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Abstract

The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence
holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter
tractable model-checking problems for first-order and monadic second-order logic.

We show that unless PTIME= NP, the model-checking problem for monadic second-order logic on
finite words is not solvable in timef(k) · p(n), for anyelementaryfunction f and any polynomialp.
Herek denotes the size of the input sentence andn the size of the input word. We prove the same result
for first-order logic under a stronger complexity theoretic assumption from parameterized complexity
theory.

Furthermore, we prove that the model-checking problems for first-order logic on structures of degree

2 and of bounded degreed ≥ 3 are not solvable in time22o(k)
· p(n) (for degree 2) and222o(k)

· p(n)
(for degreed), for any polynomialp, again under an assumption from parameterized complexity theory.
We match these lower bounds by corresponding upper bounds.

1. Introduction

Model-checking problems. We study the complexity of a fundamental algorithmic problem, the so-called
model-checkingproblem: Given a sentenceϕ of some logic L and a structureA, decide whetherϕ holds
in A. Model-checking and closely related algorithmic problems occur frequently in computer science, for
example, in database theory, artificial intelligence, and automated verification. In this paper, we prove new
lower bounds on the complexity of the model-checking problems for first-order and monadic second-order
logic.

It is known that model-checking for both first-order and monadic second-order logic is PSPACE-
complete [18, 20] and thus most likely not solvable in polynomial time. While this result shows that the
problems are intractablein general, it does not say too much about their complexity in practical situations.
Typically, we have to check whether a relativelysmall sentence holds in alarge structure. For example,
when evaluating a database query, we usually have a small query and a large database. Similarly, when
verifying that a finite state system satisfies some property, the specification of the property in a suitable
logic will usually be small compared to the huge state space of the system. When analysing the complexity
of the problem, we should take this imbalance between the size of the input sentence and the size of the
input structure into account.

Parameterized complexity theory. Parameterized complexity theory (see [7]) is a relatively new branch
of complexity theory that provides the framework for a refined complexity analysis of problems whose
instances consist of different parts that typically have different sizes. In this framework, aparameterized
problemis a problem whose instances consist of two parts of sizesn andk, respectively.k is called the
parameter, and the assumption is thatk is usually small, small enough that an algorithm that is exponential
in k may still be feasible. A parameterized problem is calledfixed-parameter tractableif it can be solved
in timef(k) · p(n) for an arbitrary computable functionf and some polynomialp. The motivation for this
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definition is that, sincek is assumed to be small, the feasibility of an algorithm for the problem mainly
depends on its behaviour in terms ofn. Under this definition, a running time ofO(2k · n) is considered
tractable, but running times ofO(nk) orO(k · 2n) are not, which seems reasonable.

A standard example of a fixed-parameter tractable problem is the parameterized vertex cover problem:
Decide if a graph of sizen has a vertex cover of sizek. There is a simpleO(2k · n)-algorithm for this
problem, which means that finding small vertex covers, say of size 10, is possible in quite large graphs.
On the other hand, no comparable algorithm is known for the parameterized clique problem. (Decide if a
graph of sizen has a clique of sizek.) The best known algorithm for the clique problem has a running time
of nΩ(k). Indeed, it can be proved that the clique problem is complete for the parameterized complexity
class W[1] under suitable reductions; it is generally believed that this class strictly contains the class FPT
of all fixed-parameter tractable problems. Note that both the vertex cover and the clique problem are NP-
complete, so classical complexity theory does not detect this difference between the complexities of the
two problems.

Let us conclude our short discussion of parameterized complexity theory by remarking that although
fixed-parameter tractability has proven to be a valuable concept allowing fine distinctions on the borderline
between tractability and intractability, it seems somewhat questionable to admitall computable functions
f for the parameter dependence of a fixed-parameter tractable algorithm. Iff is doubly exponential or
worse, anO(f(k) · n)-algorithm can hardly be considered tractable. The main contribution of this paper
to parameterized complexity theory is to show that there are natural fixed-parameter tractable problems
requiring parameter dependencesf that are doubly exponential or even non-elementary.

The parameterized complexity of model-checking problems.Model-checking problems have a natural
parameterization in which the sizek of the input sentence is the parameter. We have argued above thatk
is usually small in the practical situations we are interested in, so a parameterized complexity analysis is
appropriate. Unfortunately, it turns out that the model-checking problem for first-order logic is complete for
the parameterized complexity class AW[∗], which is assumed to strictly contain FPT. Thus probably model-
checking for first-order logic is not fixed-parameter tractable. Of course this implies that model-checking
for the stronger monadic-second order logic is also most-likely not fixed-parameter tractable. As a matter
of fact, it follows immediately from the observation that there is a monadic second-order sentence saying
that a graph is 3-colourable that model-checking for the stronger monadic-second is not fixed-parameter
tractable unless P= NP.

It is interesting to compare these intractability results for first-order logic and monadic second-order
logic with the following: The model-checking problem for linear time temporal logic LTL is solvable in
time 2O(k) · n [16], making it fixed-parameter tractable and also tractable in practice. On the other hand,
model-checking for LTL is PSPACE-complete (as it is for first-order and monadic second-order logic). So
again parameterized complexity theory helps us establishing an important distinction between problems
of the same classical complexity.2 We may argue, however, that the comparison between LTL model-
checking and first-order model-checking underlying these results is slightly unfair. As the name linear time
temporal logic indicates, LTL only speaks about a linearly ordered sequence of events. On an arbitrary
structure, an LTL formula can thus only speak about the paths through the structure. First-order formulas
do not have such a restricted view. It is therefore more interesting to compare LTL and first-order logic
on words, which are the natural structures describing linear sequences of events. A well-known result of
Kamp [14] states that LTL and first-order logic have the same expressive power on words. And indeed,
model-checking for first-order logic and even for monadic second-order logic is fixed-parameter tractable if
the input structures are restricted to be words. This is a consequence of Büchi’s theorem [2], saying that for
every sentence of monadic second-order logic one can effectively find a finite automaton accepting exactly
those words in which the sentence holds. A fixed-parameter tractable algorithm for monadic second-order
model-checking on words may proceed as follows: It first translates the input sentence into an equivalent
automaton and then tests in linear time whether this automaton accepts the input word. But note that since
there is no elementary bound for the size of a finite automaton equivalent to a given first-order or monadic

2A critical reader may remark that this distinction between the complexities of LTL model-checking and first-order model-
checking was known before anybody thought of parameterized complexity-theory. In some sense, this is true, but how can we
be sure that there is no2O(k) · n model-checking algorithm for first-order model-checking? The role of parameterized-complexity
theory is to give evidence for this.
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second-order sentence [19], the parameter dependence of this algorithm is non-elementary, thus it does
not even come close to the2O(k) · n model-checking algorithm for LTL. Of course this does not rule out
the existence of other, better fixed-parameter tractable algorithms for first-order or monadic-second-order
model-checking.

Our results. Our first theorem shows that there is no fundamentally better fixed-parameter tractable
algorithm for first-order and monadic second-order model-checking on the class of words than the automata
based one described in the previous paragraph.

Theorem 1. (1) Assume thatPTIME 6= NP. Then there is no model-checking algorithm for monadic
second-order logic on the class of words whose running time is bounded byf(k) · p(n) for an ele-
mentary functionf and a polynomialp.

(2) Assume thatFPT 6= W[t] for somet ≥ 1. Then there is no model-checking algorithm for first-order
logic on the class of words whose running time is bounded byf(k) · p(n) for an elementary function
f and a polynomialp.

Here k denotes the size of the input sentence of the model-checking problem andn the size of the input
word.

Recall that FPT denotes the class of all fixed-parameter tractable problems. The classes W[t], for t ≥ 1,
form a hierarchy of larger and larger parameterized complexity classes, which are widely believed to be
different from FPT (see, for example, [7]). It is worth mentioning that FPT= W[1] would imply that 3SAT
is solvable in deterministic time2o(n) [1, 7]. A function f : N → N is elementaryif it can be formed
from the successor function, addition, subtraction, and multiplication using concatenations, projections,
bounded additions and bounded multiplications (of the form

∑
z≤y g(x̄, z) and

∏
z≤y g(x̄, z)). The crucial

fact for us is that a functionf is bounded by an elementary function if, and only if, it is bounded by an
h-fold exponential function for some fixedh (see, for example, [4]).

