
Bialgebraic Modelling of Timed Processes

Marco Kick?

LFCS, University of Edinburgh, Edinburgh EH9 3JZ, Scotland
Email: mk@dcs.ed.ac.uk

Abstract. We give an abstract axiomatic account of timed processes
using monoids and their (partial and total) actions. Subsequently, we
present categorical formulations thereof, including a novel characterisa-
tion of partial monoid actions as coalgebras for an evolution comonad.
Adapting the approach of Turi and Plotkin [24], we then exhibit an
abstract theory of well-behaved operational rules suitable for timed pro-
cesses and, for discrete time, also derive a concrete syntactic format
encompassing all rules we found in the literature.

Introduction

Over the past decade, much research effort has been directed towards establish-
ing a theory of real-time systems. Amongst other approaches, extensions of stan-
dard process algebras [6, 10, 16] with timing features have been considered. The
meaning of such timed processes is usually given by structural operational seman-
tics (SOS) [20]: one inductively defines a labelled transition system (LTS) [20]
on the set of processes, describing the behaviour of programs as (sequences of)
transitions inferred from syntax-directed rules.

In this paper, we attempt to unify the plethora of studied languages, e.g., [4,
17, 19, 22, 25], by axiomatising shared fundamental mathematical properties; we
model timed processes by timed transition systems (TTSs) – specific LTSs incor-
porating intuitive properties of time passing. In particular, we adopt the widely
accepted design principle of separating computation from time passing, using
action and time transitions to denote, respectively, instantaneous computations
and pure time passing. We only consider the case of action and time transitions
defined independently of each other, with Temporal CCS (TeCCS) [17] as the
paradigmatic example.

In the study of processes, strong emphasis has been put on behavioural equiva-
lences (see [8] for an overview) and on proving congruence results for them. This
has led to rule formats: syntactic constraints on SOS rules whose satisfaction
automatically establishes a congruence result. Arguably, the most well-known
format is GSOS [7] which ensures that strong bisimulation [16] is a congruence.
To our knowledge, there is no corresponding format for timed processes. Paving
the way for such a format, we present a mathematical theory of well-behaved SOS
rules for timed processes; furthermore, for the case of discrete time, we derive a
syntactic format which, we believe, captures all examples in the literature.
? This work is supported by EPSRC grant GR/M56333.

To achieve these last two goals, our approach builds on the framework of [24].
There, abstract operational rules are a suitable kind of natural transformation,
parametric in functorial notions Σ and B of signature and (one-step) behaviour,
specifying how to derive the meaning of compound expressions from the meaning
of their arguments (as traditional SOS rules do). Mathematically, the core of
the theory is that such abstract rules inductively define a distributive law of a
monad over a comonad [21] (respectively (co)freely generated from Σ and B).
Using the bialgebras [24] of such distributive law, and under a mild condition
on B (preservation of weak pullbacks), a congruence result for coalgebraic B-
bisimulation [1] follows.

GSOS arises by considering abstract rules for the behaviour functor

BAX = Pfi(X)A(1)

on Set (see [24] for definitions): BA-coalgebras are (image finite) LTSs, the corre-
sponding coalgebraic bisimulation is strong bisimulation, and BA preserves weak
pullbacks. Hence, [24] yields, apart from a new proof, a conceptual reason why
bisimulation is a congruence for GSOS languages. We want to apply these tech-
niques to our model of timed processes, i.e., TTSs, by fitting it into the general
framework; as we will see, to successfully do so we need to slightly generalise [24].

The structure of the paper is as follows. In §1, stressing the crucial concepts,
we consider time domains (special monoids) and TTSs to model time and timed
processes. We then show that TTSs are partial monoid actions of a time domain;
total monoid actions play a prominent role as delay operators; both kinds of
actions are then suitably combined in the new notion of biaction. In preparation
for applying [24], we give categorical characterisations of these notions in §2, in
particular of partial monoid actions (i.e., TTSs) as coalgebras of a novel evolution
comonad, and of biactions as bialgebras for a distributive law (of the monad for
total actions over the evolution comonad).

