
Electronic Notes in Theoretical Computer Science 68 No. 1 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume68.html 20 pages

Marco Kick 1

LFCS, Division of Informatics, University of Edinburgh
Edinburgh EH9 3JZ, Scotland, UK

Email: mk@dcs.ed.ac.uk

Rule Formats for Timed Processes

Abstract

Building on previous work [15,8], this paper describes two syntactic ways of defin-
ing ‘well-behaved’ operational semantics for timed processes. In both cases, the
semantic rules are derived from abstract operational rules for behaviour comonads
and thus ensure congruence results. The first of them, a light-weight attempt us-
ing schematic rules, is shown to be sound, i.e., to indeed induce abstract rules as
introduced in [8]. Then a second format, based on a new and very general kind of
abstract rules, comonadic SOS (CSOS), is presented which uses meta rules and is
also complete, i.e., it characterises all possible CSOS rules for timed processes.

1 Introduction

In their paper [15], Turi and Plotkin presented a mathematical theory for
Plotkin’s structural operational semantics (SOS) [12], using the categorical
notions of distributive law of a monad over a comonad [13], and bialgebras [15]
of such a law. To model abstract operational rules, they considered natural
transformations of type

Σ(Id ×B) ⇒ BT(1)

for functorial notions Σ and B of signature and (one-step) behaviour, respec-
tively, and T the monad freely generated by Σ (corresponding to terms over
the signature Σ). It was shown that abstract rules as in (1) induce a distribu-
tive law of T over the cofree comonad on B (for the definition see, e.g., [14]).
Using the bialgebras of this law, they were able to obtain an abstract congru-
ence result for coalgebraic B-bisimulation [1] (under the technical assumption
that B preserves weak pullbacks).

For a particular choice of behaviour functor, they also showed that the
resulting abstract rules (1) correspond precisely to concrete rules in the well-
studied GSOS [4] format. Thus their approach offers a conceptual explanation

1 This work is supported by EPSRC grant GR/M56333

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume68.html�

Kick

why bisimulation is a congruence for GSOS languages. This illustrates that,
under auspicious circumstances, it is possible to derive syntactic formats from
abstract rules by careful analysis of the constraints expressed in (1), stemming
from the chosen behaviour and the naturality of the rules. Very recently, this
has led to the discovery of a GSOS-style format for probabilistic transition
systems [3].

With an analogous format as the ultimate goal, [8] showed how to adapt the
approach of [15] to accommodate timed processes and the time rules of timed
process calculi, with Temporal CCS (TeCCS) [10] as the principal example.
This was achieved by first distilling from the literature abstract accounts of
time and timed processes as time domains (special kinds of monoids, e.g.,
N or R≥0 with addition) and timed transition systems (TTSs, labelled tran-
sition systems with suitably restricted transition relations as to account for
specific properties of time passing), respectively. One important result was
that TTSs are the same as the (Eilenberg-Moore) coalgebras for a novel evo-
lution comonad E. More abstractly, the desire to accommodate coalgebras
for the evolution comonad within the bialgebraic framework of [15] necessi-
tated finding abstract rules for general behaviour comonads, corresponding to
‘global’ behaviour, or ‘big-step’ semantics, as opposed to ‘local’ behaviour, or
‘small-step’ semantics, described by behaviour functors.

The solution presented in [8] employed abstract rules of type

ΣE ⇒ E(Id + Σ)(2)

respecting the structure of the comonad E, i.e., validating two diagrams re-
lating the rules (2) to the counit and the comultiplication of E, respectively.
These requirements became necessary since E is not cofreely generated, giving
a complete account of all the time transitions of a process at once, unlike the
cofree case where atomic steps are iterated without producing additional con-
straints. On the level of concrete rules, these new constraints correspond to
global conditions on sets of rules, in contrast to the GSOS conditions operating
on a local, i.e., per-rule, basis. Abstract rules (2) satisfying these conditions
then indeed induced a distributive law of the free monad on Σ over E.

As an application, it was shown that the (time) rules for TeCCS can be
expressed in this way, and so a congruence result for E-bisimulation (given by
time bisimulation, a very natural notion of equivalence for TTSs) was obtained.
Furthermore, it was shown in [8] that for the special case of discrete time (with
time domain N), the evolution comonad is actually cofreely generated from a
functor. Hence, applying the machinery of [15], a syntactic format for at least
this case was obtained, leaving the derivation of a format for an arbitrary time
domain as an open problem. The objective of the present paper is to close this
gap by presenting two different ways of syntactically specifying well-behaved
operational semantics for timed processes in the general case. In doing so,
it is assumed (as in [8]) that there is no interference between time rules and
action rules, and so again only the time rules are discussed since action rules

2

Kick

are commonly just GSOS rules already fitting in the framework of [15] and
thus need not be considered here.

