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Abstract

The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence
holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter
tractable model-checking problems for first-order and monadic second-order logic.

We show that unless PTIME NP, the model-checking problem for monadic second-order logic on
finite words is not solvable in timé(k) - p(n), for any elementaryfunction f and any polynomiap.

Herek denotes the size of the input sentence aribe size of the input word. We prove the same result
for first-order logic under a stronger complexity theoretic assumption from parameterized complexity
theory.

Furthermore, we prove that the model-checking problems for first-order logic on structures of degree

o o(k)
2 and of bounded degrek> 3 are not solvable in time? ® - p(n) (for degree 2) an@®” - p(n)
(for degreed), for any polynomialp, again under an assumption from parameterized complexity theory.
We match these lower bounds by corresponding upper bounds.

1. Introduction

Model-checking problems. We study the complexity of a fundamental algorithmic problem, the so-called
model-checkingroblem: Given a sentenceof some logic L and a structutd, decide whethep holds

in A. Model-checking and closely related algorithmic problems occur frequently in computer science, for
example, in database theory, artificial intelligence, and automated verification. In this paper, we prove new
lower bounds on the complexity of the model-checking problems for first-order and monadic second-order
logic.

It is known that model-checking for both first-order and monadic second-order logic is PSPACE-
complete [18, 20] and thus most likely not solvable in polynomial time. While this result shows that the
problems are intractabla general it does not say too much about their complexity in practical situations.
Typically, we have to check whether a relativeiyall sentence holds in karge structure. For example,
when evaluating a database query, we usually have a small query and a large database. Similarly, when
verifying that a finite state system satisfies some property, the specification of the property in a suitable
logic will usually be small compared to the huge state space of the system. When analysing the complexity
of the problem, we should take this imbalance between the size of the input sentence and the size of the
input structure into account.

Parameterized complexity theory. Parameterized complexity theory (see [7]) is a relatively new branch
of complexity theory that provides the framework for a refined complexity analysis of problems whose
instances consist of different parts that typically have different sizes. In this framewpakameterized
problemis a problem whose instances consist of two parts of sizasd k, respectively.k is called the
parameteyand the assumption is thiais usually small, small enough that an algorithm that is exponential
in k& may still be feasible. A parameterized problem is cafledd-parameter tractablé it can be solved

in time f (k) - p(n) for an arbitrary computable functighand some polynomial. The motivation for this
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definition is that, sincé is assumed to be small, the feasibility of an algorithm for the problem mainly
depends on its behaviour in termssaf Under this definition, a running time @#(2* - n) is considered
tractable, but running times &¥(n*) or O(k - 2™) are not, which seems reasonable.

A standard example of a fixed-parameter tractable problem is the parameterized vertex cover problem:
Decide if a graph of size has a vertex cover of size There is a simpl&(2* - n)-algorithm for this
problem, which means that finding small vertex covers, say of size 10, is possible in quite large graphs.
On the other hand, no comparable algorithm is known for the parameterized clique problem. (Decide if a
graph of sizen has a clique of siz&.) The best known algorithm for the clique problem has a running time
of n®(%)_ Indeed, it can be proved that the clique problem is complete for the parameterized complexity
class W1] under suitable reductions; it is generally believed that this class strictly contains the class FPT
of all fixed-parameter tractable problems. Note that both the vertex cover and the clique problem are NP-
complete, so classical complexity theory does not detect this difference between the complexities of the
two problems.

Let us conclude our short discussion of parameterized complexity theory by remarking that although
fixed-parameter tractability has proven to be a valuable concept allowing fine distinctions on the borderline
between tractability and intractability, it seems somewhat questionable to allimitmputable functions
f for the parameter dependence of a fixed-parameter tractable algorithfris doubly exponential or
worse, anO(f (k) - n)-algorithm can hardly be considered tractable. The main contribution of this paper
to parameterized complexity theory is to show that there are natural fixed-parameter tractable problems
requiring parameter dependengethat are doubly exponential or even non-elementary.

The parameterized complexity of model-checking problems.Model-checking problems have a natural
parameterization in which the sizeof the input sentence is the parameter. We have argued above that

is usually small in the practical situations we are interested in, so a parameterized complexity analysis is
appropriate. Unfortunately, it turns out that the model-checking problem for first-order logic is complete for
the parameterized complexity class A which is assumed to strictly contain FPT. Thus probably model-
checking for first-order logic is not fixed-parameter tractable. Of course this implies that model-checking
for the stronger monadic-second order logic is also most-likely not fixed-parameter tractable. As a matter
of fact, it follows immediately from the observation that there is a monadic second-order sentence saying
that a graph is 3-colourable that model-checking for the stronger monadic-second is not fixed-parameter
tractable unless B NP.

It is interesting to compare these intractability results for first-order logic and monadic second-order
logic with the following: The model-checking problem for linear time temporal logic LTL is solvable in
time 20(%) . n, [16], making it fixed-parameter tractable and also tractable in practice. On the other hand,
model-checking for LTL is PSPACE-complete (as it is for first-order and monadic second-order logic). So
again parameterized complexity theory helps us establishing an important distinction between problems
of the same classical complexttyWe may argue, however, that the comparison between LTL model-
checking and first-order model-checking underlying these results is slightly unfair. As the name linear time
temporal logic indicates, LTL only speaks about a linearly ordered sequence of events. On an arbitrary
structure, an LTL formula can thus only speak about the paths through the structure. First-order formulas
do not have such a restricted view. It is therefore more interesting to compare LTL and first-order logic
on words which are the natural structures describing linear sequences of events. A well-known result of
Kamp [14] states that LTL and first-order logic have the same expressive power on words. And indeed,
model-checking for first-order logic and even for monadic second-order logic is fixed-parameter tractable if
the input structures are restricted to be words. This is a consequendelifsBheorem [2], saying that for
every sentence of monadic second-order logic one can effectively find a finite automaton accepting exactly
those words in which the sentence holds. A fixed-parameter tractable algorithm for monadic second-order
model-checking on words may proceed as follows: It first translates the input sentence into an equivalent
automaton and then tests in linear time whether this automaton accepts the input word. But note that since
there is no elementary bound for the size of a finite automaton equivalent to a given first-order or monadic

2A critical reader may remark that this distinction between the complexities of LTL model-checking and first-order model-
checking was known before anybody thought of parameterized complexity-theory. In some sense, this is true, but how can we
be sure that there is (%) . n model-checking algorithm for first-order model-checking? The role of parameterized-complexity
theory is to give evidence for this.



second-order sentence [19], the parameter dependence of this algorithm is non-elementary, thus it does
not even come close to th¥ (%) . n model-checking algorithm for LTL. Of course this does not rule out

the existence of other, better fixed-parameter tractable algorithms for first-order or monadic-second-order
model-checking.

Our results.  Our first theorem shows that there is no fundamentally better fixed-parameter tractable
algorithm for first-order and monadic second-order model-checking on the class of words than the automata
based one described in the previous paragraph.

Theorem 1. (1) Assume thaPTIME # NP. Then there is no model-checking algorithm for monadic
second-order logic on the class of words whose running time is boundg¢dby p(n) for an ele-
mentary functiory and a polynomiap.