Finally, in §3, we adapt the framework of [24] to accommodate our categorical
description of timed processes: rather than using behaviour functors (as in [24]),
we need to begin with a behaviour comonad to account for TTSs (as coalgebras
for the evolution comonad). Thus, a correspondingly different type of natural
transformation modelling abstract rules must be used: still inducing a distribu-
tive law, yet removing the restriction to cofreely generated comonads. In some
sense, behaviour comonads model ‘big-step’ semantics as they usually describe
‘complete’ computations, rather than just one step. For the case of discrete time,
where the evolution comonad is actually cofreely generated from a functor, thus
enabling us to directly apply [24], we then derive the aforementioned syntactic
format.

Benefits from the approach of the present paper are: a more unified view of
timed processes by isolating fundamental mathematical properties underlying
many calculi; highlighting important mathematical structures in languages for
timed processes; and providing another case study documenting the universality
and flexibility of the categorical approach to operational semantics of [24].

1 A Mathematical Model of Timed Processes

In this section we present our abstract model of timed processes based on an
axiomatic treatment of time transitions: time is modelled by special monoids,
timed processes by LTSs with their transition relations restricted to incorporate
special properties of time passing1. The following definitions of time domain and
TTS are synthesised from the (slightly differing) ones in [12, 13, 18, 25].

Definition 1. A time domain is a commutative monoid (T ,+, 0) (abbreviated
as T) whose induced preorder ≤, defined by s ≤ t ⇔ (∃u). s + u = t, is a linear
order, and which satisfies the cancellation rule

t + u = t + v ⇒ u = v(2)

Note that 0 is the least element with respect to ≤, + is monotone with
respect to ≤ (implied by (2)), and whenever s ≤ t, there is a unique u such that
s+u = t, written as t−s. This partial subtraction (only defined for s ≤ t) can be
extended to the total truncated subtraction ·−, setting t ·− s = 0 if s > t, making
time domains closed [15]. Examples of time domains include the naturals N for
discrete time, the non-negative reals R≥0 for continuous time, and the trivial
domain {0}; note that T is either trivial or infinite (cf. [13]).

Definition 2. A TTS is an LTS (P, T ,) where P is a set of processes, T is
a time domain, and the transition relation ⊆ P ×T ×P satisfies the following
axioms, writing p t

 p′ for (p, t, p′) ∈ :

p t
 p′ ∧ p t

 p′′ ⇒ p′ = p′′(Determinacy)

p 0
 p(Zero-Delay)

p s+t
 p′ ⇔ (∃p′′). p s

 p′′ t
 p′(Continuity)

Axiom (Determinacy) states that no choices are resolved by the passage of
time. Axioms (Determinacy) and (Continuity) (additivity in [18]) are widely
accepted, e.g., in [17, 18, 25] (sometimes only one implication of (Continuity) is
used, e.g. in [12, 13]). Axiom (Zero-Delay) is usually not assumed since most
languages allow only non-zero time transitions; yet it is intuitively clear and can
be added without inconsistencies.

Definition 3. Given TTSs (Pi, T , i), i ∈ {1, 2}, a relation R ⊆ P1 × P2 is a
(strong) time bisimulation (over T) if (p1, p2) ∈ R implies for all t ∈ T that

p1
t

 1 p′1 ⇒ (∃p′2). p2
t

 2 p′2 ∧ (p′1, p
′
2) ∈ R

p2
t

 2 p′2 ⇒ (∃p′1). p1
t

 1 p′1 ∧ (p′1, p
′
2) ∈ R

We write p1 ∼ p2 if there exists a strong time bisimulation containing (p1, p2).
1 Since action transitions are defined independently by GSOS rules, we omit their

treatment, as it is just an instance of [24], using the behaviour functor BA.