The paper is organised as follows. After §2, which contains a brief exposi-
tion of the necessary background from [8], §3 introduces schematic rule shapes
with time variables allowing to uniformly derive time transitions by instanti-
ating the variables with concrete time values (as done, e.g., in the operational
semantics of TeCCS), and admissible operators consisting of specific combina-
tions of such shapes. These constitute a sound way of describing the behaviour
of timed processes, i.e., admissible operators do indeed induce abstract rules of
type (2) which additionally respect the structure of E. Therefore, time bisim-
ulation is automatically established as a congruence for such operators, which
are powerful enough to encompass the time rules of TeCCS. Hence, this yields
a new proof of the congruence result obtained in [8] (and also in the original
paper [10]). However, they are not complete since there are easy examples of
abstract rules as in (2) respecting the structure of E, yet not induced by ad-
missible operators. Even so, the approach provides an easy-to-use, systematic
way of describing well-behaved rules for timed processes, expressive enough to
include most interesting operators from the literature.

Next, §4 presents very powerful abstract operational rules for an arbitrary
behaviour comonad D, based on natural transformations of type

ΣD ⇒ DT(3)

This comonadic SOS (CSOS) combines elements of (1) and (2) but is strictly
more expressive than either. In order to guarantee that CSOS rules induce
a distributive law of T over the D as before, the rules again have to respect
the structure of D, which, due to the increased expressivity, results in more
complex global conditions on the abstract rules (3). The generality of CSOS
is then demonstrated by showing that CSOS rules respecting the structure of
D are already equivalent to giving the full distributive law TD ⇒ DT , the
most general kind of abstract rules for a freely generated monad T , thereby
extending results from [13,9].

Finally, §5 presents a sound and complete format for timed processes de-
rived from CSOS rules instantiated with the evolution comonad, establishing
a one-to-one correspondence between concrete and abstract rules at the price
of using infinite sets of infinitary meta rules. This is essentially due to the
evolution comonad describing timed processes as evolutions with, in general,
infinite domain. To give a complete characterisation of such processes (fit-
ting with the ‘global behaviour’ interpretation of behaviour comonads), one
needs infinitely many premises, and the infinite number of possible domains
requires infinitely many rules. The admissible operators from §3 are contained
in the more general format, thus providing a sufficiently concrete description
for most, if not all, important cases.

3

Kick

2 Bialgebraic Semantics for Timed Processes

This section briefly reviews some of the definitions and results from [8].

Definition 2.1 (i) A time domain is a commutative monoid T = (T , +, 0)
which, for all s, t, u ∈ T , satisfies the cancellation rule

s + t = s + u ⇒ t = u

and whose induced preorder ≤, defined as

t ≤ u ⇔ (∃s). t + s = u

is a linear order.

(ii) A timed transition system (TTS) is a labelled transition system (LTS)
(P, T ,) where P is a set of processes, T is a time domain, and the
transition relation ⊆ P ×T ×P satisfies the following axioms, where
p t

 p′ denotes (p, t, p′) ∈ :

p t
 p′ ∧ p t

 p′′ ⇒ p′ = p′′(Determinacy)

p 0
 p(Zero-Delay)

p t+u
 p′ ⇔ (∃p′′). p t

 p′′ u
 p′(Continuity)

(iii) Given TTSs (Pi, T , i), i ∈ {1, 2}, a relation R ⊆ P1 × P2 is a (strong)
time bisimulation (over T) if (p1, p2) ∈ R implies for all t ∈ T that

p1
t

 1 p′1 ⇒ (∃p′2). p2
t

 2 p′2 ∧ (p′1, p
′
2) ∈ R

p2
t

 2 p′2 ⇒ (∃p′1). p1
t

 1 p′1 ∧ (p′1, p
′
2) ∈ R

To obtain a coalgebraic description of timed processes represented by
TTSs, the following notion of evolution is introduced:

Definition 2.2 Let T be a time domain and X a set. A T -evolution on X
is a partial function e : T ⇀ X satisfying the two axioms, for t, u ∈ T :

e(0)↓(4)
e(t + u)↓ ⇒ e(t)↓(5)

where (. . .)↓ denotes that the partial expression (. . .) is defined (and, dually,
(. . .)↑ denotes undefinedness of the expression). The set of all T -evolutions
on X is written as EX = ET X. Given a function f : X → Y , define the map
Ef : EX → EY by e 7→ f ◦ e.