(2) Assume thaEPT # W(t] for somet > 1. Then there is no model-checking algorithm for first-order
logic on the class of words whose running time is boundefl(y - p(n) for an elementary function
f and a polynomiap.
Here k denotes the size of the input sentence of the model-checking problemthadize of the input
word.

Recall that FPT denotes the class of all fixed-parameter tractable problems. The cl@$sies W 1,
form a hierarchy of larger and larger parameterized complexity classes, which are widely believed to be
different from FPT (see, for example, [7]). It is worth mentioning that FPW/[1] would imply that 3SAT
is solvable in deterministic timg°(™ [1, 7]. A function f : N — N is elementaryif it can be formed
from the successor function, addition, subtraction, and multiplication using concatenations, projections,
bounded additions and bounded multiplications (of the fdrm., ¢(z, 2) and[[, ., 9(, 2)). The crucial
fact for us is that a functiorf is bounded by an elementary function if, and only if, it is bounded by an
h-fold exponential function for some fixdd(see, for example, [4]).

To prove the theorem, we use similar coding tricks as those that can be used to prove that there is
no elementary algorithm for deciding the satisfiability of first-order sentences over words [19]. When we
started to think about this problem, it was not clear at all to us which were the right complexity theoretic
assumptions. We find it quite surprising that we ended up with fairly standard assumptions. It is not
obvious what PTIMEz NP has to do with our non-elementary lower bound. And it is remarkable that
the assumption FP¥# W]t] for somet > 1, which is usually used to prove that problems are not fixed-
parameter tractable, is used here to prove lower bounds for problems that are fixed-parameter tractable.

Model-checking for first-order and monadic second-order logic is known to be fixed-parameter tractable
on several other classes of structures besides words: Model-checking for monadic second-order logic is
also fixed-parameter tractable on trees and graphs of bounded tree-width [3]. The latter is a well-known
theorem due to Courcelle [3] playing a prominent role in parameterized complexity theory. Theorem 1
implies that the parameter dependence of monadic-second-order model-checking on trees and and graphs
of bounded tree-width is also non-elementary. In addition to trees and graphs of bounded tree-width,
model-checking for first-order logic is fixed-parameter tractable on further interesting classes of graphs
such as graphs of bounded degree [17], planar graphs [10], and more generally locally tree-decomposable
classes of structures [10]. Theorem 1(2) doesimply lower bounds for the parameter dependence here.
The reason for that is a peculiar detail in the encoding of words by relational structures. The standard
encoding includes the linear order of the letters in a word as an explicit relation of the structure. If we
omit the order and just include a successor relation, Theorem 1(1) still holds, because the order is definable
in monadic second-order logic. However, the order is not definable in first-order logic, and Theorem 1(2)
does not extend to words without order. Indeed, we give a model-checking algorithm for first-order logic
on words without order, and more generally on structures of degree 2, with a runnir@?ﬁ(rﬁe n, thatis,
with a doubly exponential parameter dependence. We also give a model-checking algorithm for first-order
logic on structures of bounded degrée> 3 with a triply exponential parameter dependence. We match
these upper bounds by corresponding lower bounds:

Theorem 2. Assume thaiV[1] # FPT.



(1) There is no model-checking algorithm for first-order logic on the class of words without order whose
running time is bounded by

20(k)

2 p(n),

for any polynomiap.
(2) There is no model-checking algorithm for first-order logic on the class of binary trees whose running
time is bounded by

20(k)
2 : p(n)a

for any polynomiap.
Again, k denotes the size of the input sentence atige size of the input structure.

Part (2) of this theorem also implies a triply exponential lower bound for the parameter dependence of
first-order model-checking on planar graphs and graphs of bounded tree-width.

2. Preliminaries

A vocabularyis a finite set of relation, function, and constant symbols. Each relation and function symbol
has ararity. T always denotes a vocabulary. structure A of vocabularyr, or 7-structure, consists of a
setA called the universe, and an interpretatibfl of each symbol” € 7: Relation symbols and function
symbols are interpreted by relations and functionsioof the appropriate arity, and constant symbols are
interpreted by elements of. All structures considered in this paper are assumed to have a finite universe
Thereductof a 7-structureA to a vocabulary”’ C 7 is ther’-structure with the same universe.dsand
the same interpretation of all symbols7ifh An expansion of a structurd is a structured’ such that4 is
areduct ofd’. In particular, ifA is a structure and € A, then by(.A, a) we denote the expansion gfby
the constant. We write A = BB to denote that structure$ and3 are isomorphic.

Let ¥ be a finite alphabet. We let(X) be the vocabulary consisting of a binary relation symbph
unary function symbab, two constant symbols ‘min’ and ‘max’, and a unary relation synibdlor every
s € 3. A word structureoverX: is a7 (X)-structureVV with the following properties:

— <Wis alinear order of#/, min"¥ and maX¥ are the minimum and maximum element<¥, and
S is the successor function associated witt, where we letS?Y (max") = max".

— For everya € W there exists precisely onec ¥ such thau € P)V.

We refer to elements € W as thepositionsin the word (structure) and, for every positiare W, to the
uniques such thaz € P}V as theletter ata.

It is obvious how to associate a word from the classof all words overy with every word structure
overY. and, conversely, how to associate an up to isomorphism unique word structure with every word in
¥*. We identify words with the corresponding word structures and white >* to refer both to the word
and the structure.

The class of all words (or word structures) over some alphabet is denotéd Be length of a word
W is denoted byW|.

A subwordof a wordW = sg...s,—1 € X" is either the empty word or a worg . .. s; for some
1,7,0 <i < j < n. Wewrite) C W to denote thaV is a subword oV,

We assume that the reader is familiar with propositional logic, first-order logic FO and monadic second-
order logic MSO (see, for example, [8]). dfis a formula of propositional logic and is a truth-value as-
signment to the variables 6f then we writer |= 6 to denote thatx satisfied). Similarly, if o(z1, ... ,zx)
is a first-order or monadic second-order formula with free variables.. ,z;, A is a structure, and
ai...,ar € A, thenwe writed = ¢(aq, ... ,a) to denote thatd satisfiesy if the variablesr, ... ,zy
are interpreted by, . .. , ai, respectively. Asentences a formula without free variables. Thgiantifier-
rank of a formulay, that is, the maximum number of nested quantifierg,ifrs denoted by drp).

The model-checking problerfor a logic L on a class C of structures, denoted by M), is the
following decision problem:



Input:  Structured € C, sentence < L.
Problem: Decide ifA |= .

We fix a reasonable encoding of structures and formulas by words{oye}. We denote the length
of the encoding of a structurd by ||.A|| and the length of the encoding of a formylaby ||¢||. Note
that||.4|| can be considerably larger than the cardinglity of the universe ofd. When reasoning about
model-checking problems, we usually uséo denote the sizg8.A|| of the input structure ank to denote
the size||p|| of the input sentence.

It is well-known that if we are interested in the complexity of first-order or monadic-second order
model-checking on words, the alphabet is inessential. This can be phrased as follows:

Fact 3. LetL € {FO,MSO}. Then there is a linear time algorithm that, given a sentepce L and a
word W € W, computes a sentengg € L of vocabularyr({0,1}) and a wordW’ € {0, 1}* such that
1€l € O(llell). W]l € O(IWI]), and (W = ¢ = W' = ¢).