Note that calculi like TeCCS [17] combine time bisimulation with standard
action bisimulation. Axiom (Determinacy) forces the transition relation of a
TTS (P, T ,) to be a binary partial function ∗ : P × T ⇀ P (written in infix
notation), (Zero-Delay) and (Continuity) ensure the following equations up to
Kleene equality ('):

p ∗ 0 ' p p ∗ (s + t) ' (p ∗ s) ∗ t(3)

In other words, ∗ has to be a partial monoid action of T on P . Note that the
TTS is completely determined by ∗:

p t
 p′ ⇔ p′ ' p ∗ t(4)

Definition 4. Let T be a time domain and ∗i partial T -actions on Pi, i ∈ {1, 2}.
A homomorphism from ∗1 to ∗2 is a (total) function f : P1 → P2 such that for
p ∈ P1 and t ∈ T , f(p ∗1 t) ' (fp) ∗2 t.

Using (4), R ⊆ P1 × P2 is a time bisimulation if (p1, p2) ∈ R implies for
all t ∈ T , with (. . .) ↓ denoting that the expression (. . .) is defined (dually,
undefinedness will be expressed as (. . .)↑):

(p1 ∗1 t)↓⇔ (p2 ∗2 t)↓ (p1 ∗1 t)↓⇒ (p1 ∗1 t, p2 ∗2 t) ∈ R

Thus, R is closed under partial actions. Note how the rewritten definition
incorporates (Determinacy): p1

t
 1 p′1 can only hold for p′1 = p1 ∗1 t, hence exis-

tential quantification is no longer required. Furthermore, a time bisimulation R
can be endowed with a canonical partial action, viz., (p1, p2)∗t ' (p1 ∗1 t, p2 ∗2 t),
making the projections πi : R → Pi homomorphisms from ∗ to ∗i.

Consider TeCCS now; after adding transitions according to (Zero-Delay)2,
its operational rules define a TTS on the set TeCCS/∼ of processes modulo time
bisimulation. An important operator is time prefixing: intuitively, (t).p represents
the process p delayed by t > 0 units of time; formally, its behaviour is given by
the following SOS rules3:

(s + t).p s
 (t).p

(t > 0)
(t).p t

 p

p s
 p′

(t).p s+t
 p′

(5)

Extending for t = 0, (Zero-Delay) forces (0).p = p since (0).p 0
 p is derivable

from the rules, hence (0).p ∼ p; one also easily shows (s).(t).p ∼ (s + t).p. These
equations, plus the delay intuition, inspire the following definition:

Definition 5. Let (P, T ,) be a TTS; a delay operator on it is a binary total
function • : T × P → P (written in infix notation) satisfying the equations

0 • p = p s • (t • p) = (s + t) • p(6)

2 TeCCS does not define 0 -transitions.
3 The side condition t > 0 was implicit in [17] since (0).p is not a TeCCS process.

Hence, a delay operator is a total monoid action of T on P ; for example,
the extended time prefixing is a delay operator on TeCCS/∼. Analysing the
interaction of time transitions with time prefixing or, more abstractly, of a partial
action with a total one, bearing in mind that ≤ is a total order so that at least
one of s ·− t and t ·− s is equal to 0, we introduce the following notion.

Definition 6. A T -biaction is a set P with a partial action ∗ and a delay op-
erator • satisfying

(t • p) ∗ s ' (t ·− s) • (p ∗ (s ·− t))(7)

A T -biaction gives a minimal account of timed processes which can be delayed
and perform time transitions, (7) linking these actions in the ‘right’ way. From
our previous remarks, it follows that TeCCS/∼ is an example of a biaction.

2 Timed Processes Categorically

In order to fit the previous considerations into the framework of [24], we now
give categorical formulations of (total and partial) actions and biactions; in the
remainder of this section, let T be a time domain. For partial actions, driven by
their equivalence with TTSs, and the necessity to account for time bisimulation,
we will present a coalgebraic description; for dual reasons, we use the following
folklore description of total T -actions as algebras for a monad:

Proposition 1. The map X 7→ T ×X induces a monad on Set whose algebras
are the T -actions.