To prove the theorem, we use similar coding tricks as those that can be used to prove that there is
no elementary algorithm for deciding the satisfiability of first-order sentences over words [19]. When we
started to think about this problem, it was not clear at all to us which were the right complexity theoretic
assumptions. We find it quite surprising that we ended up with fairly standard assumptions. It is not
obvious what PTIME6= NP has to do with our non-elementary lower bound. And it is remarkable that
the assumption FPT6= W[t] for somet ≥ 1, which is usually used to prove that problems are not fixed-
parameter tractable, is used here to prove lower bounds for problems that are fixed-parameter tractable.

Model-checking for first-order and monadic second-order logic is known to be fixed-parameter tractable
on several other classes of structures besides words: Model-checking for monadic second-order logic is
also fixed-parameter tractable on trees and graphs of bounded tree-width [3]. The latter is a well-known
theorem due to Courcelle [3] playing a prominent role in parameterized complexity theory. Theorem 1
implies that the parameter dependence of monadic-second-order model-checking on trees and and graphs
of bounded tree-width is also non-elementary. In addition to trees and graphs of bounded tree-width,
model-checking for first-order logic is fixed-parameter tractable on further interesting classes of graphs
such as graphs of bounded degree [17], planar graphs [10], and more generally locally tree-decomposable
classes of structures [10]. Theorem 1(2) doesnot imply lower bounds for the parameter dependence here.
The reason for that is a peculiar detail in the encoding of words by relational structures. The standard
encoding includes the linear order of the letters in a word as an explicit relation of the structure. If we
omit the order and just include a successor relation, Theorem 1(1) still holds, because the order is definable
in monadic second-order logic. However, the order is not definable in first-order logic, and Theorem 1(2)
does not extend to words without order. Indeed, we give a model-checking algorithm for first-order logic
on words without order, and more generally on structures of degree 2, with a running time22O(k) ·n, that is,
with a doubly exponential parameter dependence. We also give a model-checking algorithm for first-order
logic on structures of bounded degreed ≥ 3 with a triply exponential parameter dependence. We match
these upper bounds by corresponding lower bounds:

Theorem 2. Assume thatW[1] 6= FPT.
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(1) There is no model-checking algorithm for first-order logic on the class of words without order whose
running time is bounded by

22o(k)
· p(n),

for any polynomialp.

(2) There is no model-checking algorithm for first-order logic on the class of binary trees whose running
time is bounded by

222o(k)

· p(n),

for any polynomialp.

Again,k denotes the size of the input sentence andn the size of the input structure.

Part (2) of this theorem also implies a triply exponential lower bound for the parameter dependence of
first-order model-checking on planar graphs and graphs of bounded tree-width.

2. Preliminaries

A vocabularyis a finite set of relation, function, and constant symbols. Each relation and function symbol
has anarity. τ always denotes a vocabulary. AstructureA of vocabularyτ , or τ -structure, consists of a
setA called the universe, and an interpretationTA of each symbolT ∈ τ : Relation symbols and function
symbols are interpreted by relations and functions onA of the appropriate arity, and constant symbols are
interpreted by elements ofA. All structures considered in this paper are assumed to have a finite universe.
The reductof a τ -structureA to a vocabularyτ ′ ⊆ τ is theτ ′-structure with the same universe asA and
the same interpretation of all symbols inτ ′. An expansion of a structureA is a structureA′ such thatA is
a reduct ofA′. In particular, ifA is a structure anda ∈ A, then by(A, a) we denote the expansion ofA by
the constanta. We writeA ∼= B to denote that structuresA andB are isomorphic.

Let Σ be a finite alphabet. We letτ(Σ) be the vocabulary consisting of a binary relation symbol≤, a
unary function symbolS, two constant symbols ‘min’ and ‘max’, and a unary relation symbolPs for every
s ∈ Σ. A word structureoverΣ is aτ(Σ)-structureW with the following properties:

– ≤W is a linear order ofW , minW and maxW are the minimum and maximum element of≤W , and
SW is the successor function associated with≤W , where we letSW(maxW) = maxW .

– For everya ∈W there exists precisely ones ∈ Σ such thata ∈ PWs .

We refer to elementsa ∈ W as thepositionsin the word (structure) and, for every positiona ∈ W , to the
uniques such thata ∈ PWs as theletter ata.

It is obvious how to associate a word from the classΣ∗ of all words overΣ with every word structure
overΣ and, conversely, how to associate an up to isomorphism unique word structure with every word in
Σ∗. We identify words with the corresponding word structures and writeW ∈ Σ∗ to refer both to the word
and the structure.

The class of all words (or word structures) over some alphabet is denoted byW. The length of a word
W is denoted by|W|.

A subwordof a wordW = s0 . . . sn−1 ∈ Σ∗ is either the empty word or a wordsi . . . sj for some
i, j, 0 ≤ i ≤ j < n. We writeV v W to denote thatV is a subword ofW.

We assume that the reader is familiar with propositional logic, first-order logic FO and monadic second-
order logic MSO (see, for example, [8]). Ifθ is a formula of propositional logic andα is a truth-value as-
signment to the variables ofθ, then we writeα |= θ to denote thatα satisfiesθ. Similarly, if ϕ(x1, . . . , xk)
is a first-order or monadic second-order formula with free variablesx1, . . . , xk, A is a structure, and
a1 . . . , ak ∈ A, then we writeA |= ϕ(a1, . . . , ak) to denote thatA satisfiesϕ if the variablesx1, . . . , xk
are interpreted bya1, . . . , ak, respectively. Asentenceis a formula without free variables. Thequantifier-
rank of a formulaϕ, that is, the maximum number of nested quantifiers inϕ, is denoted by qr(ϕ).

The model-checking problemfor a logic L on a class C of structures, denoted by MC(L,C), is the
following decision problem:
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Input: StructureA ∈ C, sentenceϕ ∈ L.
Problem: Decide ifA |= ϕ.

We fix a reasonable encoding of structures and formulas by words over{0, 1}. We denote the length
of the encoding of a structureA by ||A|| and the length of the encoding of a formulaϕ by ||ϕ||. Note
that ||A|| can be considerably larger than the cardinality|A| of the universe ofA. When reasoning about
model-checking problems, we usually usen to denote the size||A|| of the input structure andk to denote
the size||ϕ|| of the input sentence.

It is well-known that if we are interested in the complexity of first-order or monadic-second order
model-checking on words, the alphabet is inessential. This can be phrased as follows:

Fact 3. Let L ∈ {FO,MSO}. Then there is a linear time algorithm that, given a sentenceϕ ∈ L and a
wordW ∈ W, computes a sentenceϕ′ ∈ L of vocabularyτ({0, 1}) and a wordW ′ ∈ {0, 1}∗ such that
||ϕ′|| ∈ O(||ϕ||), ||W ′|| ∈ O(||W||), and

(
W |= ϕ ⇐⇒ W ′ |= ϕ′

)
.

N denotes the set of natural numbers (including0). For alln, i ∈ N we let bit(i, n) denote theith bit
in the binary representation ofn. (Here we count the lowest priority bit as the0th bit.) lg denotes the
base-2 logarithm, and, fori ∈ N, lg(i) denotes thei-fold logarithm. More formally, lg(i) is defined by
lg(0)(n) = n and lg(i+1)(n) = lg lg(i)(n).

We define thetower functionT : N×R→ R by T (0, r) = r andT (h+ 1, r) = 2T (h,r) for all h ∈ N,
r ∈ R. ThusT (h, r) is a tower of2s of heighth with anr sitting on top. Observe that for alln, h ∈ N with
n ≥ 1 we haveT (h, lg(h)n) = n.

3. Succinct encodings

We introduce a sequence of encodingsµh, for h ≥ 1, of natural numbers by words over certain finite
alphabets. They are more and more “succinct” not in the sense that they are shorter and shorter, but in the
sense that they can be decoded by shorter and shorter first-order formulas. Lemma 6 is the key result of
this section.

For all h ≥ 1 we letΣh = {0, 1, [1, ]1, . . . , [h, ]h}. We defineL : N → N by L(0) = 0, L(1) = 1,
L(n) = blg (n − 1)c + 1 for n ≥ 2. Note that forn ≥ 1, L(n) is precisely the length of the binary
representation ofn− 1.