N denotes the set of natural numbers (includipgFor alln,i € N we let bit¢, ») denote theth bit
in the binary representation af (Here we count the lowest priority bit as théh bit.) Ig denotes the
base-2 logarithm, and, far € N, Ig(¥ denotes the-fold logarithm. More formally, I§f) is defined by
Ig(®) (n) = n and Ig** (n) = IgIg® (n).

We define theower function? : N x R — R by 7'(0,7) = r andT'(h + 1,7) = 27" for all h € N,
r € R. ThusT'(h, r) is a tower of2s of heighth with anr sitting on top. Observe that for all » € N with
n > 1we havel'(h,1g™n) = n.

3. Succinct encodings

We introduce a sequence of encodings for ~ > 1, of natural numbers by words over certain finite
alphabets. They are more and more “succinct” not in the sense that they are shorter and shorter, but in the
sense that they can be decoded by shorter and shorter first-order formulas. Lemma 6 is the key result of
this section.

Forallh > 1 weletX, = {0,1,[,]1,--- ,[n,]n}- We defineL : N — Nby L(0) =0, L(1) =1,
L(n) = |lg(n —1)] + 1 for n > 2. Note that forn > 1, L(n) is precisely the length of the binary
representation of — 1.

We are now ready to define our encodings: N — X}, for h > 1. We letu, (0) = [,]; and forn > 1

p1(n) = [ bit(0,n — 1) bit(l,n — 1) ... bit(L(n) —1,n — 1)1,
forn > 1. Forh > 2, we letu,(0) = [, ], and
pn(n) = [, tr—1(0) bit(0,n — 1) pp—1 (1) bit(1,n — 1) ... pp—1(L(n) — 1) bit(L(n) — 1,n — 1)1, .

Lemma 4. lun(n)| € O(h-1g2n).

Proof: We define functiong; : N — Nas follows: L, (n) = L(n) foralln € NandL;(n) = L;_1(L(n))
forall i,n € Nwith ¢ > 2. Moreover, we defind;, : N — Nfori > 1 by

P = [T 260,

Observe that for all > 2 andn > 1 we haveP;(n) = L(n) - P,_1(L(n)).
We first prove, by induction oh > 1, that for alln > 1,



We haveu; (n) = 2 + L(n) < 4L(n) = 4P;(n), so (1) is true folh = 1. Leth > 2 an suppose that
(1) holds forh — 1. Then

L(n)—1
()] = 24 L)+ > |pa-1(i)|
1=0
L(n)—1
= 24 L(n)+2+ Y |un-1(9)
L(n)fll_

4+ Ln)+ Y A(h—1)-Py_(i)
A4 L(n) + 4(L(n) = 1) - (k= 1) - Po_1(L(n))
(n) + (h—1) - L(n) - Po—1(L(n))
(n) + (h—1) - Pu(n)
4h-P;L(n).

L 1
L 1

VAN VAN VAN VA

This proves (1)
It remains to prove thab,(n) € O(L(n)?), independently of.. SinceL(L(n)) € O(lglgn) and
L(n) € Q(Ign), there is am, such that for allh > ny we have

L(L(n))* < L(n).

Note thatP = {P,(m) | m < ng,h > 1} is afinite set and let = max(P).

We prove thatP;, (n) < ¢ - L(n)? by induction onh > 1. SinceP;(n) = L(n), this statement is true
for h = 1. Forh > 2, we havePy,(n) = L(n) - P,_1(L(n)). If L(n) < ng, we haveP,_;(L(n)) < cand
thus P, (n) < cL(n). If L(n) > ng, we haveL(L(n))? < L(n). By induction hypothesisP, _1(L(n)) <
c- L(L(n))% Thus

Pu(n) = L(n) - P,_1(L(n)) < L(n) - c- L(L(n))* < ¢- L(n)?.

O

Lemma 5. There is an algorithm that, givela n € N, computegu, (n) in timeO(|uy(n)]) = O(h-1g°n).
Proof: The algorithm computeg; (n) in a straightforward recursive manner. We get the following recur-
rence for the running tim&(h, n):

L(n)

R(h,n) < O(L(n)) + Y _ R(h—1,L(i)).

=0
This recurrence is very similar to the one we obtained in the proof of Lemma 4 and can easily be solved
using the same methods. |

Observe that for alin > 1 we have
2" =max{n € N | L(n) < m}.
Recall thatl'(h, ¢) is a tower of2s of heighth with an¢ on top. Thus, in particular, for all, ¢ > 1 we have
T(h,¢)=max{n e N| L(n) <T(h—1,¢)}. 2

Lemma6. Leth > 1,/ > 0 and let¥ D X,. There is a first-order formula, ¢(x, y) of vocabulary
7(35,) and sizeO(h + ¢) such that for all wordsV € £*, a,b € W, andm,n € {0,...,T(h,¢)} the
following holds:



If a is the first position of a subwoid = W withi/ = u;,(m) andb is the first position of a subword
YV EWwithV = uy(n), then

W E xhe(a,b) <= m=n.

Furthermore, the formula;, , can be computed frofaand? in time O(h + £).

Proof: Let h = 1. Recall that theu;-encoding of an integes > 1 is just the binary encoding of — 1
enclosed in{, ];. Hence to say that andy are 11;-encodings of the same numbers, we have to say that
for all pairsz + i, y + ¢ of corresponding positions betwegmesp.y and the next closing, ] there are the
same letters at + ¢ andy + i. For numberg in {0, ... ,7(1,¢)}, there are at modt(p) < ¢ positions to

be investigated. To express this, we let

leg(m,y) =dxy...3xyr ... Y (Sa? =21 A /\f;ll ((f’]lxi Nx; = l‘iJrl) \Y (ﬁP]lxi ASz; = a)‘l‘+1))
o—
NSy =y1 ANz (PLyi Ay = yir1) V (2PLyi A Sy = yit1))
ANi_y (Pomi < Poyi) A (Pya; < Pl?Ji)))-

Now let 2 > 2 and suppose that we have already defingd; ((z,y). It will be convenient to have the
following auxiliary formulas available:

Xi’}n(x,y) = x<y/\Vz((;L'<z/\z§y)—>—|th),
ngst(a:,y) = x<y/\P]hy/\Vz((x<z/\z<y)—>—\P]hz)

Intuitively, x (z,y) says thaty is in the interior of the subword of the formy,(p) starting atz and
sz, y) says thay is the last position of the subword of the fopm (p) starting atz — provided, such
a subword indeed starts at

To say that the subwords startingrandy arep;,-encodings of the same numbers, we have to say that
for all positionsw between: and the next closing,]and all positions: betweeny and the next enclosing
closing },, if w andz are first positions of subwords isomorphic/ig_; (¢) for someq € N, then the
positions following these two subwords are either bithor both0s. For all subwords ofi;,(p) of the
form p,—1(q) we haveg € {0,...,L(p)}. In order to apply the formulg_1 ¢ to test equality of such
subwords, we must have < L(p) < T'(h — 1,¢). By (2), the last inequality holds for all < T'(h, ?).
Thus for suctp we can use the formulgy,_, , to test equality of subwords ¢fy, (p) of the formu,_1(q).
As a first approximation to our formulg, ¢, we let

Xholr.y) = Voo (il w) A By w) = 3 (a0 2) A By 2 A X, 2)) )
A Vz((xi’}n(y, 2)AR,_,z) — Elw(xi’,‘]t(x, w) AR, wA Xh—1,0(w, z)))
A Vsz((xifrﬁt(:v, w)ANF, _wA Xi},ﬁt(y, 2) NP, 2N Xh—1,0(w, z))
— w3 (g (w, w') A X! (2, 2') A (P12 PlSw’)>.