Instead of viewing partial actions as partial functions X × T ⇀ X, we will
regard them as total functions X → ET X where ET X contains T -evolutions –
certain partial functions T ⇀ X with properties mimicking (3):

Definition 7. A T -evolution (on X) is a partial function e : T ⇀ X such that

e(0)↓ e(s + t)↓ ⇒ e(s)↓(8)

We denote the set of all T -evolutions on X by ET X (or simply EX).

Intuitively, an evolution e in EX describes a timed process whose time tran-
sitions are defined by e t

 x df⇔ e(t) ' x; using this notation, and abbreviating
(∃x). e t

 x by e t
 , the two axioms (8) become e 0

 and e s+t
 ⇒ e s

 , i.e., very
basic versions of (Zero-Delay) and (one direction of) (Continuity).

Given a function f : X → Y , defining Ef : EX → EY by e 7→ f ◦ e makes
E an endofunctor on Set, as is routinely verified. Note that, since f is a total
map, the domains of e and f ◦ e are equal; E is not only a functor:

Proposition 2. E is a comonad, with counit ε and comultiplication δ given by

εX : EX → X, e 7→ e(0)

δX : EX → E2X, e 7→











(

λt.

{

e(s + t) if e(s + t)↓
undef if e(s + t)↑

)

if e(s)↓

undef if e(s)↑

Definition 8. We call (E, ε, δ) the evolution comonad on Set.

Note that δ transforms an evolution e on X into an evolution δ(e) on EX
by acting as a parameterised shift or lookahead: δ(e)(t) is equal to e + t, i.e., the
evolution e after t ∈ T units of time have passed, the case distinction merely tak-
ing care of potential undefinedness. Furthermore, the comonad law εE ◦ δ = idE

states δ(e)(0) = e + 0 = e, i.e., shifting by 0 is the same as not shifting at all.
Standard (image finite) LTSs are coalgebras for the behaviour functor BA;

in contrast, TTSs are partial T -actions and need the notion of coalgebras for a
comonad to account for the axioms in (3):

Proposition 3. E-coalgebras are partial T -actions, which in turn are TTSs; the
passage from an E-coalgebra k : P → EP to a TTS (P, T ,), and vice versa,
is given by

p t
 p′ ⇔ k(p)(t) ' p′(9)

A comonad D is cofreely generated by an endofunctor B if each DX is the
carrier of the final (X×B)-coalgebra (see e.g. [23]). One important consequence
is then that D–Coalg ∼= B–Coalg; this can be interpreted as big-step transi-
tions (from D-coalgebras) being completely determined by one-step transitions
(from B-coalgebras). For the evolution comonad and discrete time, we note the
following well-known fact:

Proposition 4. EN is cofreely generated by BN
df= 1 + Id : Set → Set.

Hence EN–Coalg ∼= BN–Coalg, i.e., any partial N-action on some processes P
corresponds to a unique function P → 1 + P : for t ∈ N we have t = 1 + . . . + 1
(t times); hence, knowing the ‘next step’ (via a BN-coalgebra) is by (Continuity)
sufficient to define all time transitions (via an EN-coalgebra). We can use BN to
model the qualitative notions of time in [9, 19]: a special deterministic action (χ
or σ) denoting the passage of an (unspecified) amount of time (which might be
thought of as the duration of a clock cycle).

For a behaviour functor B, there is a notion of coalgebraic B-bisimulation [1]:
a B-bisimulation between B-coalgebras k1 : X1 → BX1 and k2 : X2 → BX2 is
a B-coalgebra k : X → BX and B-coalgebra homomorphisms fi : X → Xi. For
example, for BA, one obtains strong bisimulation in this way. This definition
readily generalises to comonads, yielding for the evolution comonad, via the
equivalence of TTSs and partial monoid actions:

Proposition 5. E-bisimulation is strong time bisimulation.