We are now ready to define our encodingsµh : N→ Σ∗h, for h ≥ 1. We letµ1(0) = [1]1 and forn ≥ 1

µ1(n) = [1 bit(0, n− 1) bit(1, n− 1) . . . bit(L(n)− 1, n− 1) ]1

for n ≥ 1. Forh ≥ 2, we letµh(0) = [h ]h and

µh(n) = [h µh−1(0) bit(0, n− 1)µh−1(1) bit(1, n− 1) . . . µh−1(L(n)− 1) bit(L(n)− 1, n− 1) ]h .

Lemma 4. |µh(n)| ∈ O(h · lg 2n).

Proof: We define functionsLi : N→ N as follows:L1(n) = L(n) for all n ∈ N andLi(n) = Li−1(L(n))
for all i, n ∈ N with i ≥ 2. Moreover, we definePi : N→ N for i ≥ 1 by

Pi(n) =
i∏

j=1

Lj(n).

Observe that for alli ≥ 2 andn ≥ 1 we havePi(n) = L(n) · Pi−1(L(n)).
We first prove, by induction onh ≥ 1, that for alln ≥ 1,

|µh(n)| ≤ 4h · Ph(n). (1)
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We haveµ1(n) = 2 + L(n) ≤ 4L(n) = 4P1(n), so (1) is true forh = 1. Let h ≥ 2 an suppose that
(1) holds forh− 1. Then

|µh(n)| = 2 + L(n) +
L(n)−1∑
i=0

|µh−1(i)|

= 2 + L(n) + 2 +
L(n)−1∑
i=1

|µh−1(i)|

≤ 4 + L(n) +
L(n)−1∑
i=1

4(h− 1) · Ph−1(i)

≤ 4 + L(n) + 4(L(n)− 1) · (h− 1) · Ph−1(L(n))
≤ L(n) + (h− 1) · L(n) · Ph−1(L(n))
≤ L(n) + (h− 1) · Ph(n)
≤ 4h · Ph(n).

This proves (1)
It remains to prove thatPh(n) ∈ O(L(n)2), independently ofh. SinceL(L(n)) ∈ O(lg lgn) and

L(n) ∈ Ω(lgn), there is ann0 such that for alln ≥ n0 we have

L(L(n))2 ≤ L(n).

Note thatP = {Ph(m) | m < n0, h ≥ 1} is a finite set and letc = max(P ).
We prove thatPh(n) ≤ c · L(n)2 by induction onh ≥ 1. SinceP1(n) = L(n), this statement is true

for h = 1. Forh ≥ 2, we havePh(n) = L(n) · Ph−1(L(n)). If L(n) < n0, we havePh−1(L(n)) ≤ c and
thusPh(n) ≤ cL(n). If L(n) ≥ n0, we haveL(L(n))2 ≤ L(n). By induction hypothesis,Ph−1(L(n)) ≤
c · L(L(n))2. Thus

Ph(n) = L(n) · Ph−1(L(n)) ≤ L(n) · c · L(L(n))2 ≤ c · L(n)2.

2

Lemma 5. There is an algorithm that, givenh, n ∈ N, computesµh(n) in timeO(|µh(n)|) = O(h · lg2n).

Proof: The algorithm computesµh(n) in a straightforward recursive manner. We get the following recur-
rence for the running timeR(h, n):

R(h, n) ≤ O(L(n)) +
L(n)∑
i=0

R(h− 1, L(i)).

This recurrence is very similar to the one we obtained in the proof of Lemma 4 and can easily be solved
using the same methods. 2

Observe that for allm ≥ 1 we have

2m = max{n ∈ N | L(n) ≤ m}.

Recall thatT (h, `) is a tower of2s of heighth with an` on top. Thus, in particular, for allh, ` ≥ 1 we have

T (h, `) = max{n ∈ N | L(n) ≤ T (h− 1, `)}. (2)

Lemma 6. Let h ≥ 1, ` ≥ 0 and letΣ ⊇ Σh. There is a first-order formulaχh,`(x, y) of vocabulary
τ(Σh) and sizeO(h + `) such that for all wordsW ∈ Σ∗, a, b ∈ W , andm,n ∈ {0, . . . , T (h, `)} the
following holds:
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If a is the first position of a subwordU v W with U ∼= µh(m) andb is the first position of a subword
V v W with V ∼= µh(n), then

W |= χh,`(a, b) ⇐⇒ m = n.

Furthermore, the formulaχh,` can be computed fromh and` in timeO(h+ `).

Proof: Let h = 1. Recall that theµ1-encoding of an integerp ≥ 1 is just the binary encoding ofp − 1
enclosed in [1, ]1. Hence to say thatx andy areµ1-encodings of the same numbers, we have to say that
for all pairsx+ i, y + i of corresponding positions betweenx resp.y and the next closing ]1, there are the
same letters atx+ i andy + i. For numbersp in {0, . . . , T (1, `)}, there are at mostL(p) ≤ ` positions to
be investigated. To express this, we let

χ1,`(x, y) = ∃x1 . . .∃x`∃y1 . . .∃y`
(
Sx = x1 ∧

∧`−1
i=1

(
(P]1xi ∧ xi = xi+1) ∨ (¬P]1xi ∧ Sxi = xi+1)

)
∧Sy = y1 ∧

∧`−1
i=1

(
(P]1yi ∧ yi = yi+1) ∨ (¬P]1yi ∧ Syi = yi+1)

)
∧
∧`
i=1

(
(P0xi ↔ P0yi) ∧ (P1xi ↔ P1yi)

))
.

Now let h ≥ 2 and suppose that we have already definedχh−1,`(x, y). It will be convenient to have the
following auxiliary formulas available:

χhint(x, y) = x < y ∧ ∀z
(
(x < z ∧ z ≤ y)→ ¬P]hz

)
,

χhlast(x, y) = x < y ∧ P]hy ∧ ∀z
(
(x < z ∧ z < y)→ ¬P]hz

)
Intuitively, χhint(x, y) says thaty is in the interior of the subword of the formµh(p) starting atx and
χhlast(x, y) says thaty is the last position of the subword of the formµh(p) starting atx — provided, such
a subword indeed starts atx.

To say that the subwords starting atx andy areµh-encodings of the same numbers, we have to say that
for all positionsw betweenx and the next closing ]h and all positionsz betweeny and the next enclosing
closing ]h, if w andz are first positions of subwords isomorphic toµh−1(q) for someq ∈ N, then the
positions following these two subwords are either both1s or both0s. For all subwords ofµh(p) of the
form µh−1(q) we haveq ∈ {0, . . . , L(p)}. In order to apply the formulaχh−1,` to test equality of such
subwords, we must haveq ≤ L(p) ≤ T (h − 1, `). By (2), the last inequality holds for allp ≤ T (h, `).
Thus for suchp we can use the formulaχh−1,` to test equality of subwords ofµh(p) of the formµh−1(q).
As a first approximation to our formulaχh,`, we let

χ′h,`(x, y) = ∀w
((
χhint(x,w) ∧ P[h−1

w
)
→ ∃z

(
χhint(y, z) ∧ P[h−1

z ∧ χh−1,`(w, z)
))

∧ ∀z
((
χhint(y, z) ∧ P[h−1

z
)
→ ∃w

(
χhint(x,w) ∧ P[h−1

w ∧ χh−1,`(w, z)
))

∧ ∀w∀z
((
χhint(x,w) ∧ P[h−1

w ∧ χhint(y, z) ∧ P[h−1
z ∧ χh−1,`(w, z)

)
→ ∃w′∃z′

(
χh−1

last (w,w′) ∧ χh−1
last (z, z′) ∧ (P1Sz

′ ↔ P1Sw
′)).

The first line of this formula says that every subword of the formµh−1(q) in the subword of the formµh(p)
starting atx also occurs in the subword of the formµh(p) starting aty. The second line says that every
subword of the formµh−1(q) in the subword of the formµh(p) starting aty also occurs in the subword
of the formµh(p) starting atx. The third and fourth line say that ifw andz are the first positions of
isomorphic subwords of the formµh−1(q), then they are either both followed by a ‘1’ or both by a ‘0’
(since the only two letters that can appear immediately after a subwordµh−1(q) in a wordµh(p) are ‘0’
and ‘1’).