The first line of this formula says that every subword of the fasm; (¢) in the subword of the form,, (p)
starting atr also occurs in the subword of the form, (p) starting aty. The second line says that every
subword of the formu;,_1(¢) in the subword of the formuy, (p) starting aty also occurs in the subword
of the form u;,(p) starting atz. The third and fourth line say that it and = are the first positions of
isomorphic subwords of the formy,_1(q), then they are either both followed by & or both by a 0’
(since the only two letters that can appear immediately after a subwpord ¢) in a word iy, (p) are 0’
and 1’).

This formula says what we want, but unfortunately it is too large to achieve the desired bounds. The
problem is that there are three occurrences of the subforgula.(w, z). We we can easily overcome
this problem. We let

C(w,z) = 3’32 (xfag! (w, w') A Xt (2,2)) A PLS2' > P1Sw)



and

Xne(z,y) = YVw3z

((

A (xite(y, w) = (=, 2))
/\ (P)[hflw - P)[hflz)

A

(Ol 0) V X, 10)) A R, ) = X e, 2) A C(w,2))).

It is not hard to see tha, ¢(x, y) has the desired meaning.

Observing that|x1 || € O(¢) and that|[xn || = |[xnr-1.|| + c for some constant, we obtain the
desired bound on the size of the formulas.
The fact thaty, , can be computed in linear time is immediate from the construction. O

4. Encodings of propositional formulas

In this section, we use our encodingg of the natural numbers to define encodings of propositional
formulas and assignments. We will also denote these encodings of formuylas by

A propositional formula ig-normalised for at > 1, if it is a conjunction of disjunctions of conjunc-
tions... of literals, with (¢ — 1) alternations between conjunctions and disjunctions. More formally, we
letI'y = Ay be the set of all literals. Far> 1, we letI"; be the set of all (finite) conjunctions of formulas
in A;_; andA, the set of all (finite) disjunctions of formulas I _;. Then a formula ig-normalisedif it
isin ;. Note that, in particular, a formula is 2-normalised if, and only if, it is in conjunctive normal form.
For k£ > 1, a formula is ink-conjunctive normal fornif it is a conjunction of disjunctions, where each
disjunction contains at mogtliterals. We denote the class of all formulaskifrtonjunctive normal form
by KCNF.

We assume that propositional formulas only contain varialdlledor i € N. For a se®© of proposi-
tional formulas, we le®(n) denote the set of all formulas & whose variables are amoiy, ... , X,,_1.

Forallh,t > 1, welety, , = Zhu{+, —, TRUE, FALSE, %, (, ), {0, }o,-- -, {¢t }t}7where§]h is taken

from the previous section (cf. page 5).
We fix h and define the encoding, : T'; U Ay — Z;;yt by induction ont.
Fort = 0 and a literal\, we let

~ JHopa(t) + Yo TFA=X;
) = {{ouh,(i) —}o ifA=-X;

(for everyi € N).
Assuming that we have already defingd(d) for all § € T,y U A;_q, letn = /\;”:’O1 0;, with
0; € Ay_q,0rn =\ 6;, with§; € T;_,, be aformula i, U A;. We let

pn(n) = {e un(0o) pn(61) - pn(Om-1) }e-

We also need to encode assignments. Agt) denote the set of all assignments {Xy,... , X1} —
{TRUE, FALSE}. We extend our encoding;, to assignments and pairs consisting of formulas and assign-
ments. For an assignmedte A(n), we let

pun () = (pn(0) a(Xo) ) (pn(1) a(X1)) ... (pn(n —1) a(Xn-1)).
For a pair(d, o) € (Tt(n) UAi(n)) x A(n) we letuy (8, a) = pp(0) pn(a).
The following lemma is an immediate consequence of Lemma 4 and Lemma 5:

Lemma7. Leth € Nand (0, o) € (Ty(n) U Ay(n)) x A(n). Then|uy (6, )| = O(h-1g*n - (||0]] + n))
and there is an algorithm that computes(6, ) in time O (h - Ig®n - (||0]| + n)) (that s, linear in the size
of the output).



Lemma 8. For all h,¢,t € N there is a first-order sentence;, ,, of sizeO(h + ¢ + t) such that for all
n < T(h,f) and (v, a) € T'y(n) x A(n),

pn(7, @) E @her = a7,
Furthermore, the formuley, ¢, can be computed fror, ¢, ¢ in timeO(h + ¢ + t).

Proof: Let x;, ¢(z,y) be the formula defined in Lemma 6. Recall that it says that the subwords of the form
un(m) anduy, (n) starting ate, y, respectively, are identical — provided that such subwords staraatl
y and thath, m < T'(h, ¢). Also recall the formula

xfgst(:my) =r<yAB,y /\Vz((gc <zAz<y) — ﬁ]ﬁhz),

defined in the proof of Lemma 6, which says thas the last position of the subword of the fonm ()
starting at.

By induction ont, we define formulas}, , ,(x) and vy, () such that for allh, ¢, ¢,u,n € N with
n < T(h,¢) andu > t and for all formulag) € T',(n) U A, (n), assignmenta € A(n), and positions:
in the wordp, (6, «) we have:

@) If then € Ty U A, of the subwordu,(n) T up(0,«) starting ata is in Ty, thenpu, (0, o) =
%,m(a) = a7

(i) If then € Ty U A; of the subworduy,(n) C ux(6,«) starting ata is in Ay, thenpu, (6, «) E
wﬁ“(a) = alEn.

Fort = 0, we let
Vho0(@) = Uit o(z) = 31/33:’31/( Py A xne(Sw, Sy) A Xins( Sz, 2') A Xias(Sy. /)
A (P+S$/ — PTRUESy/))

Suppose that the encoding of the litefal) X; starts atc. The formulawg_m(x) looks for ay such that
the encoding of a paifj, o(X)) starts aty, then comparesandj, and if they are equal, checks that the
symbol indicating the sign of the literal is-" if, and only if, «(X;) = TRUE.

Fort > 1, we let

Vhoo(z) = Vy((VZ((fE <zANz<y)—-P,z) AP y) — wﬁe,t_l(y)),
Vo) = Jy (VZ((x <zANz<y)—-PLz) APy A wﬁ,e,t_l(y))-

The subformulevz((x <zANz<y)— —\P}tz) guarantees thatbelongs to the same levekubformula
asz, and the subformul®, _, y guarantees that a level— 1) subformula starts aj.

Once we have defineg;, , ,, we lete, o, = ¢y, , ,(min); it follows from (i) and the definition ofu,
that this sentence says what it is supposed to say.