This last definition makes E = ET into an endofunctor on Set, the cate-
gory of sets and total functions, yet more is true:

4

Kick

Proposition 2.3 The functor E is a comonad on Set, with counit ε and
comultiplication δ given by

εX : EX → X, e 7→ e(0)

δX : EX → E2X, e 7→ λt.











e + t df=
(

λu.

{

e(t + u) if e(t + u)↓
undef if e(t + u)↑

)

if e(t)↓

undef if e(t)↑

and the (Eilenberg-Moore) coalgebras for E are precisely TTSs. Moreover,
coalgebraic E-bisimulation [1] (extended to the case of coalgebras for comon-
ads) is time bisimulation, and E preserves pullbacks.

Abstract rules for the behaviour comonad E are then obtained as follows:

Theorem 2.4 Let Σ be an endofunctor on Set such that the free monad T on
Σ exists. Furthermore, suppose ρ : ΣE⇒E(Id+Σ) is a natural transformation
respecting the structure of E, i.e., satisfying the ε- and δ-diagrams

ΣE
ρ

+3

Σε
� �

E(Id + Σ)
εId+Σ

� �

Σ inr
+3 Id + Σ

ΣE
ρ

+3

Σδ
��

E(Id + Σ)

δId+Σ
��

ΣE2
ρE

+3 E(E + ΣE) fρ
+ 3 E2(Id + Σ)

(6)

for fρ
df= E[Einl , ρ]. Then ρ induces a distributive law ` : TE ⇒ ET of the

monad T over the comonad E.

Theorem 2.5 The time rules of TeCCS can be described by a natural trans-
formation ρ as in Thm. 2.4 which respects the structure of E.

Since E in particular preserves weak pullbacks, the theory of `-bialgebras
from [15] applies to the TeCCS-case, allowing to automatically obtain the
following well-established result:

Corollary 2.6 Time bisimulation is a congruence for TeCCS

3 Schematic Rules for Timed Processes

This section presents a simple way of specifying a well-behaved operational
semantics of timed processes over an arbitrary time domain, using schematic
rules: the rules only contain time transitions which are labelled by time vari-
ables, rather than concrete time values. Then, in order to derive concrete
time transitions, the time variables in such a rule must be instantiated with
the actual values, subject to applicability of the rule.

To this end, certain schematic rule shapes for defining time transitions are
introduced, and only certain combinations of these are allowed as admissi-
ble operators for describing concrete operators. Hence instead of a ‘format’,

5

Kick

this approach really just yields a collection of ‘operator blueprints’. In or-
der to describe timed processes, admissible operators have to include time-
parameterised operators, i.e., operators which have time(s) as parameters, in
addition to the usual parameters for processes. For simplicity, the set of ad-
missible operators only considers the case of at most one time parameter.

In deriving the schematic rules, the time rules of TeCCS served as the guid-
ing example, in particular time prefixing (t).p of TeCCS, for a time t 6= 0 and
a process p, is the prototype of a time-parameterised operator. Consequently,
the admissible operators encompass the time rules of TeCCS but also addi-
tional rules from [11]. Soundness of the admissible operators is established by
showing that admissible operators indeed induce natural transformations as
in Thm. 2.4, while the failure of completeness is then demonstrated by pre-
senting a simple example of abstract rules not expressible by an admissible
operator. Finally, a way to make the schematic shapes a bit more permissive
is discussed by considering them relative to a time domain.

In the remainder of this section, let V be a countable set of variables, and
let T be an arbitrary time domain, writing T>

df= T \ {0}. Note that the time
variables in the following rule shapes are only allowed to range over T>. It is
therefore impossible to derive 0

 -transitions. The reason for this restriction is
that the ε-diagram in (6) already determines the targets such transitions (see
the proof of Prop. 3.4). Note that also potential time parameters cannot have
value 0. Furthermore, all variables occurring in a rule must be distinct, hence
the restriction that each rule shape should be a GSOS rule:

Definition 3.1 Let Σ be a signature and σ ∈ Σ be a function symbol; write
x = (x1, . . . , xn) for distinct xi ∈ V and the appropriate arity n ∈ N, s, t time
variables ranging over T>, and I ⊆ {1, . . . , n}, 1 ≤ j ≤ n such that j 6∈ I.
Then the possible rule shapes are GSOS rules of the following kinds:

(i) Standard operators defined by rules of the shapes

−
σ(x) t

 σ(x)
(A)

x1
t

 x′1 · · · xn
t

 x′n
σ(x) t

 σ(x′)
(B)

xj
t

 x′j, (∀1 ≤ k ≤ n). k 6= j ⇒ xk 6
t

σ(x) t
 x′j

(Cj)

(ii) Time-parameterised operators defined by rules of the shapes

{xi
t

 x′i | i ∈ I}, (∀1 ≤ k ≤ n). yk =

{

x′k if k ∈ I
xk if k 6∈ I

σ(x, t + s) t
 σ(y, s)

(tAI)

6

Kick

{xi
t

 x′i | i ∈ I}
σ(x, t) t

 xj

(tBI,j)

{xi
t

 x′i | i ∈ I}, xj
s

 x′j
σ(x, t) t+s

 x′j
(tCI,j)

Note that for a constant c, i.e., a function symbol c of arity 0, the two
shapes (A) and (B) become equal, and there can be no rule of shape (Cj).

Definition 3.2 Let Σ be a signature and let σ ∈ Σ be a function symbol with
arity n ∈ N. Then, in addition to the case of no rules at all, the admissible
operators are given as follows. For standard operators:

(i) for arity n = 1
• one rule of shape (A), or
• one rule of shape (B), or
• one rule of shape (Cj) for j = 1

(ii) for arity n 6= 1
• one rule of shape (A), or
• one rule of shape (B), or
• one rule of shape (B), and for each 1 ≤ j ≤ n one rule of shape (Cj)

For time-parameterised operators of arbitrary arity, the following operators
are admissible:
• one rule of shape (tAI) for some I ⊆ {1, . . . , n}, or
• one rule for each of the shapes (tAI), (tBI,j), and (tCI,j), with matching

I ⊆ {1, . . . , n} and 1 ≤ j ≤ n such that j 6∈ I

Again for the case of a constant c, note that the only non-trivial (i.e.,
consisting of at least one rule shape) admissible operator is given by the case
of one rule of shape (A), or equivalently (B), cf. the previous remark.

Example 3.3 All the operators of TeCCS can be modelled using the above
admissible operators, e.g.:

(i) Nil process 0 and action prefix α. : no rules;

(ii) Delay prefix δ. : the unary case of one rule of shape (A);

(iii) Strong choice + and parallel composition |: the binary case of one rule
of shape (B)

(iv) Weak choice ⊕: the binary case of one rule of shape (B) and two rules of
shape (Cj), one each for j = 1 and j = 2;

(v) Time-prefixing (t). for t ∈ T>: the unary case of one rule each of the
shapes (tAI), (tBI,j), and (tCI,j) for I = ∅ and j = 1.

The main result of this section is showing that the admissible operators of
Def. 3.2 provide a sound operational semantics for timed processes:

7

Kick

Proposition 3.4 Let Σ be a signature and σ ∈ Σ an n-ary function symbol.
If the time rules for σ can be described by of the above admissible operators
they induce a map [[σ]] : (EV)n → E(V + ΣV) natural in V that respects the
structure of E.

Proof (Sketch) The proof is exemplified for the case of TeCCS’s strong
choice +. As stated in Ex. 3.3, its semantics is defined by one binary rule
of shape (B), translating to

[[e1 + e2]] = λt ∈ T>.

{

e1(t) + e2(t) if e1(t)↓ ∧ e2(t)↓
undef if e1(t)↑ ∨ e2(t)↑

for two evolutions e1, e2 ∈ EV. Note again that this map is not defined for
t = 0 since the rule shapes cannot be instantiated with that value. However,
the ε-diagram of (6) expresses the validity of the equation

[[e1 + e2]](0) = e1(0) + e2(0)

Thus, simply take this as the definition of [[e1 + e2]](0), automatically making
the ε-diagram commute. Put together, this yields the well-defined map

[[+]] : (EV)2 → E(V + ΣV) ,

[[e1 + e2]] = λt.

{

e1(t) + e2(t) if e1(t)↓ ∧ e2(t)↓
undef if e1(t)↑ ∨ e2(t)↑

Also the δ-diagram of (6) commutes for [[+]], as shown by the following calcu-
lations. First, the result of the map δX+ΣX ◦ [[+]], the right-down path around
the diagram, is computed as follows:

[[e1 + e2]] = λt.

{

e1(t) + e2(t) if e1(t)↓ ∧ e2(t)↓
undef if e1(t)↑ ∨ e2(t)↑

δX+ΣX7−→

λt.











λu.