This formula says what we want, but unfortunately it is too large to achieve the desired bounds. The
problem is that there are three occurrences of the subformulaχh−1,`(w, z). We we can easily overcome
this problem. We let

ζ(w, z) = ∃w′∃z′
(
χh−1

last (w,w′) ∧ χh−1
last (z, z′) ∧ P1Sz

′ ↔ P1Sw
′)
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and

χh,`(x, y) = ∀w∃z
( (

χhint(x,w)→ χhint(y, z)
)

∧
(
χhint(y, w)→ χhint(x, z)

)
∧
(
P[h−1

w → P[h−1
z
)

∧
((

(χhint(y, w) ∨ χhint(x,w)) ∧ P[h−1
w
)
→ χh−1,`(w, z) ∧ ζ(w, z)

))
.

It is not hard to see thatχh,`(x, y) has the desired meaning.
Observing that||χ1,`|| ∈ O(`) and that||χh,`|| = ||χh−1,`|| + c for some constantc, we obtain the

desired bound on the size of the formulas.
The fact thatχh,` can be computed in linear time is immediate from the construction. 2

4. Encodings of propositional formulas

In this section, we use our encodingsµh of the natural numbers to define encodings of propositional
formulas and assignments. We will also denote these encodings of formulas byµh.

A propositional formula ist-normalised, for a t ≥ 1, if it is a conjunction of disjunctions of conjunc-
tions . . . of literals, with(t − 1) alternations between conjunctions and disjunctions. More formally, we
let Γ0 = ∆0 be the set of all literals. Fort ≥ 1, we letΓt be the set of all (finite) conjunctions of formulas
in ∆t−1 and∆t the set of all (finite) disjunctions of formulas inΓt−1. Then a formula ist-normalisedif it
is in Γt. Note that, in particular, a formula is 2-normalised if, and only if, it is in conjunctive normal form.
For k ≥ 1, a formula is ink-conjunctive normal formif it is a conjunction of disjunctions, where each
disjunction contains at mostk-literals. We denote the class of all formulas ink-conjunctive normal form
by kCNF.

We assume that propositional formulas only contain variablesXi, for i ∈ N. For a setΘ of proposi-
tional formulas, we letΘ(n) denote the set of all formulas inΘ whose variables are amongX0, . . . , Xn−1.

For allh, t ≥ 1, we letΣh,t = Σh∪
{

+,−, TRUE, FALSE, ?, 〈, 〉, {0, }0, . . . , {t, }t
}
,whereΣh is taken

from the previous section (cf. page 5).
We fix h and define the encodingµh : Γt ∪∆t → Σ∗h,t by induction ont.
For t = 0 and a literalλ, we let

µh(λ) =

{
{0 µh(i) + }0 if λ = Xi

{0 µh(i) − }0 if λ = ¬Xi

(for everyi ∈ N).
Assuming that we have already definedµh(θ) for all θ ∈ Γt−1 ∪ ∆t−1, let η =

∧m−1
i=0 θi, with

θi ∈ ∆t−1, or η =
∨m−1
i=0 θi, with θi ∈ Γt−1, be a formula inΓt ∪∆t. We let

µh(η) = {t µh(θ0)µh(θ1) . . . µh(θm−1) }t .

We also need to encode assignments. LetA(n) denote the set of all assignmentsα : {X0, . . . , Xn−1} →
{TRUE, FALSE}. We extend our encodingµh to assignments and pairs consisting of formulas and assign-
ments. For an assignmentα ∈ A(n), we let

µh(α) = 〈µh(0)α(X0) 〉 〈µh(1)α(X1) 〉 . . . 〈µh(n− 1)α(Xn−1) 〉.

For a pair(θ, α) ∈ (Γt(n) ∪∆t(n))×A(n) we letµh(θ, α) = µh(θ)µh(α).
The following lemma is an immediate consequence of Lemma 4 and Lemma 5:

Lemma 7. Leth ∈ N and(θ, α) ∈ (Γt(n) ∪∆t(n))×A(n). Then|µh(θ, α)| = O
(
h · lg2n · (||θ||+ n)

)
and there is an algorithm that computesµh(θ, α) in timeO

(
h · lg2n · (||θ||+n)

)
(that is, linear in the size

of the output).
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Lemma 8. For all h, `, t ∈ N there is a first-order sentenceϕh,`,t of sizeO(h + ` + t) such that for all
n ≤ T (h, `) and(γ, α) ∈ Γt(n)×A(n),

µh(γ, α) |= ϕh,`,t ⇐⇒ α |= γ.

Furthermore, the formulaϕh,`,t can be computed fromh, `, t in timeO(h+ `+ t).

Proof: Let χh,`(x, y) be the formula defined in Lemma 6. Recall that it says that the subwords of the form
µh(m) andµh(n) starting atx, y, respectively, are identical — provided that such subwords start atx and
y and thatn,m ≤ T (h, `). Also recall the formula

χhlast(x, y) = x < y ∧ P]hy ∧ ∀z
(
(x < z ∧ z < y)→ ¬P]hz

)
,

defined in the proof of Lemma 6, which says thaty is the last position of the subword of the formµh(n)
starting atx.

By induction ont, we define formulasψΓ
h,`,t(x) andψ∆

h,`,t(x) such that for allh, `, t, u, n ∈ N with
n ≤ T (h, `) andu ≥ t and for all formulasθ ∈ Γu(n) ∪∆u(n), assignmentsα ∈ A(n), and positionsa
in the wordµh(θ, α) we have:

(i) If the η ∈ Γt ∪ ∆t of the subwordµh(η) v µh(θ, α) starting ata is in Γt, thenµh(θ, α) |=
ψΓ
h,`,t(a) ⇐⇒ α |= η.

(ii) If the η ∈ Γt ∪ ∆t of the subwordµh(η) v µh(θ, α) starting ata is in ∆t, thenµh(θ, α) |=
ψ∆
h,`,t(a) ⇐⇒ α |= η.

For t = 0, we let

ψΓ
h,`,0(x) = ψ∆

h,`,0(x) = ∃y∃x′∃y′
(
P〈y ∧ χh,`(Sx, Sy) ∧ χhlast(Sx, x

′) ∧ χhlast(Sy, y
′)

∧
(
P+Sx

′ ↔ PTRUESy
′))

Suppose that the encoding of the literal(¬)Xi starts atx. The formulaψΓ
h,`,0(x) looks for ay such that

the encoding of a pair(j, α(Xj)) starts aty, then comparesi andj, and if they are equal, checks that the
symbol indicating the sign of the literal is ‘+’ if, and only if, α(Xj) = TRUE.

For t ≥ 1, we let

ψΓ
h,`,t(x) = ∀y

((
∀z
(
(x < z ∧ z ≤ y)→ ¬P}tz

)
∧ P{t−1y

)
→ ψ∆

h,`,t−1(y)
)
,

ψ∆
h,`,t(x) = ∃y

(
∀z
(
(x < z ∧ z ≤ y)→ ¬P}tz

)
∧ P{t−1y ∧ ψ

Γ
h,`,t−1(y)

)
.

The subformula∀z
(
(x < z ∧ z ≤ y)→ ¬P}tz

)
guarantees thaty belongs to the same level-t subformula

asx, and the subformulaP{t−1y guarantees that a level-(t− 1) subformula starts aty.
Once we have definedψΓ

h,`,t, we letϕh,`,t = ψΓ
h,`,t(min); it follows from (i) and the definition ofµh

that this sentence says what it is supposed to say.
To see that||ϕh,`,t|| ∈ O(h + ` + t), observe thatϕh,`,0 has exactly one subformula of the formχh,`

and that each level-t formula has precisely one level-(t − 1) subformula. Finally,ϕh,`,t can be computed
from h, `, t in timeO(h+ `+ t) simply by following our inductive definition. 2

The reader may have noted that we included the symbol ‘?’ in our alphabet, but have not used it so
far. In the next section, we want to use the formula of Lemma 8 for satisfiability testing. Of course
when doing this we will not be given an assignment in advance. However, it will be useful if we never-
theless provide the “infrastructure” for the assignment in our encoding. To do this, we simply replace
all the TRUE and FALSE symbols by?s: For every formulaθ ∈ Γt(n) ∪ ∆t(n), we let µh(θ, ?) =
µh(θ) 〈µh(0) ? 〉 〈µh(1) ? 〉 . . . 〈µh(n− 1) ? 〉.

