the problem of
finding independent sets in ¢(7, k). This clearly depends on the combinatorial properties of ¢(7, k)
of which the relevant ones are:

Lemma 8. Let T be a (1,1, g)-tree cover of . Then for all k:

(1) ¢(T,k) can be calculated in time O(||T||).
(2) ¢(T, k) has mazimum valence bounded by some function on I, k.

(8) foralli=1,...,q:{Us | J; € Cf(T’K)} is a (r,l', goh;)-tree cover of A, where h;(n) := |k;|-n
and I’ depends on | and p.

7 The construction- and the listing problem

In this section we present both an algorithm for the FO-listing and the FO-construction problem.
Essentially, we proceed as follows: w.l.o.g. we are given a t-local ¢(Z) € FO of the form gogf &, (T)-
The reduction to this setting was described previously. After computing a suitable tree cover 7
of the input structure 2, we fix a ctype x and compute ¢(7, k). Now elements of the sought set
©(2) roughly correspond to independent tuples of ¢(7, k).

Theorem 9. LetC be a nicely locally tree-decomposable class of structures. Then FO-EVALUATION
on C is in fized-parameter linear time, i.e. there is an algorithm that for an FO-formula ¢(Z) an
a structure A € C computes () in time

FlelD) - (I =+ e (R0)1),
for some function f: N — N.
The algorithm evaluating FO-queries looks as follows:

Algorithm 1: Computing ¢(2)

Input: Structure A € C, FO-formula ¢(Z)
Output: o(2A)

1. Compute the Boolean combination ¢'(Z) = F(¢1(Z),..., o1 (Z),¥1,... ,%1,) equivalent to
©(Z), where all ¢;(Z) are t-local around Z.
2. Foralli =1,...,1ls decide, if A |= 9; and replace 9; in ¢'(Z) with its truth value. Denote the
resulting formula with ¢ (Z).
3. Compute a nice (k(2t + 1),1, g)-tree cover 7T for appropriate l > 1,g: N — N.
4. For all distance-types e = €1 U---Ug,
i calculate F(¢1(Z),...,¢p(7)) from lemma 6 for the formula ¢ (Z)
ii For all (@,...,a&p,) € SAT(F), compute gogi___@p)

5. Return |J,_ U, sﬁfif ap ()

The first line needs time linear in ||¢’(Z)||, which itself only depends on ||¢(Z)]|.

By definition, a nice (k(2t + 1),1, g)-tree cover can be computed in time O(||2]|), the same
holds for the decision of % | x; (by theorem 4). Thus line 2 and line 3 need time linear in the
structure size.

The loop in line 4 is the crucial one. First, the number of different e and (au,...,q;) is
constant (depends only on k). Hence, the subroutine computing (5 &, (™) is called constantly
often. Calculating ¢*¢(z) in line 4(i) needs time only depending on |/¢]|.

Now consider line 4(ii), where we compute ¢%°(2). This set coincides with Ui g A}h X
S X A?;q, where the tuples admitted in the union are those independent in G := ¢(7, k). So we
proceed as follows: in a first step, we compute G (by lemma 8 this takes linear time), remove all
vertices J; € C’ig with Aiji = () and get G’ (since the sets Uz, do not intersect very much, this
can be done in linear time by an application of theorem 1 and lemma 8). Then in a second step,
we collect all (Ji,...,J,) independent in G’. Since G has bounded valence, this can be done in
time linear in the number of independent tuples. Now, computing each set Aiji only once, we build
the sought union over the Cartesian products. Altogether this takes time O(]¢(2)|). The crucial
obervations to obtain this tight time bound are (i) that each a € ¢(2l) is contained in at most a

constant number of sets Ay 7 and (ii) that each Aij_ is only computed once. O

The task to find a witness for a formula reduces to finding an independent tuple (Ji, ... ,J,)
in the cgraph ¢(7, k) for some .

Theorem 10. Let C be a nicely tree-decomposable class of structures. Then FO-CONSTRUCTION
on C is in fized-parameter linear time.

Proof: The algorithm resembles very much the one of the listing case (and we omit a separate
presentation). Only the loop starting at line 4 has to be modified. Instead of computing the entire
sets 5 (2A) now we just have to look for a satisfying tuple.

As we already saw in the listing case, satisfying tuples correspond to independent tuples in the
contiguousness-graph, and one of these can be found in linear time in the size of the cgraph.