For T = N, we obtain strong time bisimulation over N; yet, such a bisim-
ulation is completely determined by matching the next step, which is exactly
given by BN-bisimulation, and which is also the appropriate notion of (time)
bisimulation for qualitative time. The following proposition will be needed later.

Proposition 6. E preserves pullbacks.

Finally, we can now give a categorical description of the T -biactions intro-
duced above. A distributive law of a monad (T, η, µ) over a comonad (D, ε, δ) [21]
is a natural transformation ` : TD ⇒ DT subject to the equations

` ◦ ηD = Dη ` ◦ µD = Dµ ◦ `T ◦ T`

and their duals

εT ◦ ` = Tε δT ◦ ` = D` ◦ `D ◦ Tδ

The `-bialgebras [24] are then structures TX h−→ X k−→ DX, consisting of a
T -algebra h and a D-coalgebra k such that k ◦ h = Dh ◦ ` ◦ Tk.

Proposition 7. The map

`X : T × EX → E(T ×X), (t, e) 7→ λs.(t ·− s, e(s ·− t))(10)

induces a distributive law whose bialgebras are biactions.

Hence, biactions are obtained as bialgebras, distributing total over partial
actions. As total T -actions can alternatively be described as coalgebras for the
exponential comonad ()T (dually to Prop. 1), an interesting open question is
whether there is an entirely coalgebraic description of biactions, using a distribu-
tive law of comonads in order to combine ()T with E.

3 Categorical Operational Semantics for Timed Processes

We now turn our attention to abstract operational rules for timed processes or,
more abstractly, behaviour comonads. In [24], abstract GSOS rules were given
by a natural transformation of type

Σ(Id ×B) ⇒ BT(11)

for functorial notions Σ and B of signature and (local) behaviour, with Σ freely
generating the syntax monad T . Such rules then inductively induce a distribu-
tive law TD ⇒ DT of T over the comonad D cofreely generated by B, hence
distributing free syntax over cofree behaviour.

For BA, we can translate (11) into concrete rules as follows: for each set X
of variables and each n-ary operator σ in the signature Σ, there is a map

[[σ]] : (X × Pfi(X)A)n → Pfi(TX)A

Its arguments are n pairs of variables xi ∈ X and ‘behaviours’ βi ∈ Pfi(X)A,
interpreted as process names and transitions (described by mapping labels to
targets of transitions with that label); its result is a behaviour encoding the
transitions of the compound process σ(x1, . . . , xn). Careful analysis, in particular
of naturality, shows that this is actually equivalent to defining GSOS rules.

The Id -component in the premises of (11) is needed to associate names to
behaviours; for E, with its counit ε : E ⇒ Id available for that purpose, it suffices
to use ΣE instead of Σ(Id × E). Inspection of rules in the literature allows even
further simplification, as shown by the following proposition.

Proposition 8. The rules of TeCCS induce a natural transformation of type

ΣE ⇒ E(Id + Σ)(12)

Proof. We will only illustrate how to define some rules, leaving the proof of
naturality to the reader. Consider weak choice ⊕ with its (slightly adapted) rules

p1
t

 p′1, p2
t

 p′2
p1 ⊕ p2

t
 p′1 ⊕ p′2

p1
t

 p′1, p2 6
t

p1 ⊕ p2
t

 p′1

p1 6
t

 , p2
t

 p′2
p1 ⊕ p2

t
 p′2

Recalling (9), in particular p 6 t being equivalent to k(p)(t)↑, we obtain the
map [[⊕]] : (EX)2 → E(X + ΣX),

[[e1 ⊕ e2]] = λt.



















e1(t)⊕ e2(t) if e1(t)↓ ∧ e2(t)↓
e1(t) if e1(t)↓ ∧ e2(t)↑
e2(t) if e1(t)↑ ∧ e2(t)↓
undef if e1(t)↑ ∧ e2(t)↑

Note how the cases match the rules. Writing T + df= T \ {0}, time prefixing,
with rules given in (5), yields the map [[().]] : T + × EX → E(X + ΣX), re-
calling ε(e) = e(0):

[[(t).e]] = λs.



