Remark 9. Of course, the? we just introduced is completely redundant — we could as well useFALSE.
Actually, our encodings have many other redundancies. In introducing them, we tried to make the encod-
ings a bit more structured and readable.
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5. Satisfiability testing through model-checking

In this section, we prove the two statements of Theorem 1.

Theorem 10. UnlessPTIME = NP, there is no algorithm forMC(MSO,W) whose running time is
bounded by

T (h, k) · p(n),

for anyh ∈ N and polynomialp. Herek denotes the size of the input sentence andn the size of the input
word.

Proof: Suppose that there is an algorithmA for MC(MSO,W) whose runtime is bounded byT (h, k) ·p(n),
for someh ∈ N and polynomialp.

We shall prove that the satisfiability problem for 2-normalised propositional formulas (that is, formulas
in conjunctive normal form) is in polynomial time, which, by contradiction, proves the theorem. For all
` ∈ N, let

ϕ̃h+1,` = ∃X
(
∀x(Xx→ P?x) ∧ ϕ′h+1,`,2

)
,

whereϕ′h+1,`,2 is the formula obtained from the formulaϕh+1,`,2 of Lemma 8 by replacing the subformula
PTRUESy

′, which is the only subformula that involves eitherPTRUE or PFALSE, by XSy′. Then for every
n′ ≤ T (h+ 1, `) andγ ∈ Γ2(n′),

µh+1(γ, ?) |= ϕ̃h+1,` ⇐⇒ γ is satisfiable. (3)

Consider the algorithm displayed in Figure 1, which decides if the input formulaγ is satisfiable.

Input: γ ∈ Γ2(n′)

1. Computeµh+1(γ, ?)

2. Computè = dlg (h+1)(n′)e.
3. Computeϕ̃h+1,`

4. Check ifµh+1(γ, ?) |= ϕ̃h+1,` using algorithmA.

Figure 1.

The correctness of the algorithm follows from (3) andn′ = T (h+1, lg (h+1)(n′)) ≤ T (h+1, dlg (h+1)(n′)e).
We claim that the runtime of the algorithm is bounded byq(||γ||) for some polynomialq depending only
on the fixed constanth.

Lines 1–3 of the algorithm can be implemented in time polynomial inn′, h, ||γ||. By Lemma 7, using
our assumption on the algorithmA, Line 4 requires time

T (h, ||ϕ̃h+1,`||) · p(|µh+1(γ, ?)|) ≤ T (h, ||ϕ̃h+1,`||) · p1(n′) · p2(||γ||),

for some polynomialsp1 andp2. Observe that||ϕ̃h+1,`|| ∈ O(h + `), that is,||ϕ̃h+1,`|| ≤ c(h + `) ≤
c(h+ lg (h+1)(n′) + 1) for some constantc. Since

lim
m→∞

lg lgm
lgm

= 0,

there is ann0 (depending onc, h) such that for alln′ ≥ n0 we have

c(h+ lg (h+1)(n′) + 1) ≤ lg (h)(n′).
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Thus forn′ ≥ n0 we haveT (h, ||ϕ̃h+1,`||) ≤ T (h, lg (h)(n′)) ≤ n′. This proves the polynomial time
bound. 2

To state and prove our second main result, we need a few preliminaries from parameterized complexity
theory. Aparameterized problemis a setP ⊆ Σ∗ ×N for some finite alphabetΣ. If (x, k) ∈ Σ∗ ×N is an
instance of a parameterized problem, we refer tox as theinputand tok as theparameter. A parameterized
problemP ⊆ Σ∗ × N is fixed-parameter tractableif there is a computable functionf : N → N, a
polynomialp, and an algorithm that, given a pair(x, k) ∈ Σ∗ × N, decides if(x, k) ∈ P in time at most
f(k) · p(|x|) steps. The class of all fixed-parameter tractable problems is denoted by FPT.

TheW-hierarchyis a family of complexity classes W[t], for t ≥ 1, where

FPT⊆W[1] ⊆W[2] ⊆ . . . .

It is conjectured that this hierarchy is strict, or at least, that FPT6= W[1]. The classes of the W-hierarchy are
defined via complete problems under suitable reductions. These complete problems are parameterizations
of the satisfiability problem for propositional formulas. Theweight of a truth value assignment for a
set of propositional variables is the number of variables set toTRUE by this assignment. For a classΘ
of propositional formulas, let theweighted satisfiability problemfor Θ, denoted by WSAT(Θ), be the
following parameterized problem:

Input: θ ∈ Θ.
Parameter: k′ ∈ N.

Problem: Decide ifθ has a satisfying assignment of weightk′.

Downey and Fellows [5, 7] proved that for allt ≥ 2 the problem WSAT(Γt) is complete for W[t] under
parameterized many-one reductions. In [6], they proved that WSAT(2CNF) is complete for W[1]. Without
giving a definition of the reductions, we can phrase the most important consequences of these results as
follows:

Theorem 11 (Downey and Fellows [5, 6, 7]). (1) Let t ≥ 2. Then if WSAT(Γt) is fixed-parameter
tractable,W[t] = FPT.

(2) If WSAT(2CNF) is fixed-parameter tractable, thenW[1] = FPT.

We are now ready to prove our theorem:

Theorem 12. UnlessW[t] = FPT for all t ∈ N, there is no algorithm forMC(FO,W) whose runtime is
bounded by

T (h, k) · p(n),

for anyh ∈ N and polynomialp. As usual,k denotes the size of the input sentence andn the size of the
input word.

To prove this theorem, we will use the following alternative characterisation of fixed-parameter tractabil-
ity. A parameterized problemP ⊆ Σ×N is eventually in polynomial timeif there is a computable function
f and an algorithm, whose runtime is polynomial in|x| that, given an instance(x, k) ∈ Σ∗ × N of P with
|x| ≥ f(k) correctly decides if(x, k) ∈ P . (The behaviour of the algorithm on instances(x, k) ∈ Σ∗ × N
with |x| < f(k) is irrelevant.)

Lemma 13 (Flum and Grohe [9]). A parameterized problem is fixed-parameter tractable if, and only if,
it is computable and eventually in polynomial time.

Proof of Theorem 12:Suppose that there is an algorithmA for MC(FO,W) whose runtime is bounded
by

T (h, k) · p(n),
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for someh ∈ N and polynomialp.
Let t ≥ 1. We shall prove that WSAT(Γt) is in FPT. For allh, `, k′ ∈ N, let

ϕ̃h+1,`,t,k′ = ∃x1 . . .∃xk′
( k′∧
i=1

P?xi ∧
k′−1∧
i=1

xi < xi+1 ∧ ϕ′h+1,`,t,k′

)
,

whereϕ′h+1,`,t,k′ is the formula obtained fromϕh+1,`,t by replacing the subformulaPTRUESy
′ by

∨k′
i=1 Sy

′ =
xi. Then for everyn′ ≤ T (h+ 1, `) andγ ∈ Γt(n′),

µh+1(γ, ?) |= ϕ̃h+1,`,t,k′ ⇐⇒ γ has a satisfying assignment of weightk′. (4)

Consider the algorithm displayed in Figure 2.

Input: γ ∈ Γt(n′), parameterk′ ∈ N

1. Computeµh+1(γ, ?)

2. Computè = dlg (h+1)(n′)e.
3. Computeϕ̃h+1,`,t,k′

4. Check ifµh+1(γ, ?) |= ϕ̃h+1,`,t,k′ using algorithmA.

Figure 2.

The correctness of the algorithm follows from (4) andn′ = T (h+1, lg (h+1)(n′)) ≤ T (h+1, dlg (h+1)(n′)e).
We claim that ifn′ is sufficiently large, then the runtime of the algorithm is bounded byq(||γ||) for some
polynomialq. More precisely, we claim that there is a polynomialq and ann0 ∈ N, which is computable
from k′, h, t, such that forn′ ≥ n0 the runtime of the algorithm is bounded byq(n′). Sinceh andt are
fixed and since WSAT(Γt) is computable, by Lemma 13 this implies that WSAT(Γt) is in FPT.

Lines 1–3 of the algorithm can be implemented in time polynomial inn′, h, t, ||γ||. By our assumption
on the algorithmA, Line 4 requires time

T (h, ||ϕ̃h+1,`,t,k′ ||) · p(n) = T (h, ||ϕ̃h+1,`,t,k′ ||) · p1(n′) · p2(||γ||),

for polynomialsp1, p2 sincen = |µh+1(γ, ?)| is polynomial inn′ andh. Observe that||ϕ̃h+1,`,t,k′ || ∈
O(k′ + h+ t+ `), that is,||ϕ̃h+1,`,t,k′ || ≤ c(k′ + h+ t+ `) ≤ c(k′ + h+ t+ lg (h+1)(n′) + 1 for some
constantc.