Now it is easy to find a tuple of ¢%°(). Again, we compute G := ¢(7,) and remove all
vertices J € Cig such that Aij = (). This takes time linear in 2 and gives a graph G’. Then we find
a independent tuple (Ji,... ,J;), if one exists, and return an arbitrary @ € [, A?Z O

8 The counting problem

This last section is dedicated to the counting problem. Remember that we assume that arithmetical
operations can be done in constant time.

Theorem 11. Let C be a nicely tree-decomposable class of structures. Then FO-COUNTING on
C is in fized-parameter linear time.

Proof: We start with an immediate consequence of formula (3) for t-local ¢(Z):

@)=Y > ek s @)
e

@1,.en,0p)

10

Since there are at most constant many different e, @ we again restrict our attention to formulas of

the form gofi’i._ a, (). Let () be of this form, for a distance type ¢ with components €1, ... , €, and
a suitable Boolean assignment (&1, ... ,a&,). Like always, k denotes the number of free variables of

©(Z) and let T = {Uy,...,Up} be a nice (r,1, g)-tree cover for A (again we choose r := k(2t+1)).

We let Az :=(1;c; Ay for an index set J. The next equation characterizes the cardinality of
©(2), and is a consequence of equation (5) and the principle of inclusion and exclusion.

(5) PIE
lp(R)] = | U Al = >0 (=) A (8)
(le___pr)e[m}P wijg[m]p

To be able to separate results of remote parts, we pass from sets of indices to their projections.
Formally, for 0 # J C [m]? we define J [j := {J; | thereis a (J1,...,J;,...,J,) € J}, the
projection of J onto coordinate j. The natural extension of the definition of Ay, .. ; (formula
(6)) to sets of indices looks as follows:

Az g = AL xT,-

Observe here that we have Ay = Agp .. gp for all J C [m]P. Since we want to proceed like in
the listing case, we perform a couple of arithmetical reductions until we can separate independent
parts again (as we did before). Essentially, we group the indices J of the sum (8) into classes,
such that all elements J of the same class induce the same tuple (7 [1,...,J I'p). Since for such
tuples we get a unique value |A 7|, we have to consider each of these only once (of course weighted
by the size of the class).

For these separate coordinates we can establish a contiguousness relation, very much like in
the listing case. Informally, we get [Agn,....7p| = [A7] - |Agz,| for tuples J1,...,J, satistying
an (extended) ctype k (compare lemma 7 in the listing case) with ¢ components. Altogether, this
allows a rewriting of our starting problem as a sum of products of values corresponding to tuples
independent in the new contigousness-graph (the Cartesian products in the listing case translate
to multiplications). This reduction is formalized in the next lemma.

Lemma 12. There is a linear time algorithm that computes, given a formula ng ap (Z) and a
tree cover T as above, a colored graph (G,Ch,...,Cq) of bounded valence and integers y(v) € N
for all v € G such that

@) =0(G,7) = Y (1) ().
7 independent
v; €C;
The next theorem fills the gap still missing in the proof of theorem 11

Theorem 13. There is an algorithm that, given G and 7 as in the last lemma, computes o(G,)
in time O(||G]]).

If we plug in this algorithm into the gap left open above, then the proof of theorem 11 is
completed.

9 Concluding remarks

In our algorithms there are various bottlenecks. Generally, it can be said that there is no elementary
upper bound for the dependency on the input formula. This bad news makes the algorithm almost,
useless for practice.

So the main contribution of this work can be seen as a meta-theorem in the style of Courcelle’s
theorem for more general classes of structures. That is, we give means to recognize whether a
certain problem is linear time computable on certain structures. And once we recognized a problem
being solvable in linear time, problably we can find practical algorithms by analyzing the specific
combinatorial properties of the problem.

The work can also be seen as the completion of the model-checking problem for first-order logic
over locally-tree decomposable classes which was initiated in [12].

11

References

1.

2.

10.

11.

12.

13.

14.

16.

17.

18.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms. Addison-
Wesley, 1974.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal of
Algorithms, 12:308 340, 1991.

B.S. Baker. Approximation algorithms for NP-complete problems on planar graphs. In Proceedings
of the 24th IEEE Symposium on Foundations of Computer Science, pages 265-273, 1983.

Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1-21, 1993.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume 2, pages 194-242. Elsevier Science Publishers, 1990.

R.G. Downey and M.R. Fellows. Parameterized Complezity. Monographs in Computer Science.
Springer-Verlag, 1999.