To see that|y, .|| € O(h + ¢ + t), observe thapy, »o has exactly one subformula of the form .
and that each levelformula has precisely one levél— 1) subformula. Finallyi;, ¢, can be computed
fromh, ¢, ¢ in time O(h + ¢ + t) simply by following our inductive definition. |

The reader may have noted that we included the symbadh‘our alphabet, but have not used it so
far. In the next section, we want to use the formula of Lemma 8 for satisfiability testing. Of course
when doing this we will not be given an assignment in advance. However, it will be useful if we never-
theless provide the “infrastructure” for the assignment in our encoding. To do this, we simply replace
all the TRUE and FALSE symbols byxs: For every formula@d € T'i(n) U A¢(n), we let up(0,%) =

1 (0) (pn(0) %) (pn (1) %) - (pn(n = 1) %).

Remark 9. Of course, the- we just introduced is completely redundant — we could as wellFrassE.
Actually, our encodings have many other redundancies. In introducing them, we tried to make the encod-
ings a bit more structured and readable.



5. Satisfiability testing through model-checking

In this section, we prove the two statements of Theorem 1.

Theorem 10. UnlessPTIME = NP, there is no algorithm foMC(MSO, W) whose running time is
bounded by

T(h,k) - p(n),
for anyh € N and polynomiap. Herek denotes the size of the input sentence aitlde size of the input

word.

Proof: Suppose that there is an algoriti#aiior MC(MSO, W) whose runtime is bounded B, k) - p(n),
for someh € N and polynomiap.

We shall prove that the satisfiability problem for 2-normalised propositional formulas (that is, formulas
in conjunctive normal form) is in polynomial time, which, by contradiction, proves the theorem. For all
¢eN, let

Gnine = 3X (Ya(Xe = Pu) Aghyrea),

wherega’thm2 is the formula obtained from the formula, ; , » of Lemma 8 by replacing the subformula
PrrueSy’, which is the only subformula that involves eithBfgye Or Pracse, by X Sy’. Then for every
n' <T(h+1,¢) andy € T'y(n’),

Lht1(7, %) = Pry1,e <= 7 is satisfiable. 3)

Consider the algorithm displayed in Figure 1, which decides if the input formidaatisfiable.

Input: v € T'a(n')

1. Computer,+1(7,*)

2. Computel = [Ig "+ (n/)].

3. Computepy 1,

4. Check ifpup1(y, *) = @rt1,e Using algorithmA.

Figure 1.

The correctness of the algorithm follows from (3) atid= T'(h+1,1g "1 (n')) < T(h+1, [Ig "+ (n)]).
We claim that the runtime of the algorithm is boundedgy~y||) for some polynomiay depending only
on the fixed constarit.

Lines 1-3 of the algorithm can be implemented in time polynomial'irk, ||v||. By Lemma 7, using
our assumption on the algorith& Line 4 requires time

T(h, |en+.ell) - p(lpnr (v, )] < T(hs [|Pnrael

for some polynomial®; andp,. Observe that|gp11.¢|| € O(h + £), thatis,||Gr+1.6]| < c(h +£) <
c(h +1g "+ (n/) + 1) for some constant. Since

) - pa(n”) - p2(Il),

lglgm

m— o0 |g m

)

there is am (depending om, k) such that for alk’ > ng we have

e(h+1g M (') +1) < Ig W ().
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Thus forn’ > ng we haveT'(h, ||@ni1.4|]) < T(h,Ig ™ (n')) < n’. This proves the polynomial time
bound. a

To state and prove our second main result, we need a few preliminaries from parameterized complexity
theory. Aparameterized problens a setP C ¥* x N for some finite alphabel. If (x, k) € ¥* x Nis an
instance of a parameterized problem, we refer & theinputand tok as theparameter A parameterized
problemP C ¥* x N is fixed-parameter tractablé there is a computable functiofi : N — N, a
polynomialp, and an algorithm that, given a pdit, k) € X* x N, decides if(z, k) € P in time at most
f(k) - p(|z|) steps. The class of all fixed-parameter tractable problems is denoted by FPT.

TheW-hierarchyis a family of complexity classes W, for ¢ > 1, where

FPTC W[ CW[2] C....

Itis conjectured that this hierarchy is strict, or at least, that EPW([1]. The classes of the W-hierarchy are
defined via complete problems under suitable reductions. These complete problems are parameterizations
of the satisfiability problem for propositional formulas. Thweightof a truth value assignment for a

set of propositional variables is the number of variables s@RrioE by this assignment. For a claés

of propositional formulas, let theveighted satisfiability problerfor ©, denoted by W&T(0), be the
following parameterized problem:

Input: 0 € O.
Parameter: k' € N.
Problem: Decide iff has a satisfying assignment of weight

Downey and Fellows [5, 7] proved that for all> 2 the problem W@&T(T';) is complete for W] under
parameterized many-one reductions. In [6], they proved thatWWBCNF) is complete for W1]. Without

giving a definition of the reductions, we can phrase the most important consequences of these results as
follows:

Theorem 11 (Downey and Fellows [5, 6, 7]). (1) Lett > 2. Then if WSAT(T;) is fixed-parameter
tractable,W[t] = FPT.

(2) If WSAT(2CNF) is fixed-parameter tractable, thékl[1] = FPT.
We are now ready to prove our theorem:

Theorem 12. UnlessW([¢] = FPTfor all ¢ € N, there is no algorithm foMC(FO, W) whose runtime is
bounded by

T(h,k) - p(n),

for anyh € N and polynomiap. As usualk denotes the size of the input sentence anbe size of the
input word.

To prove this theorem, we will use the following alternative characterisation of fixed-parameter tractabil-
ity. A parameterized probler® C ¥ x N is eventually in polynomial timi there is a computable function
f and an algorithm, whose runtime is polynomialin that, given an instance, k) € ¥* x N of P with
|z| > f(k) correctly decides ifx, k) € P. (The behaviour of the algorithm on instangesk) € ¥* x N
with |z| < f(k) is irrelevant.)

Lemma 13 (Flum and Grohe [9]). A parameterized problem is fixed-parameter tractable if, and only if,
it is computable and eventually in polynomial time.

Proof of Theorem 12Suppose that there is an algoritifor MC(FO, W) whose runtime is bounded
by

T(h,k) - p(n),

11



for someh € N and polynomiap.
Lett > 1. We shall prove that W& (T';) is in FPT. For allh, ¢, k' € N, let

k' k'—1
~ !
Pht1,0,t,k' = 3Ty ... ITp ( /\ Pox; A /\ i < Tig1 A @;L+1,e,t,k/>v

i=1 =1

whereyp;, ., , ;. isthe formula obtained fromy, 1.1 ¢, by replacing the subformulBryeSy’ by \/f;1 Sy' =
x;. Then for everyn’ < T'(h + 1,¢) andy € I'y(n’),

pht1 (7, %) E @hy10e60 < 7 has a satisfying assignment of weight 4)

Consider the algorithm displayed in Figure 2.

Input: v € T'y(n'), parametek’ € N

1. Computepin1(7,*)

2. Computel = [Ig "+ (n/)].

3. Computepp 1,6,k

4. Check ifupt1(y,*) = @ht1,0,6,k USING algorithmA.

Figure 2.

The correctness of the algorithm follows from (4) arid= T'(h+1,1g *+1 (n/)) < T(h+1, [Ig "+ (n")]).
We claim that ifn’ is sufficiently large, then the runtime of the algorithm is bounded [lyy||) for some
polynomialg. More precisely, we claim that there is a polynomjalnd anng € N, which is computable
from &/, h, t, such that fom’ > ng the runtime of the algorithm is bounded byn’). Sinceh andt are
fixed and since W8T (T';) is computable, by Lemma 13 this implies that Wi$T; ) is in FPT.