Using the same argument as in the proof of Theorem 10, we can now derive that there is a computable
n0 such that for alln′ ≥ n0 we have

T (h, ||ϕ̃h+1,`,t,k′ ||) ≤ T (h, lg (h)(n′)) ≤ n′.

This proves our claim that ifn′ is sufficiently large, then the runtime of the algorithm is bounded byq(||γ||)
for some polynomialq and thus the theorem. 2

Remark 14. For readers familiar with least fixed-point logic, let us point out that with the same techniques
it can be proved that there is no model-checking algorithm formonadic least fixed-pointlogic on words
whose running time is bounded byT (h, k) · p(n), for any h ∈ N and polynomialp, under the weaker
assumption thatW[P ] 6= FPT.

W[P ] is a parameterized complexity class that contains W[t] for all t ≥ 1. A complete problem for
W[P ] is the weighted satisfiability problem for arbitrary Boolean circuits.
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6. Structures of bounded degree

In this section, we investigate the parameterized complexity of first-order model-checking over structures of
bounded degree. LetA be aτ -structure for some vocabularyτ . We call two elementsa, b ∈ A adjacentif
they are distinct and there is anR ∈ τ , say,r-ary, and a tuplea1 . . . ar ∈ RA such thata, b ∈ {a1, . . . , ar}.
Thedegreeof an elementa ∈ A in the structureA is the number of elements adjacent toa, and the degree
of A is the maximum degree of its elements. Ford ≥ 1, we denote the class of all structures of degree at
mostd byD(d).

Theorem 15 (Seese [17]).Let d ≥ 1. Then there is a functionf : N → N and an algorithm solving
MC(FO,D(d)) in timef(k) · n, where, as usual,k denotes the size of the input sentence andn the size of
the input structure.

It is quite easy to derive from Seese’s proof a triply-exponential upper bound onf for a non-uniform
version of this theorem, stating that for every fixed first-order sentenceϕ there is a triply exponential
functionf and an algorithm checking whether a given structureA of degree at mostd satisfiesϕ. We shall
prove a uniform version of this result, which has the additional benefit that our algorithm is quite simple.
But the main result of this section is a doubly exponential lower bound.

6.1. Upper bounds. In this section we present a general algorithm for first-order model-checking, which,
restricted to structures of bounded degree, will yield optimal upper time bounds.

The crucial idea, which has also been explored by Seese, is to use the locality of first-order logic. With-
out loss of generality we assume that vocabularies only contain relation and constant symbols. (Functions
can easily be simulated by relations.) We need some additional notation. Apathof lengthl is a sequence
of verticesa0, . . . , al ∈ A such thatai−1, ai, i = 1, . . . , l are adjacent inA. The distance between two
elementsa, b ∈ A of the universe is0, if a = b andr, if the shortest path betweena andb has lengthr. Let
r ≥ 1 anda ∈ A. Ther-neighbourhoodof a in A, denoted byNAr (a) is the set ofb ∈ A such thata, b
have distance at mostr. LetNAr (a) denote the substructure induced byA onNAr (a). For elementsa, b of
a structureA we writea ∼=Ar b if there is an isomorphism fromNAr (a) toNAr (b) that mapsa to b.

Lemma 16 ([13, 15]). For every first-order formulaϕ(x) there is anr ≥ 1 such that for every structureA
anda, b ∈ A we have

(
a ∼=Ar b =⇒ (A |= ϕ(a) ⇐⇒ A |= ϕ(b))

)
. Furthermore,r can be chosen to be

2qr(ϕ).

Figure 3 displays a recursive model-checking algorithm for first-order sentences in prenex normal form
that is based on Lemma 16. Since we can easily transform arbitrary first-order sentences into sentences in
prenex normal form (algorithmically, this can be done in linear time), this also gives us an algorithm for
arbitrary sentences.

Note that in the recursive callsmodel-check (ψ(a),(A, a)) of the algorithm, we replace all occur-
rences ofx in ψ by a new constant symbol which is interpreted by the elementa ∈ A and check if this new
sentence holds in the expanded structure(A, a). The correctness of the algorithm follows from an easy
induction on the structure of the input formulaϕ applying Lemma 16 in each step. Note that this algorithm
works for arbitrary input structuresA.

Theorem 17. The algorithmmodel-check (displayed in Figure 3) decidesMC(FO,D(2)) in time

22O(k)
· n,

andMC(FO,D(d)) for d ≥ 3 in time

22lg d·2O(k)

· n,

where as usualk denotes the size of the input sentence andn the size of the input structure.

Proof: We denote the runtime ofmodel-check (ϕ,A) by R(n, p, q), wheren = ||A||, q = qr(ϕ) ≤ k,
andp is the size of the quantifier-free part ofϕ. Note thatp+ q ≤ k(= ||ϕ||). Let r = r(q) = 2q,

s(q) := maxa∈A,A∈C ||NAr (a)||,
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model-check (ϕ,A)

1. if ϕ is quantifier freethen

2. acceptif ϕ holds inA andreject otherwise.

In the following, assume thatϕ(x) = Qx ψ(x) for some quantifierQ.

3. Computer := 2qr(ϕ)

4. Compute a setX ⊆ A of representatives of the equivalence classes of the relation∼=Ar .

5. Recursively callmodel-check (ψ(a),(A, a)) for all a ∈ X.

6. if ϕ = ∃xψ(x) then

7. acceptif at least one of the recursive calls accepts andreject otherwise.

8. if ϕ = ∀xψ(x) then

9. acceptif all recursive calls accept andreject otherwise.

Figure 3.

the maximal size of ar-neighbourhood, and lett(q) denote the number of equivalence classes of∼=Ar . Note
that there exist upper bounds fors(q) andt(q) only depending on the degree of the input structure (and not
onn orϕ). Remember that the degree is constant for the classes under consideration.

Now consider the algorithm displayed in Figure 3. Line 1 only requires constant time. If Line 2 is
executed, it requires timeO(p · n), and the algorithm stops. Otherwise, it proceeds to Line 3, which can
be executed in constant time. To execute Line 4, we maintain a list of pairs(NAr (a), a) such that no
induced substructure(NAr (a), a) occurs twice. The size of this list never exceedst(q), hence for eacha in
turn, we simply compute the induced substructure, and look if it is already in the list. This requires time
O(n · (f(s(q))t(q) + s(q))), if we denote the time to check isomorphism of structures of sizem by f(m).
The loop in Lines 5–9 requires time

O(t(q)) + t(q) ·R(n, p, q − 1).

Putting everything together, we obtain the following recurrence forR:

R(n, p, 0) ≤ c1 · p · n
R(n, p, q) ≤ c2 · n(f(s(q))t(q) + s(q)) + t(q)R(n, p, q − 1) (for q ≥ 1),

for suitable constantsc1, c2. To solve this equation, we use the following simple lemma:

Lemma 18. LetF, g, h : N→ N such that

F (0) ≤ g(0)
F (m) ≤ g(m) + h(m) · F (m− 1)

for all m ∈ N. Then

F (m) ≤
m∑
i=0

g(i) ·
m∏

j=i+1

h(j)

for all m ∈ N.

The lemma can be proved by a straightforward induction onq.
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Applied to our functionR, the lemma yields

R(n, p, q) ≤ c1 · p · n ·
q∏
j=1

t(j) +
q∑
i=1

c2 · n ·
(
f(s(i))t(i) + s(i)

)
·

q∏
j=i+1

t(j)

≤
q∏
j=1

t(j)
(
c1 · p · n+

q∑
i=1

c2 · n ·
(
f(s(i))t(i) + s(i)

))

Degree 2:The size of anr-neighbourhood in a structureA ∈ D(2) is at most2r + 1. Thus

s(q) ≤ 2O(q) ≤ 2O(k).

To give an upper bound ont(q), we have to take into account the numberu of symbols in the vocabulary.
Since we only have to consider symbols that actually appear inϕ, we can assume thatu ≤ k. Moreover,
without loss of generality we can assume that the vocabulary only contains unary and binary relation
symbols (because we are considering structures of degree 2).