R.G. Downey, M.R. Fellows, and U. Taylor. On the parametric complexity fo relational databases
queries and a sharper characterization of W[1]. In D. Bridges, C. Calude, J. Gibbons, S. Reeves, and
1. Witten, editors, Combinatorics, Complexity and Logic, DMTCS, pages 194-213. Springer-Verlag,
1996.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag, 1995.

D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27(3):275-291,
1999.

J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-decompositions. In Jan Van den Bussche
and Victor Vianu, editors, Database Theory - ICDT 2001, 8th International Conference, London,
UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture Notes in Computer Science, pages 22—
38. Springer, 2001.

M. Frick. Easy Instances for Model Checking. PhD thesis, Universitit Freiburg,
http://www.freidok.uni-freiburg.de/volltexte/229, 2001.

M. Frick and M. Grohe. Checking first-order properties of tree-decomposable graphs. In Jiri Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, 26th International Colloguium, ICALP’99,
Prague, volume 1644 of Lecture Notes in Computer Science, pages 331-340. Springer, 1999.

H. Gaifman. On local and non-local properties. In J. Stern, editor, Logic Colloquium ’81, pages
105-135. North Holland, 1982.

M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of NP-
Completeness. W. H. Freeman and Co., 1979.

. M. Grohe. Generalized model-checking problems for first-order logic. In A.Ferreira and H.Reichel, ed-

itors, Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science, volume
2010 of Lecture Note in Computer Science, pages 12—26. Springer Verlag, Berlin, 2001.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science, 43:169-188, 1986.

L.G. Valiant. The complexity of combinatorial computations: An introduction. In GI - 8. Jahrestagung,
number 16 in Informatik-Fachberichte, pages 326—-337. Springer, 1978.

M.Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th ACM Symposium
on Theory of Computing, pages 137-146, 1982.

12

A Appendix - the proofs

A.1 Proof of lemma 7:

Let s be given with components 1,...,%, and (Ji,...,J,) be a tuple of indices realising k.
First, note that ale; N K"(Uy,) # 0 for all j € [p] must be satisfied on both sides of the equation,
hence in the sequel we assume that it holds. Under this condition, a € Ay, ; is equivalent to
A= pre(@ Apr(aler) A+ App(aley). This implies ale(k;) € Aiji (equation (7)) and proves the
first inclusion.

To prove the other direction, consider a tuple a with a [€(k;) € Aiji, foralli =1,...,q. We show
that for ji,j» from different x-components, remoteness is satisfied, i.e. d(ale€;,,a[€j;,) > 2t + 1.
This gives a = ¢, since a[e(k;) = €(k;), for all 4, is explicitly claimed in the definition of AZJ—_L

For ji # j2 there are vy € €;,, 2 € €, such that a,, € K"(Uy;) and a,, € K"(Uy,,). Using the
definition of kernels this gives us the inequality d(a,,, ay,) > 2r = 2k(2¢t 4+ 1). On the other hand,
the connectedness of the e-components yields @l e;, C Nyir1y(an,), @l€j, © Ni(2p1)(au,), which
together give us the desired inequality d(a[e€;,,a[€j,) > 2t + 1 (since either of the e-components
has length less than k).

The definition of Aiji claims

(U7) E preten(@le(m) A\ wjales),

JEK
foralli=1,...,q, hence A = pi.(T) Apr(aler) A App(aley). O
A.2 Proof of lemma 8:
Let 7 = {U1,... ,Un} be an (1,1, g)-tree cover of 2 and k a ctype with components k1,... , Kq.

Denote the size of k; by p; and recall that ¢(7) has maximal valence <. Let J € [m] and i < q.
We define (J) == {J | J |= ; and J; = J for some j}, the set of all vertices in C7'7**) that
contain J as a part.

For the proof of (1) consider algorithm 2 computing ¢(7, k). We treat the different colors one
after another. For each color, we first generate the set of vertices, and then append to each of them
its adjacency list. At the end of the algorithm, ¢(7,) is contained in the arrays vertex and adj.
Their semantics is as follows: vertex[i, /] = J means that the j'th vertex of color i is J. adjl[i, j]
contains the list of the vertices adjacent to the J. Note that these arrays have only one unbounded
dimension (the one that corresponds to the index j). The others are bounded, hence the arrays are
essentially one dimensional. The lists generated by the procedure may contain multiples, but by an
application of the well-known radix-sort, these can be eliminated in linear time. The correctness
of the algorithm is immediate.