(t− s).ε(e) if s < t
ε(e) if s = t
e(s− t) if s > t ∧ e(s− t)↓
undef if s > t ∧ e(s− t)↑

More precisely, [[().]] : T + × EX → E(X + (T + ×X)) ∼= E(T ×X), since
X + (T + ×X) ∼= (X × {0}) + (X × T +) ∼= X × ({0}+ T +) ∼= X × T , and also
[[().]] = `|(T +×EX), i.e., (10) restricted to arguments of type T + × EX. Note
that this definition also makes sense for t = 0, yielding [[(0).e]] = e since s < 0
never holds, hence resulting in [[().]] = `.

We will now show how to obtain a distributive law TE ⇒ ET from (12).
Since E is no longer cofreely generated from a behaviour functor, we need to
place some conditions on the rules relating them to the operations ε and δ of E
(which were void in the cofree case). Despite stating the following theorem for
E, it holds for arbitrary comonads (D, ε, δ).

Theorem 1. Let Σ be a functor freely generating a monad T ; furthermore sup-
pose ρ is a natural transformation of type (12) satisfying

ΣE
ρ

+ 3

Σε

��

E(Id + Σ)

εId+Σ

��

Σ inr
+3 Id + Σ

ΣE
ρ

+3

Σδ

��

E(Id + Σ)

δId+Σ

� �

ΣE2
ρE

+3 E(E + ΣE)
E[Einl,ρ]

+3 E2(Id + Σ)

(13)

Then this induces a distributive law TE ⇒ ET .

Note that (12) is the simplest case in a hierarchy of natural transformations
describing operational rules for behaviour comonads, distinguished by the com-
plexity of terms allowed in the right-hand side of rule conclusions; the other
extreme is ΣE ⇒ ET , permitting arbitrary terms, as opposed to (12) allowing
at most one function symbol. Increasing expressivity is traded off against the
complexity of constraints to be satisfied in order to respect the operations of the
comonad, with (13) also being the simplest case. For TeCCS, we obtain:

Proposition 9. The natural transformation of Prop. 8 satisfies (13).

Corollary 1. Time bisimulation is a congruence for TeCCS.

Proof. This follows from Thm. 1, Props. 5, 6, and 9, and [24, Cor. 7.5].

Note that this is a weaker congruence result than what was shown in [17]:
there, the bisimulation obtained by combining action and time bisimulation was
a congruence; here, we only obtain that each of the two on its own is a congruence
(by [24], since the action rules are GSOS, and by the preceding corollary).

Discrete Time. Let us now consider the case T = N. As shown in Prop. (4), EN
is cofreely generated by the functor BN, enabling us to use (11) to define the
rules and to introduce the following syntactic rule format. Let Σ be a signature
and fix an enumeration (without repetitions) {xk | k ≥ 1} of a countable set X
of variables. Our rule format will use GSOS [7] rules of the form

{xi xn+i}i∈I , {xj 6 }j∈J

σ(x1, . . . , xn) θ
(14)

where σ ∈ Σ is an n-ary function symbol, I, J ⊆ {1, . . . , n}, and θ a term
over Σ and X. The fact that we consider GSOS rules means that θ contains no
fresh variables, i.e., all variables in θ must occur somewhere else in the rule4.
Moreover, for each xk, 1 ≤ k ≤ n, there is at most one positive and one negative
premise, and the targets of the positive premises (if there are any) are fixed to
be the next |I| variables after xn in the order of the enumeration.