Let us count the number of isomorphism types of anm-vertex structureB of degree 2 whose vocabulary
containsu1 unary relation symbols andu2 binary relation symbols. The unary relations can take at most
2u1·m different values. There are at mostm pairs of elements which can be connected by a binary relation,
thus the binary relations can take at most2u2·m different values. Thus the overall number of isomorphism
types is bounded by2(u1+u2)m.

Our r-neighbourhoods have size at most2r + 1, so we obtain

t(q) ≤ 2O(k·r) = 2O(k·2q).

Thus

q∏
j=1

t(j) ≤
q∏
j=1

2O(k·2j) ≤ 2O(k
∑q
j=1 2j) ≤ 22O(k)

.

Since isomorphism of structures of degree 2 can be decided in polynomial time, we obtain

(
c1 · p · n+

q∑
i=1

c2 · n ·
(
f(s(i))t(i) + s(i)

))
≤ O(22O(k)

· n)

and thus

R(n, p, q) ≤ 22O(k)
· n.

Degree at least 3:The computations are similar in this case, the only important difference being that an
r-neighbourhood may be of sizeΘ(dr) and thus doubly exponential inq, which yields a triply exponential
bound forR. 2

6.2. The lower bounds.
In this subsection we examine two classes of particularly simple structures of degree two and three, the

class ofwords without orderand the class oftrees with distinguished0- and1-successors.
Formally, a word without order over an alphabetΣ is a reduct of a word overΣ to the vocabulary

τS(Σ) = τ(Σ) \ {≤}. We denote the class of all words without order byS. Since we will only consider
words without order in the following, for simplicity we often just refer to them as words.

In this section we will only work with the encodingµ1 (recall the definition from Section 3), but we
need a refined version of Lemma 6 forh = 1:
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Lemma 19. Let ` ≥ 1 and letΣ ⊇ Σ1. There is a first-order formulaχ`(x, y) of vocabularyτS(Σ1) and
sizeO(`) such that for all words without orderW ∈ Σ∗, a, b ∈W , andm,n ∈ {0, . . . , 22`} the following
holds:

If a is the first position of a subwordU v W with U ∼= µ1(m) andb is the first position of a subword
V v W with V ∼= µ1(n), then

W |= χ`(a, b) ⇐⇒ m = n.

Furthermore, the formulaχ` can be computed from̀in timeO(`).

Note that Lemma 6 only provides a formulaχ1,l(x, y) that works form,n ≤ 2`.
Before we prove the lemma, we define a few basic formulas and notations that we need in dealing with

words without order. Letψ(x, y) be a formula. For a structureA and elementsa, b ∈ A we let

b−ψ a =


0 if a = b

i if not b−ψ a < i

and there existsa0 = a, a2, . . . , ai = b such thatA |= ψ(ai, ai+1) for 0 ≤ i < i

undefined otherwise.

Lemma 20. Let ` ≥ 1 andψ(x, y) a first-order formula.

(1) There exists a first-order formulaβψ` (x1, x2) of sizeO(`) such that for every structureA and all
a1, a2 ∈ A,

A |= βψ` (a1, a2) ⇐⇒ a2 −ψ a1 ≤ 2`.

(2) There exists a first-order formulaδψ` (x1, x2, y1, y2) of sizeO(`) such that for every structureA and
all elementsa1, a2, b1, b2 ∈ A,

A |= δψ` (a1, a2, b1, b2) ⇐⇒ a2 −ψ a1 ≤ 2` ∧ a2 −ψ a1 = b2 −ψ b1.

Proof: We only prove (2); the proof of (1) is similar, but simpler. We let

δψ0 (x1, x2, y1, y2) =
(
x1 = x2 ∧ y1 = y2

)
∨
(
¬x1 = x2 ∧ ¬y1 = y2 ∧ ψ(x1, x2) ∧ ψ(y1, y2)

)
,

and for` ≥ 1

δψ` (x1, x2, y1, y2) = δψ0 (x1, x2, y1, y2)

∨∃x3∃y3∀x∀x′∀y∀y′
(

(
(x = x1 ∧ x′ = x3 ∧ y = y1 ∧ y′ = y3)

∨ (x = x3 ∧ x′ = x2 ∧ y = y3 ∧ y′ = y2)
)
→ δψ`−1(x, x′, y, y′)

)
.

2

Proof of Lemma 19:We letψ(x, y) = (¬P]1x ∧ Sx = y) ∨ (P]1x ∧ x = y) and

χ`(x, y) = ∀x′∀y′
(
δψ` (x, x′, y, y′)→

(
(P0x

′ ↔ P0y
′) ∧ (P1x

′ ↔ P1y
′)
))
,

whereδψ` is taken from Lemma 20(2). 2

Recall that 2CNF(n) denotes the set of all formulas in2-conjunctive normal form whose variables
are amongX0, . . . , Xn−1 and thatA(n) denotes the set of all truth-value assignments to these variables.
Recall further the encodings of propositional formulas introduced in Section 4.
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Lemma 21. For all l ∈ N there is a first-order sentenceϕl of sizeO(l) such that for alln ≤ 22l and
(γ, α) ∈ 2CNF(n) × A(n) we haveµ1(γ, α) |= ϕl ⇐⇒ α |= γ. Furthermore,ϕl can be computed in
timeO(l).

We omit the proof, which is very similar to the proof of Lemma 8. The proof would not work for
arbitrary formulas in conjunctive normal form, it is crucial that the disjunctions have bounded length.

We are now ready to prove the main result of this section (which is Theorem 2):

Theorem 22. UnlessW[1] = FPT, there is no algorithm forMC(FO,S) whose running time is bounded
by

22o(k)
· p(n),

for any polynomialp, wherek denotes the size of the input sentence andn the size of the input word.

Proof: Essentially, we proceed as for word structures. Suppose that there is an algorithmA running in time
22f(k) · p(n), for some polynomialp and a functionf(k) ∈ o(k). We shall prove that WSAT[2CNF] is in
FPT. Forl, k′ ∈ N let

ϕ̃l,k′ := ∃x1 . . . xk′
( k′∧
i=1

P∗xi
∧

1≤i<j≤k′
xi 6= xj ∧ ϕ′l,k′

)
,

whereϕ′l,k′ is obtained fromϕl by replacing each atom of the formPTRUEt by
∨k′
i=1 t = xi andPFALSEt

by
∧k′
i=1 t 6= xi, wheret denotes an arbitrary term. Since the number of atoms we have to replace is

independent ofk′ and`, we have||ϕ̃l,k′ || = O(l+ k′
2). Observe that, using the previous lemma, for every

n′ ≤ 22l andγ ∈ 2CNF(n′) we have

µ1(γ, ∗) |= ϕ̃l,k′ ⇐⇒ γ has a satisfying assignment of sizek′.

The algorithm decidingk′-satisfiability of 2CNF is displayed as Figure 4.

Input: γ ∈ 2CNF(n′), parameterk′ ∈ N

1. Computeµ1(γ, ?)

2. Computè = dlg lgn′e.
3. Computeϕ̃l,k′

4. Check ifµ1(γ, ?) |= ϕ̃`,k′ using algorithmA.

Figure 4.

The correctness of this algorithm is easy to see. We will show that there is a computablen0 ∈ N and
a polynomialq such that for alln′ ≥ n0 the runtime is bounded byq(n′). By Lemma 13 and the fact that
the problem is computable at all, this implies that WSAT[2CNF] is in FPT.

Let γ ∈ 2CNF(n′) be the input. Lines 1–3 can be done in time polynomial inn′. The crucial part is
Line 4. By the assumption on algorithmA this line requires time

22
f(||ϕ̃

l,k′ ||) · p(n),

wheren = |µ1(γ, ?)| = O(lg 2n′ · (||γ|| + n′)). By the previous remark,||ϕ̃l,k′ || ≤ c · (k′2 + l) ≤
c · (k′2 + lg lgn′+ 1) for some constantc. Hence for sufficiently largen′ we have||ϕ̃l,k′ || ≤ c′lg lgn′, say,
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for c′ = 2c. Sincef(k) ∈ o(k), there is ann0 such that for alln′ ≥ n0 we havef(c′lg lgn′) ≤ lg lgn′ and
thus

22f(||ϕ̃l,k||) ≤ 22f(c′ lg lgn′)
≤ 22lg lgn′

≤ n′.