The running time: For the linear time bound, note that |;(J)| < (IPi)Pi=1 = [Pi(Pi=1) for all
J € [m]; we simply choose p; many indices from the (p; —1)-neigborhood (in ¢(7)) of J. Thus every
loop, apart from the loop over .J, is constant. Hence the algorithm needs time O(m). Implicitly,
this forces ¢(7, k) to have linear size, in fact, \Cic(T)| < Y seery IKi() < m- 1PiPi=1) = O(m)
(this is the maximum value of the variable n).

To prove (2) consider the loop from line 9 to line 17. Recall that N1(/J) is the set of all vertices

adjacent to J. In this loop, we generate the adjacency list for each vertex J, which has size
<pi-l- [pi(pi—1)

At last, for (3), we have to confirm the conditions of definition 3. Condition (1) transfers to
covers with the property that each set in the old cover is contained in a set of the new cover.

13

1 proc calc_cgraph(7, k)

2 fori=1to qdo /* the colors */
3 n:=1;
4 for J =1 to m do
5 for J € ki(J) do
6 vertex[i, n] := J;
7 comment: calculate the adjacency list
8 adj[i, n] :== NULL;
9 for 4 =1 to p; do
10 for 1 € N°P)(J,) do
11 for j =1 to ¢q do
12 for I € x;(I) do
13 append (adj[i, n], I);
14 od
15 od
16 od
17 od
18 n:=n-+1;
19 od
20 od
21 od
22 .

Algorithm 2. Compute ¢(7, k)

Furthermore, there is an edge between J and J' iff Uy N Uy # (), hence part (2) of this lemma
proves property (2) of definition 3 (a bound on the non-empty intersections).

To examine the treewidth, fix some i and J |= ;. Because 7 is a nice (r,[, g)-tree cover, the
set (Ujy) has treewidth bounded by g(p;). Building the union over s such sets we get g(p; - s) as
an upper bound on the treewidth what confirms condition (3). a

A.3 Exact proof of theorem 9:

Adopt the assumptions of algorithm 1 before the call of the subroutine in line 4ii, which does the
main computation. That is, we have given a formula ¢(Z) of the form gotaf .a, (T) (recall formula
(4)), and an (r,l, g)-tree cover 7 of 2. The procedure enum_assign that enumerates all tuples a
with 21 = ¢(a) is displayed as algorithm 3.

Correctness: enum_assign first calculates G := ¢(7, %) and then eliminates all vertices J €
CE(T’K) with Aij = (. Note that a Cartesian product is empty if, and only if, one of its parts is
empty. This means that we throw away those indices that, in any case, do not contribute to the
result. The subsequent call of indep_tuples(G) (displayed as algorithm 4) then computes the set
of independent tuples Z (line 9), which directly provides the set U(Tive Jy)ET A}l X oo+ X A‘Lqu. This
proves the correctness of the algorithm. And as it will turn out, this, performed in a careful way
(lines 10 to 19), is enough to obtain an optimal time bound.

Running time: Concerning the running time, we have to go more into details: Note that the
outermost loop over k is passed through a constant number of times. So consider the first part
between line 4 and line 8: by definition, Afi = () can be decided in the structure (Uyj,), which,
applying the additional property of nice tree covers, has bounded treewidth (by g(|&;]), cf. lemma
8). Hence, we can apply the algorithm of theorem 1 and decide emptiness in time f'(|[¢]])- Uy, |, for
some [’ : N — N. Furthermore, each a € A is contained in at most [sets Uy, hence ZJ}-GC? |Ugz,| <

11€<l . | A for all i € [q]. Therefore, the running time for this loop is linear in the size of 2. From

14

1 proc enum_assign(7, ¢(T))
2 for k a p-contiguousness-type do
3 G:=c(T,kK);
4 for i =1 to q do
5 for J € CY do
6 if AL =0 then G := G\ {J} fi
7 od
8 od
9 7 := indep-_tuples(G);
10 fori=1to q do
11 Zi =Tt
12 for J € Z; do
13 compute Aij;
14 od
15 od
16 B =)
17 for (Ji,...,Jq) €T do
18 B:=BUAj x-- x A% ;
19 od
20 od
21 return(B);
22 .

Algorithm 3. Evaluating a t-local formula

now on, G denotes the graph after removing these “superflous” vertices. G still has bounded valence
(recall lemma 8(2)), say, by d.

In line 9, we call the function indep_tuples(G) (algorithm 4) to compute the set of independent
tuples of G.

Claim: indep_tuples(G) returns all independent tuples of G and needs time O(|indep_tuples(G)|).