Lines 1-3 of the algorithm can be implemented in time polynomial jik, ¢, ||y||. By our assumption
on the algorithmA, Line 4 requires time

T(h|1@nt1.eanll) - p(n) = T(h |Gnr1eenll) - pr(n’) - pa(llyI]),

for polynomialspy, p2 sincen = |up+1(7,*)| is polynomial inn’ andh. Observe thal|Gp11.0,0.07|| €
Ok +h+t+0), thatis,||Gnr1een|| < ek’ +h+t+0) < c(k' +h+t+I1gP+(n') + 1 for some
constant.

Using the same argument as in the proof of Theorem 10, we can now derive that there is a computable
no such that for all’ > ny we have

T(h, ||Gnsreanll) < T(h,1g™(n) <n'.

This proves our claim that it’ is sufficiently large, then the runtime of the algorithm is boundedi(blyy||)
for some polynomial and thus the theorem. O

Remark 14. For readers familiar with least fixed-point logic, let us point out that with the same techniques
it can be proved that there is no model-checking algorithnmfonadic least fixed-poidbgic on words
whose running time is bounded (4, k) - p(n), for any h € N and polynomialp, under the weaker
assumption tha¥V[P] # FPT.

WI([P] is a parameterized complexity class that contairig| Wér all ¢ > 1. A complete problem for
W/ P] is the weighted satisfiability problem for arbitrary Boolean circuits.
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6. Structures of bounded degree

In this section, we investigate the parameterized complexity of first-order model-checking over structures of
bounded degree. Let be ar-structure for some vocabulary We call two elements, b € A adjacentif

they are distinct and there is @&e 7, say,r-ary, and atuple; . ..a, € R* such that,b € {a1,... ,ar}.
Thedegreeof an element: € A in the structured is the number of elements adjacentitand the degree

of A is the maximum degree of its elements. Hor 1, we denote the class of all structures of degree at
mostd by D(d).

Theorem 15 (Seese [17])Letd > 1. Then there is a functioff : N — N and an algorithm solving
MC(FO,ID(d)) in time f(k) - n, where, as usuak denotes the size of the input sentence atide size of
the input structure.

It is quite easy to derive from Seese’s proof a triply-exponential upper bourfdf@na non-uniform
version of this theorem, stating that for every fixed first-order sententieere is a triply exponential
function f and an algorithm checking whether a given structdref degree at most satisfiesp. We shall
prove a uniform version of this result, which has the additional benefit that our algorithm is quite simple.
But the main result of this section is a doubly exponential lower bound.

6.1. Upper bounds. In this section we present a general algorithm for first-order model-checking, which,
restricted to structures of bounded degree, will yield optimal upper time bounds.

The crucial idea, which has also been explored by Seese, is to use the locality of first-order logic. With-
out loss of generality we assume that vocabularies only contain relation and constant symbols. (Functions
can easily be simulated by relations.) We need some additional notatipathdf length/ is a sequence
of verticesay, ... ,a; € A such thatu;,_1,a;,7 = 1,... 1 are adjacent ind. The distance between two
elements:, b € A of the universe i9, if a = b andr, if the shortest path betweerandb has lengthr. Let
r > 1anda € A. Ther-neighbourhoodf a in A, denoted byN:(a) is the set ofh € A such that, b
have distance at most Let N'**(a) denote the substructure induced#yon N4 (a). For elements, b of
a structured we writea 22 b if there is an isomorphism frooV:*(a) to N2 (b) that maps: to b.

Lemma 16 ([13, 15]). For every first-order formulg(z) there is an > 1 such that for every structurd
anda,b € Awe have(a 2! b = (A p(a) < A= ¢(b))). Furthermore; can be chosen to be
2ar(e) .

Figure 3 displays a recursive model-checking algorithm for first-order sentences in prenex normal form
that is based on Lemma 16. Since we can easily transform arbitrary first-order sentences into sentences in
prenex normal form (algorithmically, this can be done in linear time), this also gives us an algorithm for
arbitrary sentences.

Note that in the recursive callmodel-check (¢ (a),(A,a)) of the algorithm, we replace all occur-
rences oft in ¢ by a new constant symbol which is interpreted by the elementd and check if this new
sentence holds in the expanded structufea). The correctness of the algorithm follows from an easy
induction on the structure of the input formuteapplying Lemma 16 in each step. Note that this algorithm
works for arbitrary input structured.

Theorem 17. The algorithmmodel-check (displayed in Figure 3) decidddC(FO,ID(2)) in time
22O(k) -n,

andMC(FO, D(d)) for d > 3 in time

lg d-20(k)

22 -n,

where as usuat denotes the size of the input sentence atioe size of the input structure.

Proof: We denote the runtime ehodel-check (¢,A) by R(n,p,q), wheren = ||A[], ¢ = qr(¢) < F,
andp is the size of the quantifier-free partof Note thatp + ¢ < k(= ||¢||). Letr = r(q) = 29,

5(q) == maXea,aec| N ()],
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model-check (¢,.A)

1. if ¢ is quantifier freghen
2. acceptif ¢ holds inA andreject otherwise.
In the following, assume that(z) = Qz ¢ (z) for some quantifief).
Computer := 29(#)
Compute a seK C A of representatives of the equivalence classes of the refattan
Recursively calmodel-check (¢(a),(A,a)) foralla € X.
if ¢ = Jzep(x) then
acceptif at least one of the recursive calls accepts egject otherwise.
if ¢ = Vai(x) then
acceptif all recursive calls accept arrdject otherwise.

© ® N o g > w

Figure 3.

the maximal size of a-neighbourhood, and letg) denote the number of equivalence classes;bf Note
that there exist upper bounds fgy) andt(q) only depending on the degree of the input structure (and not
onn or ). Remember that the degree is constant for the classes under consideration.

Now consider the algorithm displayed in Figure 3. Line 1 only requires constant time. If Line 2 is
executed, it requires tim@(p - n), and the algorithm stops. Otherwise, it proceeds to Line 3, which can
be executed in constant time. To execute Line 4, we maintain a list of P¥jrYa),a) such that no
induced substructurgV(a), a) occurs twice. The size of this list never excee@s, hence for each in
turn, we simply compute the induced substructure, and look if it is already in the list. This requires time
O(n- (f(s(q))t(q) + s(q))), if we denote the time to check isomorphism of structures ofisid®y f(m).

The loop in Lines 5-9 requires time

O(t(q)) +t(q) - R(n,p,q —1).
Putting everything together, we obtain the following recurrencezfor

R(n,p,0)
R(n,p,q)

for suitable constants , c,. To solve this equation, we use the following simple lemma:

cL-p-n

<
< ca-n(f(s(@)t(q) +s(q) +t(g)R(n,p,q—1)  (forg > 1),

Lemma 18. LetF, g, h : N — N such that

IAIA

for all m € N. Then
F(m) <> g()- [ h0)
i=0 j=i+1
forall m € N.