A rule (14) is consistent if I ∩ J = ∅, complete if I ∪ J = {1, . . . , n}, and
it has type (I, J); two such rules, with respective types (Ik, Jk), are mutually
exclusive if (I1 ∩ J2) ∪ (I2 ∩ J1) 6= ∅, i.e., there is at least one variable occur-
ring both positively (i.e., in a positive premise) in one rule and negatively in
the other; for consistent rules, note that this is equivalent to I1 6= I2 (since
Jk = {1, . . . , n} \ Ik). Say then that a set of consistent and complete rules (14)
is in deterministic single-label GSOS (dslGSOS) format over X if any two rules
for the same operator σ ∈ Σ are mutually exclusive.

Consistent rules have no conflicting premises, i.e., no variable occurs both
positively and negatively in the same rule; yet, since we only use complete rules
4 Also all variables in {xk | 1 ≤ k ≤ n + |I|} must be pairwise distinct, but that is

already guaranteed by our use of the enumeration.

for the dslGSOS format, each xk must occur inside the premises, therefore, it oc-
curs in exactly one premise. Mutual exclusion then ensures for each operator that
there is at most one rule applicable at a time (assuming each xk has either no or
exactly one next step, as defined by a BN-coalgebra). Note that there can only be
finitely many rules for each operator σ ∈ Σ without violating mutual exclusion;
hence, if Σ is finite, each set of rules in dslGSOS format is automatically finite.
Furthermore, mutual exclusion is a global condition on sets of rules, unlike the
local variable conditions of the GSOS format, or consistency and completeness,
which refer only to single rules; also the restriction to image-finite sets of GSOS
rules in [24], ensuring the one-to-one correspondence between such sets of rules
and natural transformations (11) for the functor BA, is a weak but nevertheless
global condition.

Theorem 2. There is a one-to-one correspondence between rules in dslGSOS
format and natural transformations of type

Σ(Id ×BN) ⇒ BNT

Proof. The proof is done along the lines of the proof of [24, Thm 1.1]. We obtain
an exact correspondence (not just up to equivalence of sets of rules as in [24])
since the dslGSOS format, deploying the variable enumeration, unambiguously
prescribes which variables occur at which places in the rules.

An example of rules in the above format is given by the time rules of the
language ATP [19]. We have also defined a new one-step version of the time
rules of TeCCS fitting in dslGSOS. Using the above theorem and the equivalence
between EN- and BN-coalgebras, we were then able to prove categorically that
the one-step rules induce the same TTS as the original (big-step) rules.

Note that for both the above languages, the action rules are GSOS, hence
we can describe them using the behaviour functor BA and (11). For the full
languages, combining the two sets of rules given by two natural transformations
ρA : Σ(Id ×BA) ⇒ BAT and ρN : Σ(Id ×BN) ⇒ BNT , precomposing ρA and ρN
with the respective projections yields natural transformations

Σ(Id × (BA ×BN)) ⇒ BAT Σ(Id × (BA ×BN)) ⇒ BNT(15)

Since (BA ×BN)T ∼= BAT ×BNT , (15) is equivalent to (11) instantiated with
B = BA ×BN. Thus, by [24], the combined bisimulation is a congruence for both
languages since it corresponds exactly to coalgebraic bisimulation for BA ×BN.

Future Work

Most pressingly, we plan to give a syntactic characterisation of the abstract
format (12) for timed processes for the general case: this is as yet beyond the
scope of this paper but we envisage a format corresponding to (12) on which to
impose (global) side conditions corresponding to (13).

For discrete time, (15) should also allow to treat such calculi where action
and time transitions are no longer defined independently, in particular by adopt-
ing the maximal progress assumption [11], e.g., (discrete time) TiCCS [25] and
TPL [9]. We want to extend this to the case of an arbitrary time domain, also to
obtain a congruence result for the combined bisimulation for (big-step) TeCCS.
Hopefully, we can achieve this by instantiating (12) with products of comonads
(alike to using products of functors in the discrete case).