Proof of the Claim: Consider algorithm 4 and assume that G has maximal valence d (it is an
induced subgraph of a contiguousness-graph). In a first loop, we partition the set of indices into
“big” and “small” ones (lines 4 to 8). The actual computation proceeds in two steps. In the first
step, we look exhaustively for all independent tuples over small indices (note that there are at
most (2dq)? many of them).

Then, in the second step, we extend these “partial” tuples to tuples over [q], which gives the
sought result. The code should be clear.

Let us estimate the time necessary for the second part of the search (the first part trivially needs

constant time): for simplicity, we assume that all indices are big; the set of all possible tuples of

indices (Ji,... ,Jy) has size [[Z_, |C7|. A lower bound for the number of independent tuples is

easily seen to be |CY| - (|CS| —d)--- (ICJ| = (g — 1)d). Since our loop goes through all tuples in
! C’ig, it is enough to show that there is a ¢ > 0 (actually, we choose ¢ := 2%) such that

a q
[Ticil < e TT0¢: — da).
i=1 i=1
To prove this, observe that by |C;| > 2dg we have |C;| < 2- (|C;] — dq). Applied to the above
situation we get
q q q

[[lct < 20¢) - dg) - [[lesl < - < 20JJaGi| = da)

i=1 =2 i=1

15

1 proc indep_tuples(G)

2 I:=0;

8 d:= max-valence(G); big = NULL; small = NULL;
4 fori=1toqdo

5 if |CY| > 2dq

6 then append(big, i) else append(small, 7)

7
8
9

fi

od

if small = NULL
10 then
11 Zs :={()} else
12 Zs := all independent v € Hiesmall C?
13 fi
14 for v e€eZs do
15 for u € Hiebig cy
16 if (7, 4) independent
17 then Z :=Z U {(v,u)}
18 fi
19 od
20 od
21 return(Z);
22 .

Algorithm 4. Calculate all independent tuples

as an upper bound on the number of times the loop (between lines 14 and 20) is passed. Checking,

if a tuple (Ji,... ,J,) is independent can be done in constant time (a simple lookup in g adjacency
lists, all of constant size). Together, we need time [[%_, |C¥| = O([]L,(|Cs| — dg)). O

So let us revert to the analysis of the running time of enum_assign. We just computed the set
7 of independent tuples of G = ¢(7,x) in time O(|Z|) (line 9). Because A%; #), for all J € cy,
the set 7 has at most > 7, 7 o7 |A}1 X oee X A‘}q| = O(|¢(21)|) elements. Hence the loop needs

O(lp(RA)]) steps.

Now consider the subsequent loop for each ¢ (lines 10 to 15): first, we calculate the projection of
T onto coordinate 7. This can be done in O(|Z|) steps. A bit more involved, and actually the reason
for the elimination of some vertices of G is the loop over Z;. Observe that Aff can be calculated in

(Uj,). This substructure has bounded treewidth (recall the first loop), thus we can calculate A%
in time O(|Uy,| + |A? |) (recall theorem 1). Hence, the entire loop requires

> (gl +145D) = ogal + Y 145D
= Ji€T;

steps (for the equality, cf. the first loop). The crucial step in the running time analysis is to show
that 35 7. |A% | = O(J¢()]): For a tuple b let I(b) := {J; | b € Uz, } be the number of times a b
is computed and assume J; € I(b). This entails for all v: J; N {J | b, € Us} # 0, hence

[Kil

1I(b)| < (\ml .l\em)\)

Thus, each tuple occurring in |J; ., A% is computed at most a constant number times, i.e.
’ Ji€L; ’

Ji

. |Kil .
Y lah < (|M|.l\e(m)\) Y 4n.

Ji€T; J,€T;

16

The same argument gives us: Z = O(|@(2)|). Finally, we injectively map each b € (J; .7, A% to

7 i
the lexicographically minimal @ € ¢(21) such that b = a [€(x;), hence the size of this union is
O(Jp(A)]), which show or claim. Such a minimal @ exists, since (i) we removed all J; with empty

Aij and (ii) in Z; there are only indices, which are part of an independent tuple (actually, this was
the reason for calculating the projections Z;). For else, we would possibly compute “big” sets Aff

that do not contribute to ¢(2) (because J; is not part of an independent tuple). This completes
the proof that the loop between lines 10 and 15 obeys the time bound.

To finish, we sum up the times we just estimated. We have ¢ - |A| for the first loop, and
O(|p(20)]) for the second one. As we have seen, the last two loops need time O(|p(2()]). The same
holds for the last loop, which completes the analysis.