The lemma can be proved by a straightforward inductiog.on
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Applied to our functionR, the lemma yields

R(n,p.g) < ex-pon-JTUG)+ 3 e n (fs@)t) +s() - T tG)

IN

i=1

[Tt (erpen+dcaen (F(s()t(0) + (1))

Degree 2:The size of an-neighbourhood in a structuré € D(2) is at mostr + 1. Thus
s(q) < 20(a) < 90(k)

To give an upper bound affq), we have to take into account the numhesf symbols in the vocabulary.
Since we only have to consider symbols that actually appear we can assume that< k. Moreover,
without loss of generality we can assume that the vocabulary only contains unary and binary relation
symbols (because we are considering structures of degree 2).

Let us count the number of isomorphism types ofiawertex structurds of degree 2 whose vocabulary
containsu; unary relation symbols ang, binary relation symbols. The unary relations can take at most
2™ different values. There are at mostpairs of elements which can be connected by a binary relation,
thus the binary relations can take at mgist™ different values. Thus the overall number of isomorphism
types is bounded bg{v1+u2)m,

Ourr-neighbourhoods have size at m@st+ 1, so we obtain

t(q) < 2O(k:-r) _ 20(1@-2’1)'

Thus

q q
Since isomorphism of structures of degree 2 can be decided in polynomial time, we obtain
z . . . 20(k)
(cr-pon+ Y caem- (FlsNU) +56) ) <022 -m)
=1

and thus

R(n,p,q) <22°" . n

Degree at least 3The computations are similar in this case, the only important difference being that an
r-neighbourhood may be of si#(d") and thus doubly exponential in which yields a triply exponential
bound forR. O

6.2. The lower bounds.
In this subsection we examine two classes of particularly simple structures of degree two and three, the
class ofwords without ordeiand the class dfees with distinguishe@- and 1-successors
Formally, a word without order over an alphabetis a reduct of a word over to the vocabulary
75(X) = 7(¥) \ {<}. We denote the class of all words without orderySince we will only consider
words without order in the following, for simplicity we often just refer to them as words.
In this section we will only work with the encoding; (recall the definition from Section 3), but we
need a refined version of Lemma 6 for= 1:
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Lemma 19. Let¢ > 1 and letX D X;. There is a first-order formula,(x, y) of vocabularyrg (%) and
sizeO(¢) such that for all words without ordenV € ¥*, a,b € W, andm,n € {0,... ,222} the following
holds:

If a is the first position of a subwoid T W with U/ = u1(m) andb is the first position of a subword
YV CWwithV 2 yy(n), then

W E xe(a, b)) <= m=n.
Furthermore, the formulg, can be computed fromin time O(¢).

Note that Lemma 6 only provides a formu{a, (, y) that works form, n < 2¢.
Before we prove the lemma, we define a few basic formulas and notations that we need in dealing with
words without order. Let)(z, y) be a formula. For a structuré and elements, b € A we let

0 ifa=10
b i ifnotb —y a <i
vE= and there existg8y = a, as, ... ,a; = bsuch thatd = ¢¥(a;,a;41) for0 <i <

undefined otherwise

Lemma 20. Let{ > 1 and(z, y) a first-order formula.

(1) There exists a first-order formulé;"(xl,xz) of sizeO(¢) such that for every structurgl and all
ay,az € A,

Alzﬂf(al,ag) < Q2 —y a1 SQe.

(2) There exists a first-order formuﬁf(agl, x2, Y1, y2) Of sizeO(£) such that for every structurd and
all elementsiy, as, by, bs € A,

A }zé}p(al,ag,bl,bg) = a2 —y a1 < 26/\0,2 —y A1 = by — by.

Proof: We only prove (2); the proof of (1) is similar, but simpler. We let

55[)(3717502,91,2/2) = (331 =T2AY1 = yz) \ (ﬁxl =x2 A —y1 = Y2 AN P(21,22) A ¢(Z/17y2))7
and for¢ > 1
53)(331,1‘2,%,242) :53)(%1,1‘2#1792)
V JxgysVa Ve VyVvy' (
(z=m At =23 Ny =y Ay = y3)

V(zg=agAha' =z hy=ys Ay 21/2)) — 5?_1(55755’,%@/)).

O
Proof of Lemma 19We lety(x,y) = (=P, A Sz =y) V (F,z Az = y) and
xe(w,y) = ¥a'vy' (57 (@,2",,y) = (Poa = Poy') A (P’ = Pry)) ).
whereéj’ is taken from Lemma 20(2). ]

Recall that 2CNFn) denotes the set of all formulas lrconjunctive normal form whose variables
are amongXy, ... , X,—1 and thatA(n) denotes the set of all truth-value assignments to these variables.
Recall further the encodings of propositional formulas introduced in Section 4.
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Lemma 21. For all | € N there is a first-order sentencg; of sizeO(l) such that for alln < 22" and
(7,) € 2CNHn) x A(n) we haveu (v,a) E ¢ < « [ v. Furthermore,p; can be computed in
timeO(l).

We omit the proof, which is very similar to the proof of Lemma 8. The proof would not work for
arbitrary formulas in conjunctive normal form, it is crucial that the disjunctions have bounded length.
We are now ready to prove the main result of this section (which is Theorem 2):

Theorem 22. UnlessW([1] = FPT, there is no algorithm foMC(FO, S) whose running time is bounded
by

o(k)
22 : p<n)7

for any polynomiap, wherek denotes the size of the input sentence atide size of the input word.

Proof: Essentially, we proceed as for word structures. Suppose that there is an algdriiming in time

92/ - p(n), for some polynomiap and a functionf (k) € o(k). We shall prove that W& [2CNH is in
FPT. Forl, k' € N let

k/
- _ ,
Dl = Elzl...mk/(/\P*xi /\ xT; #xj/\gol’k,),
i=1 1<i<j<k’

Wherego;’k, is obtained fromp; by replacing each atom of the fori et by \/f;l t = x; and Pea et

by /\f;lt #+ x;, wheret denotes an arbitrary term. Since the number of atoms we have to replace is
independent ok’ and/, we have |, /|| = O(1+ k’*). Observe that, using the previous lemma, for every
n’ < 2% andy € 2CNF(n’) we have

wi(y,*) E ¢rer < ~ has a satisfying assignment of size

The algorithm deciding’-satisfiability of 2CNF is displayed as Figure 4.

Input: v € 2CNFn’), parametek’ € N

1. Computeu (y, *)

2. Computel = [lglgn’].

3. Computep; i

4. Check ifui (v, ) | @ r using algorithmA.

Figure 4.

The correctness of this algorithm is easy to see. We will show that there is a compujabl® and
a polynomialg such that for all’ > ng the runtime is bounded y(n’). By Lemma 13 and the fact that
the problem is computable at all, this implies that W&CNHR is in FPT.

Lety € 2CNKn') be the input. Lines 1-3 can be done in time polynomiabtinThe crucial part is
Line 4. By the assumption on algorithnthis line requires time

FUIBy o 1D
22 Plk p(n)7

wheren = |u1(y,%)| = O(g?n’ - (||y]| + n’)). By the previous remark|g; x || < c- (K> +1) <
c¢- (K’ +1glgn’ + 1) for some constant Hence for sufficiently large’ we havel|g /|| < Iglgn’, say,
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for ¢ = 2¢. Sincef (k) € o(k), there is am such that for alh’ > ny we havef(c'lglgn’) <Iglgn’ and
thus

22f(|\95;,,kH) < 22f(c’lglgn’) lglgn'

< 22 <n.