In a different direction, we will investigate the idea of normal forms: for
instance, the normal forms of (0).p and (s).(t).p would be p and (s + t).p. In
order to achieve this, we could use a retraction TNF / T for two (syntax) monads,
corresponding to rewriting terms into normal forms and the inclusion of normal
forms into terms, coupled with a distributive law TNFE ⇒ ETNF (induced by
rules like (12)) to model the operational semantics of normal forms only; the
retraction should then induce a distributive law for the full language.

The last point seems closely connected to defining rules corresponding to (12)
in the category of T -actions, using a more complex syntax with a ‘built-in’ total
T -action corresponding to time prefixing; as behaviour, we would use the lifting
(see [24]) of E obtained by the distributive law (10). This might also clear up
the somewhat mysterious rôle of said law, since currently it is only used in a
restricted form (by the rules for time prefixing, see Prop. 8), although clearly an
important mathematical structure.

Finally, we hope to be able to deal with operational semantics for timed au-
tomata [2], a very prominent approach to formalising real-time systems. Treat-
ing also this quite different (from the process-algebraic point of view) approach
within the same or a similar framework as in the present paper would even
further emphasise the flexibility of the categorical framework.

Acknowledgements. The author would like to thank Daniele Turi and Gordon
Plotkin for numerous helpful discussions.

References

1. P. Aczel and P. F. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E.
Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Category Theory and
Computer Science, LNCS 389, pp. 357–365, 1989. Springer.

2. R. Alur and D. L. Dill A theory of timed automata. Theoretical Computer Science
25(2), pp. 183–235, 1994.

3. J.C.M. Baeten and J.W. Klop, editors. Concurrency Theory (CONCUR ’90), LNCS
458, 1990. Springer.

4. J.C.M. Baeten and C.A. Middelburg. Process algebra with timing: real time and
discrete time. In Bergstra et al. [5], chapter 10.

5. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
North-Holland, 2001.

6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation 60, pp. 109–137, 1984.

7. B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal of the
ACM 42(1), pp. 232–268, 1995.

8. R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In Bergstra et al. [5], chapter 1, pages 3–99.

9. M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation 117, pp. 221–239, 1995.

10. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
11. J.J.M. Hooman and W.P. de Roever. Design and verification in real-time dis-

tributed computing: an introduction to compositional methods. In E. Brinksma, G.
Scollo, and Chris A. Vissers, editors. International Conference on Protocol Specifi-
cation, Testing and Verification, 1989. North-Holland.

12. A. Jeffrey. A linear time process algebra. In Larsen and Skou [14], pp. 432–442.
13. A. S. A. Jeffrey, S. A. Schneider, and F. W. Vaandrager. A comparison of additivity

axioms in timed transition systems. Technical Report CS-R9366, CWI, 1993.
14. K.G. Larsen and A. Skou, editors. Computer Aided Verification (CAV ’91), LNCS

575, 1991. Springer.
15. W. Lawvere. Metric spaces, generalized logic, and closed categories. In Rendiconti

del Seminario Matematico e Fisico di Milano, XLIII. Tipografia Fusi, 1973.
16. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
17. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten

and Klop [3], pp. 401–415.
18. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.

In Larsen and Skou [14], pp. 376–398.
19. X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and

application. Information and Computation 114, pp. 131–178, 1994.
20. G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Department, Aarhus University, 1981.
21. J. Power and H. Watanabe. Distributivity for a monad and a comonad. In B. Ja-

cobs and J. Rutten, editors, Second Workshop on Coalgebraic Methods in Computer
Science (CMCS’1999), volume 19 of ENTCS, 1999.

22. S. A. Schneider. An operational semantics for timed CSP. Technical Report PRG-
TR-1-91, Oxford University, 1991.

23. D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis,
Free University, Amsterdam, 1996.

24. D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Twelfth
Annual Symposium on Logic in Computer Science (LICS ’97), pp. 280–291, 1997.
IEEE Computer Society Press.

25. Y. Wang. Real-time behaviour of asynchronous agents. In Baeten and Klop [3],
pp. 502–520.