A.4 Proof of lemma 12:

To prove lemma 12 we proceed as follows: first, we rewrite equation (8) using the principle of
inclusion and exclusion. Then, after some arithmetical transformations and helping lemmas, we
again introduce contiguousness-types to structure the tree cover. In a last step, we compute the
colored graph G (an extended contiguousness-graph) and the labelling 7.

We rewrite equation (8) as follows:

P20 =D (-1 > |4yl
Jj=1 JC[m]P,|T|=j
DGV DI S Vv (9)
J=1 J1sees IpCIM| T, | T =7
TNi=Ti
[T1]+| Tpl
= Z Z D (2] 1) 1Ay (10)

- IpClm]

for suitable functions y; : [m]? — N, counting the number of 7 such that for all i: 7 [i = J; for
given J1,... ,Jp. The first two equations are easy confirmed, for the third one the functions p;
are chosen suitably (recall that if J [= J'|i for all i then Ay = Ag).

The next lemma gathers the properties relevant to evaluate formula (10). Recall that [denotes
the maximum valence of ¢(7).

Lemma 14. Let Jy,...,J, be subsets of [m]. If Ay, .. 7, # 0 then |T;| < k-l foralli=1,... ,p.
For j > (k-1)P the function p; vanishes, and for j < (k-1)P, u; is a function from [k-1]P to [2(--D"].

Proof: Let Ji,...,J, be given and assume that |J;| > k - [for an i. By contradiction, assume
further that there is an a € Ay, 7, particularly, a[e; N Uy, # 0 for all J; € J; and A |= ¢(a).
But each coordinate of a [¢; may be contained in at most [neighborhoods, summing up to at
most |¢;]| - I < k- [neighborhoods (under the assumption that all coordinates lie in different
neighborhoods). This contradicts the assumption |7;| > k - [.

Assume |J| > (k- 1)P. Then there must exist an i such that |7 [i| > k-, hence A7 = 0 (by
the first claim).

For the last claim Ji,...,J, C [m] are given. By the first claim, all 7; have < k - [elements.
So fix the cardinalities m; := |J;|. We are looking for the number of sets J C [m]? such that
Jli=J,foralli=1,...,p. If (J1,...,Jp) € J then J; € J;, hence there are at most
my ---mp < (k- [)? many such tuples, hence less than 200" sets of such tuples. This proves the
lemma. O

17

This lemma implies that (i) the outer sum goes over index sets J; of size < k- [, and (ii) the
inner sum only has a constant number of addends. Furthermore, the functions j; can be calculated
in time only depending on k,l and p.

We continue as in the listing case, and introduce the ctype of a tuple (J1,... ,Jp) € Pow([m])P

w.r.t 7. Recall the definition of ¢(7). We define &(7') to be the graph (Pow=*([m]) \ {0}, E¥(T))
where
(Z,7) e E¥D iffforall I € T and J € J : (I,J) € ¢(T).

The p-ctype of a tuple (J1,...,Jp) € Pow([m])P w.r.t. T is the graph x := ([p], E*), such that
(i,7) € E* iff (J;,J;) € &(T) (again, we write (J1,... ,Jp) = & in this situation).

In the sequel, let be x a ctype with components xi,... ,k,. Like before, we group tuples
(J1,-..,Tp) according to the k-components the coordinates belong to (cf. the listing case). Since
the x partition the set of admissible indices and for j > (kl)? we have a factor equal to zero, we
get:

(kD)P
@@= S St Al 7D A g (11)
K (J1s-e s Tg) R J=1
(kL)P

—Z DI N im0 > A%, |- A% | (12)

mekl]P K (T s Tg) BB Tu|=ma

To get the second equality let AZ be the restriction of the definition of Az, . 7, to single
indices. In particular, let

Al :={ale(k;) | for all 4, s.t. j is the p'th element of ;
:>a[ejﬂK(UJ)¢®forallJ€$Hand

A pret AN eila (13)

JEK

fix the arguments of y; (to m) and pull the sum over the tuples (J1,... , J,) inwards. Implicitly we
used an analogue of lemma 7 adopted to this extended setting to write |[Az, ..., 7, | as the product
A% |- 1AY |.