This gives us the desired upper bound on the runtime of our algorithm. o

Our last theorem matches the upper bound for model-checking over structures of bounded degree
greater thar? by a corresponding lower bound.

We need some additional terminology. We vievdered binary treess{Sy, S }-structuresT, with
SZ and ST being the left child and right child relations. We allow nodes to only have one child. For a
finite alphabek:, we letr(X) = {So, S1} U{Ps|s € X}, whereP;, for s € X, is a unary relation symbol.

An ordered binary treever ¥ is a7 (X)-structure whose-reduct is an ordered binary tree. We denote
the class of all orderd binary trees over some finite alphab@t or a node: of a tree7 € T andd > 1,
thedepthd subtree below: is the subtree of whose nodes are all descendanta of distance at most
from a.

To proceed as in the word cases, we will encode natural numbers by trees and provide “short” formulas
allowing to compare “large” encoded numbers. Far N, let 7, be the ordered binary tree with vertex set
{0,... ,¢} and root O in which the children @fare2i 4+ 1 and2i + 2. Recall thatZ(n) denotes the length
of the binary encoding af € N. We letu(n) be the ordered binary tree ovf, 1} whose underlying tree
is 77,(y @and in which, fori = 0, 1,

P — (5 < L(n) | bit(j,n) = i}.

2

Figure 5 gives an example.

Figure 5. The tre@(38)

The next lemma is the key to the encoding and corresponds to the Lemmas 6 and 19.

Lemma 23. Let¢ > 1. There is a formulag(z, y) of vocabularyrr ({0, 1}) of sizeO(¢) such that for all

ordered binary tree§ € T, a,b € T andm,n € {0, ... ,222l} the following holds:
If the depth2’ subtree below: is isomorphic tqu(n) and the deptl2’ subtree belovs is isomorphic to
w(m) then

T E xe(a,b) <= m=n.

Furthermorey,(z, y) can be computed in tim@(¢).

Proof: We construct a formula,(z, y) characterising dept?’ subtrees up to isomorphism. This formula
identifies binary encodings of length up 28, which proves the claim. We proceed as in the proof of
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lemma 20. First, we say that to go from verticesto =, and fromy; to yo we must follow the same
sequence of),S5;-successors. Let

Yo(x1, 22, y1,Y2) = (Soz122 A Soy1y2)
V (Siz1z2 A S191Y2)
V(z1 =22 Ay = y2).

and forl > 1

Pi(w1, 2, y1,y2) = FwsysVaVa'Vyvy' ((er =z Aas =a' Ayr =y Ays =)
V(gs=zAze=2'Ays=y Ay =9") = Yi_1(z,2',y,y)).
Using this formula we let
xi(@,y) = Va'Vy' (Yu(z, 2"y, ') — (P’ < Pry') A (Pox’ < Poy')),
which is the sought formula. ]

Now we proceed as before and encode formulas of 2@INfor somen as an ordered binary tree over
some alphabeX. Fory € 2CNF letu(«) be the binary tre€ constructed as follows: 18 be the word
without orderyu (o), and considebV as a tree of5; -successors without amh-successors. To g&t we
substitute each subwotd of the formy; (m) by a single vertex such that’s Sy-successor is the root of
a copy ofu(m), while its S;-successor is the first position affér v itself carries the new letteir

We extend the definition gf to (v, «) € 2CNF x A(n) by applying the same substitution process to
the part of the word corresponding to the assignment. Accordingly, we gefine). This encoding gives
us the following lemma, whose proof is omitted since it resembles the proof of lemma 8 using the newly
introduced encoding:. together with the decoding formulag(z,y). Observe that in these encodings
we use the vocabulary := {,0,1, %, +, —, TRUE, FALSE, %, {, ), {0, }0,--- ;{2 }2} ([0,]o are no longer
necessary).

Lemma 24. For all ¢ € N there is a first-order sentengg, of vocabularyr(X) and sizeO(l) such that

forall n < 22 and (v,a) € 2CNHn) x A(n) we haveu(y,a) = ¢¢ < « = v. Furthermore,p,
can be computed in tim@(¢).

Now we are ready to state and prove the second lower bound of this section:

Theorem 25. UnlessW([1] = FPT, there is no algorithm foMC(FO, T') whose running time is bounded
by

20(’€)
22 ! p(n)a

for any polynomiap, wherek denotes the size of the input sentence arite size of the input tree.

Proof: Essentially, we proceed as for word structures. Suppose that there is an algoritiiming in time

SFf(k
92°"" - p(n), for some polynomiap and a functionf (k) € o(k). We shall prove that W& [2CNH is in
FPT. For/, k' € N let

%

- /

Yok 1= Hl‘l...xk’(/\P*xi /\ Lg #‘/L’7 /\(‘Oe;k/)7
i=1 1<i<j<k’

where@gyk, is obtained fromp, from Lemma 24 by replacing each atom of the faPm et by \/f;1 t=ux;
and Pra set by /\f;lt #+ x;, wheret denotes an arbitrary term. Since the number of atoms we have to
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replace is independent &f and?, we have | gy /|| = O({+k'?). Observe that, using the previous lemma,
ol
for everyn’ < 22° andy € 2CNF~»’) we have

w(v,*) | @err < ~ has a satisfying assignment of size

The algorithm deciding’-satisfiability of 2CNF is displayed as Figure 6.

Input: v € 2CNK~n’), parametet’ € N

1. Computeu(y, *)

2. Computel = [lglglgn'].

3. Computepy i/

4. Checkifu(y,*) = @ using algorithmA.

Figure 6.

The correctness of this algorithm is easy to see. We will show that there is a compujableN
(depending ork’) and a polynomial such that for alln’ > ny the runtime is bounded by(n’). By
Lemma 13 and the fact that the problem is computable at all, this implies thatr {®SNH is in FPT.

Lety € 2CNKn') be the input. Lines 1-3 can be done in time polynomiatinThe crucial part is
Line 4. By the assumption on algorithfnthis line requires time

L2 1Pewr 1D

wheren = ||u(7, %)|| = O((||y]|+n/)L(n")). By the previous remarK|g, || < ¢ (K +£) < - (k"> +
lglglgn’ + 1) for some constant Hence for sufficiently large’ we have{|g, /|| < ¢/lglglgn’, say, for
¢ = 2c. Sincef(k) € o(k), there is am such that for all’ > no we havef(clglglgn’) < lglglgn’
and thus

22f(H'~;’g‘k/H) 22f(c’|g|g|gn/) 22Iglglg n’ ,
2 <2 <2 <n.

This gives us the desired upper bound on the runtime of our algorithm. m]

7. Further Research

There is a significant gap between the lower bounds for model-checking on words provided by Theorem 1
and the upper bound@(O(k), 1) - n (a tower of2s of heightO(k)). It would be interesting to narrow this

gap, maybe by proving that there is igo(k), 1) - p(n) algorithm for first-order or monadic second-order
model-checking on words. Theorem 25 provides a triply exponential lower bound for first-order model-
checking on planar graphs (because trees are planar). The best known upper Gaandis1)-n. Again

it would be interesting to narrow the gap.
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