This gives us the desired upper bound on the runtime of our algorithm. 2

Our last theorem matches the upper bound for model-checking over structures of bounded degree
greater than2 by a corresponding lower bound.

We need some additional terminology. We viewordered binary treesas{S0, S1}-structuresT , with
ST0 andST1 being the left child and right child relations. We allow nodes to only have one child. For a
finite alphabetΣ, we letτT (Σ) = {S0, S1}∪{Ps|s ∈ Σ}, wherePs, for s ∈ Σ, is a unary relation symbol.
An ordered binary treeoverΣ is a τT (Σ)-structure whoseτ -reduct is an ordered binary tree. We denote
the class of all orderd binary trees over some finite alphabet byT. For a nodea of a treeT ∈ T andd ≥ 1,
thedepthd subtree belowa is the subtree ofT whose nodes are all descendants ofa of distance at mostd
from a.

To proceed as in the word cases, we will encode natural numbers by trees and provide “short” formulas
allowing to compare “large” encoded numbers. For` ∈ N, let T` be the ordered binary tree with vertex set
{0, . . . , `} and root 0 in which the children ofi are2i+ 1 and2i+ 2. Recall thatL(n) denotes the length
of the binary encoding ofn ∈ N. We letµ(n) be the ordered binary tree over{0, 1} whose underlying tree
is TL(n) and in which, fori = 0, 1,

P
T (n)
i = {j ≤ L(n) | bit(j, n) = i}.

Figure 5 gives an example.

0

1 1

0 0 1

Figure 5. The treeµ(38)

The next lemma is the key to the encoding and corresponds to the Lemmas 6 and 19.

Lemma 23. Let ` ≥ 1. There is a formulaχ`(x, y) of vocabularyτT ({0, 1}) of sizeO(`) such that for all

ordered binary treesT ∈ T, a, b ∈ T andm,n ∈ {0, . . . , 222l } the following holds:
If the depth2` subtree belowa is isomorphic toµ(n) and the depth2` subtree belowb is isomorphic to

µ(m) then

T |= χ`(a, b) ⇐⇒ m = n.

Furthermoreχ`(x, y) can be computed in timeO(`).

Proof: We construct a formulaχ`(x, y) characterising depth2` subtrees up to isomorphism. This formula
identifies binary encodings of length up to22` , which proves the claim. We proceed as in the proof of
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lemma 20. First, we say that to go from verticesx1 to x2 and fromy1 to y2 we must follow the same
sequence ofS0,S1-successors. Let

ψ0(x1, x2, y1, y2) := (S0x1x2 ∧ S0y1y2)
∨ (S1x1x2 ∧ S1y1y2)
∨ (x1 = x2 ∧ y1 = y2).

and forl ≥ 1

ψl(x1, x2, y1, y2) := ∃x3∃y3∀x∀x′∀y∀y′
(
(x1 = x ∧ x3 = x′ ∧ y1 = y ∧ y3 = y′)

∨ (x3 = x ∧ x2 = x′ ∧ y3 = y ∧ y2 = y′)→ ψl−1(x, x′, y, y′)
)
.

Using this formula we let

χl(x, y) := ∀x′∀y′(ψl(x, x′, y, y′)→ ((P1x
′ ↔ P1y

′) ∧ (P0x
′ ↔ P0y

′)),

which is the sought formula. 2

Now we proceed as before and encode formulas of 2CNF(n) for somen as an ordered binary tree over
some alphabetΣ. Forγ ∈ 2CNF letµ(α) be the binary treeT constructed as follows: letW be the word
without orderµ1(α), and considerW as a tree ofS1-successors without anyS0-successors. To getT we
substitute each subwordU of the formµ1(m) by a single vertexv such thatv’s S0-successor is the root of
a copy ofµ(m), while itsS1-successor is the first position afterU . v itself carries the new letter].

We extend the definition ofµ to (γ, α) ∈ 2CNF× A(n) by applying the same substitution process to
the part of the word corresponding to the assignment. Accordingly, we defineµ(γ, ?). This encoding gives
us the following lemma, whose proof is omitted since it resembles the proof of lemma 8 using the newly
introduced encodingµ together with the decoding formulasχ`(x, y). Observe that in these encodings
we use the vocabularyΣ := {], 0, 1, ∗,+,−, TRUE, FALSE, ?, 〈, 〉, {0, }0, . . . , {2, }2} ([0, ]0 are no longer
necessary).

Lemma 24. For all ` ∈ N there is a first-order sentenceϕ` of vocabularyτT (Σ) and sizeO(l) such that

for all n ≤ 222`

and (γ, α) ∈ 2CNF(n) × A(n) we haveµ(γ, α) |= ϕ` ⇐⇒ α |= γ. Furthermore,ϕ`
can be computed in timeO(`).

Now we are ready to state and prove the second lower bound of this section:

Theorem 25. UnlessW[1] = FPT, there is no algorithm forMC(FO,T) whose running time is bounded
by

222o(k)

· p(n),

for any polynomialp, wherek denotes the size of the input sentence andn the size of the input tree.

Proof: Essentially, we proceed as for word structures. Suppose that there is an algorithmA running in time

222f(k)

· p(n), for some polynomialp and a functionf(k) ∈ o(k). We shall prove that WSAT[2CNF] is in
FPT. For̀ , k′ ∈ N let

ϕ̃`,k′ := ∃x1 . . . xk′
( k′∧
i=1

P?xi
∧

1≤i<j≤k′
xi 6= xj ∧ ϕ′`,k′

)
,

whereϕ′`,k′ is obtained fromϕ` from Lemma 24 by replacing each atom of the formPTRUEt by
∨k′
i=1 t = xi

andPFALSEt by
∧k′
i=1 t 6= xi, wheret denotes an arbitrary term. Since the number of atoms we have to
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replace is independent ofk′ and`, we have||ϕ̃`,k′ || = O(`+k′
2). Observe that, using the previous lemma,

for everyn′ ≤ 222`

andγ ∈ 2CNF(n′) we have

µ(γ, ?) |= ϕ̃`,k′ ⇐⇒ γ has a satisfying assignment of sizek′.

The algorithm decidingk′-satisfiability of 2CNF is displayed as Figure 6.

Input: γ ∈ 2CNF(n′), parameterk′ ∈ N

1. Computeµ(γ, ?)

2. Computè = dlg lg lgn′e.
3. Computeϕ̃`,k′

4. Check ifµ(γ, ?) |= ϕ̃`,k′ using algorithmA.

Figure 6.

The correctness of this algorithm is easy to see. We will show that there is a computablen0 ∈ N
(depending onk′) and a polynomialq such that for alln′ ≥ n0 the runtime is bounded byq(n′). By
Lemma 13 and the fact that the problem is computable at all, this implies that WSAT[2CNF] is in FPT.

Let γ ∈ 2CNF(n′) be the input. Lines 1–3 can be done in time polynomial inn′. The crucial part is
Line 4. By the assumption on algorithmA this line requires time

222
f(||ϕ̃

`,k′ ||)

· p(n),

wheren = ||µ(γ, ?)|| = O((||γ||+n′)L(n′)). By the previous remark,||ϕ̃`,k′ || ≤ c · (k′2 + `) ≤ c · (k′2 +
lg lg lgn′ + 1) for some constantc. Hence for sufficiently largen′ we have||ϕ̃`,k′ || ≤ c′lg lg lgn′, say, for
c′ = 2c. Sincef(k) ∈ o(k), there is ann0 such that for alln′ ≥ n0 we havef(c′lg lg lgn′) ≤ lg lg lgn′

and thus

222
f(||ϕ̃

`,k′ ||)

≤ 222f(c′ lg lg lgn′)

≤ 222lg lg lgn′

≤ n′.

This gives us the desired upper bound on the runtime of our algorithm. 2

7. Further Research

There is a significant gap between the lower bounds for model-checking on words provided by Theorem 1
and the upper boundT (O(k), 1) · n (a tower of2s of heightO(k)). It would be interesting to narrow this
gap, maybe by proving that there is noT (o(k), 1) · p(n) algorithm for first-order or monadic second-order
model-checking on words. Theorem 25 provides a triply exponential lower bound for first-order model-
checking on planar graphs (because trees are planar). The best known upper bound isT (O(k), 1) ·n. Again
it would be interesting to narrow the gap.
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