To deﬁne an extended contiguousness-graph, let 7 = {U;,... ,U,, } be a nice (r, [, g)-tree cover.
For x and m € [k - []P the model powerset is the set PMod(k,m) := {J | J E r and |J;| = m;}.
This is the obvious extension of Mod to the present case. Let furthermore x be a p-ctype with
components K1, ... ,kq and (ma, .. mq) [k - [JP. The cgraph ¢(T,k,m) of T with respect to k

and m has vertex set PMod(k1,7m1) U - - - U PMod(ry,) and edge relation ES(7-%™) defined as
follows:

(Ji, J;) € ESTmm) i there are v, pu: (T, Tju) € &(T)

Additionally, we give the vertices corresponding to PMod(k;) the color 4, or more formally, we add

unary relations Cy, ... ,C, with CC(T) = PMod(k;).
The next lemma corresponds to lemma 8 and gathers the relevant properties of cgraphs
&(7T, k,m) for a tree cover 7.

Lemma 15. Let T be a (1,1, g)-tree cover of a structure 2. Then for all k and m € [k - []P:

(1) &(T,k,m) can be calculated in time O(||T||).
(2) &(T,k,m) has bounded valence

18

Proof: To prove (1) we present an algorithm computing ¢(7, ,m). In the first step we compute
the graph ¢(7) without the unnecessary vertices J (those for which Uz = (}). This procedure is
displayed as algorithm 5. For the correctness, note that if for J C [m] we have Uy # (), then there
isaJ e J with 7 C NT)(J). Hence, we really get all relevant vertices of &(7). For the loop
which generates the adjacency lists, note further that Z x 7 € E7) if and only if (Z,) € E47).
Furthermore, for any two adjacent Z, 7 there must be I € 7 and J € J such that I and J are
adjacent in ¢(7).

It is easy to see that the running time is bounded by m-2¢-1- 2. ¢ where ¢ is the time necessary
to check Z x 7 € E<T) in a graph of bounded valence, given in adjacency list representation (this
constant is independent from m).

1 proc calc_pgraph(7)

2 for J=1tom do

3 =1

4 for 7 C N(T)(J) do

5 vertex[t] := Z; adj[z] := NULL;
6 /* add adjacencies */

7 for I € N°7)(J) do

8 for 7 C N°T)(I) do

9 if Zx g C E<T)
10 then
11 append(adj[i], J);
12 fi
18 od
14 od
15 i:=1i+ 1
16 od
17 od
18 .

Algorithm 5. Calculate ¢(7)

To continue, recall algorithm 2, which calculates the cgraph ¢(7,), and the definition of x;(J)
for J € [m] and 1 < i < ¢. This definition is naturally extended to

ki(J,m) = {J € PMod” (k;,m) | J = J; for some j}.

Algorithm 6 essentially works like algorithm 2, with roles of ¢(7") and ¢(7") interchanged.

Correctness is immediate by the definition of the ¢(7, k,m). For example, there is an edge
between Z and J iff there are w,v such that (Z,, ‘7“) e E¥T), The u is delivered by the corre-
sponding for-loop, and v is implicit in the expression Z € ;(Z,m;) (the v such that Z = T7,).
Finally Z € N¢(T) (J,) assures that the tuples are adjacent.

For the running time, recall that J € x;(J,m;) can be checked in constant time (cf. the case
of primitive vertices). Thus, all loops except from the one cycling over J € &(7) are bounded
by a constant of the form f(q,l) for a function f : N> — N. Together, we get the running time
dominated by f(gq,1)-2" - m.

To prove (2), note that &(7) has maximum valence 2!. Thus, |x;(J,m;)| < ((21)P)Pi~1 for
a vertex J € ¢(7). Thus, summing up over all loops that compute the adjacency list, we get
pi - q- 2" ((2YP)P~1 as an upper bound on the valence (the maximal number of different Z the
algorithm can choose in the loops between line 10 and line 18). O

Finally, by the following lemma we can assume the values |Af7| being known. Observe that
only here we really need that our tree covers are nice.

Lemma 16. The values \Afj\ fori=1,...,q and J; € CiC(T’H’m) can be computed in linear time.

19

1 proc calc_cgraph(7, k)

2 comment: calculate the vertex set

8 fori=1to qdo /*the colors */

4 J=1

5 for 7 € ¢(7) do

6 for j € K/i(j, mz) do

7 vertex[i, j] == J;

8 comment: calculate the adjacency list
9 adj[é, j] := NULL;
10 for 1 =1 to p; do
11 forl=1to qdo
12 for 7 € N*7)(7,) do
138 for T € ki(Z,my) do
14 append(adj[i, j],Z);
15 od

16 od

17 od

18 od

19 ji=7+1
20 od
21 od
22 od
28 normalize the graph (vertex[, -], adj[-,]);
24 .

Algorithm 6. Calculate (7, k,m)

for all J; € C; and fixed 1 < i < ¢ straightforwardly by a simple
loop over J; and calls of the procedure from theorem 1. For that, observe that \A'}f| can be

Proof: We compute the |A“j

computed in the structure (U;)® for an index J with J, € J;,, for all v. Furthermore, for an
index J there are at most (21)"“| many J; satisfying this condition. Like before, since each index
J is used constantly often, also each a € A is contained constantly often in a set (Uj), hence the
entire computation needs linear time. O

Coming back to the proof of lemma 12, fix a m € [k-[]? and a ctype x with components
Ki,... kg Define G :=&(7,k,m) and set v(J;) := |Afi| for J; € C; := PMod(k;,m;). Then the
tuples (J1, ... , jq) € (1 x - -+ x (Cy admitted in the sum are exactly the ones that are independent
in G. This completes the proof of lemma, 12. O

Proof of theorem 13:
Let G and a labelling v be given in the theorem. We group the tuples v according to the subgraph
they induce in G. Fix a graph 7 over the set [g] and define

Hom(n) := {v| (4,5) € E™ = (v;,v;) € EY}

and
Iso(r) == {v | (i,j) € E™ < (v;,v;) € E9Y.
It is easy to see that ¥ € Iso(w) iff ¥ € Hom(7) and for all 7’ 2 7: ¥ ¢ Hom(7’). Using these index
sets, we define cr 1= >y cgom(n) [ier 7(vi) and dr := 375 cqoo(r) [Lier 7(vi)- It Is easy to see that
0(G,~) coincides with dr for 7 being the graph consisting of ¢ isolated vertices.
We start with a lemma that allows us to calculate the values c.

Lemma 17. Let w be a arbitrary graph over [q]. Then ¢, can be calculated in time O(qd? - ||G||),
where d is the mazimal valence of G.

20

Proof: Let 7 be a graph over [¢] splitting up into components 71, ... , 7. By definition, we have
Cr i= Cpy -+ Cx, (just apply the distributive law). Hence it is enough to show that the claim holds
for connected 7.

So assume that 7 is connected and take an arbitrary j € [¢]. If ¥ € Hom(7) then, by connect-
edness, v; € NJ (v)NC; for all i # j. Since G has valence at most d, N (v) contains < d? elements.
Observe that the situation is similar to that in lemma 8, where we calculated ¢(7, k) for a tree
cover 7 and a ctype k.

Now the algorithm proceeds as follows: In a first phase, using the just derived characterization,
we compute a list containing all tuples v that are in Hom(x). This list may contain multiples.
Then we remove multiple occurrences from the list, and, in a last step, we sum up the v(7) :=
v(v1) - -+ v(vq) for ¥ from the list. This is displayed as algorithm 7.

1 proc calc_pi(G,~)

2 comment: calculate the vertex set

5 h:=0;j€lqg];

4 forveC;do

5 for ¥ such that v; = v and all v; € Ng(v) N C; do

6 if o € Hom() then

7 append(h, 7);
8 fi

9 od

10 od

11 remove multiples from h;

12 return(d o o (V1) - y(vg))
i3 .

Algorithm 7. Calculate ¢,

It is easy to see that the algorithm works correctly. The time bounds are easily verified. For
instance, the loops require time O(|G| - d?) (since |N,(v)| < d?). Multiple occurrences of tuples
can be removed by a simple radix sort and the sum in the last line is computed in time linear in
the size of h. O

With this lemma we are almost finished. By the above observation on the relation between
homomorphisms and isomorphisms, we have

de =cx— Y dr, (14)
w2

which leads us to the following procedure:
Algorithm 8: Computing o(G,~)

Input: A graph (G,Ch,...,Cy) andy: G — N
Output: 0(G,7)

1. Compute ¢, for all 7 over [g]
2. Compute d for all 7 using formula (14)
3. Return d; for m the empty graph

The correctness is immediate. Since there are < ¢? different 7, the first line needs time O(||G||)
(by lemma 17). Line 2 needs some more explanations: by induction, we proceed downwards starting
with the complete graph = (for which we have ¢, = d,). Having computed all d, for = with [+ 1
edges, we can compute d, for 7 with [edges in constant time (simply apply formula (14)).

Altogether we stay within the time bounds claimed in theorem 13.

21