{

e1(t + u) + e2(t + u) if e1(t + u)↓∧e2(t + u)↓
undef if e1(t + u)↑∨e2(t + u)↑

if e1(t)↓∧e2(t)↓

undef if e1(t)↑∨e2(t)↑

The map E[Einl , [[+]]]◦[[+]]EX ◦(δ+δ), corresponding to the other path around
the diagram, results in the following map, using the fact that e(t)↓⇔ (δe)(t)↓:

[[e1 + e2]]
δ+δ7−→ [[δe1 + δe2]] = λt.

{

δe1(t) + δe2(t) if δe1(t)↓ ∧ δe2(t)↓
undef if δe1(t)↑ ∨ δe2(t)↑

= λt.

{

(e1 + t) + (e2 + t) if e1(t)↓ ∧ e2(t)↓
undef if e1(t)↑ ∨ e2(t)↑

E[Einl ,[[+]]]7−→

λt.











λu.

{

(e1 + t)(u) + (e2 + t)(u) if (e1 + t)(u)↓∧(e2 + t)(u)↓
undef if (e1 + t)(u)↑∨(e2 + t)(u)↑

if e1(t)↓∧e2(t)↓

undef if e1(t)↑∨e2(t)↑

8

Kick

= λt.











λu.

{

e1(t + u) + e2(t + u) if e1(t + u)↓∧e2(t + u)↓
undef if e1(t + u)↑∨e2(t + u)↑

if e1(t)↓∧e2(t)↓

undef if e1(t)↑∨e2(t)↑

Hence the two maps are equal, and the diagram commutes. Finally, naturality
follows from the fact that all the rule shapes obey the GSOS variable conditions,
cf. the considerations in the proof of [15, Thm. 1.1]. 2

Note that the intuitive meaning of the δ-diagram is illustrated in this proof:
applying the rules once to derive a t+u

 -transition (expressed in the right-down
path in the diagram) leads to the same process as applying the rules twice,
first deriving a t

 -transition to an intermediate state, and then deriving a u
 -

transition from there (the other path). In other words, the diagram represents
a rule-, or derivation-based version of time continuity.

Soundness now follows by combining the maps [[σ]] for all operators σ ∈ Σ:

Theorem 3.5 If the time rules of a language only use the above admissible
operators they induce a natural transformation ΣE ⇒ E(Id + Σ) respecting
the structure of E.

In addition to the time rules of TeCCS there are other operators in the
literature that can be described using admissible operators. For example,
consider the time-out operator p

t
. q from [11], with time rules

p t′
 p′, t′ < t

p
t
. q t′

 p′
t−t′
. q

p t
 p′

p
t
. q t

 q

p t
 p′, q t′

 q′

p
t
. q t+t′

 q′

Intuitively, p
t
. q behaves like p strictly before time t; then at time t the control

switches to q, simply discarding p: if p waits too long, viz., does not perform
its intended task within t units of time, it gets preempted by the ‘time-out
handler’ q. However, note that p really must wait until the point of preemption
for the time-out to become effective: if p, for some reason, cannot idle at least
for t units of time, q never gets activated.

The fact that t′ < t implies there is a unique t′′ ∈ T> such that t + t′′ = t
(a property of time domains, cf. [8]), so the first rule can be rewritten as

p t′
 p′

p
t′+t′′
. q t′

 p′
t′′
. q

Then it fits the rule shapes as the binary case of shape (tAI) with I = {1};
so do the other two rules, fitting shape (tBI,j) and shape (tCI,j), respectively,
both with I = {1} and j = 2. Since this is one of the allowed combinations for
admissible operators in Def. 3.2, the time-out operator induces a map which
respects the structure of E.

9

Kick

In contrast to that, the rules of the start-delay operator bpct(q) from [11]
do not fit any operator format:

p u
 p′, u < t

bpctq u
 bp′ct−uq

(∀s < t). p 6 s , u < t

bpctq u
 bpct−uq

p t
 p′

bpctq t
 q

p t
 p′, q u

 q′

bpctq t+u
 q

Intuitively, bpctq is very similar to p
t
. q, if p can idle for at least t units of time

the two processes even behave in exactly the same way (as expressed in the
first, third, and fourth rule). Yet if p cannot idle long enough there is a subtle
difference: where the time-out p

t
. q simply cannot idle either, the start-delay

bpctq, as stated in the second rule, allows further progress, provided p cannot
perform any time transition whatsoever, and preserves p’s action potential for
longer than it would have been present originally.

Moreover, this is essentially the reason why the operator violates time con-
tinuity which is at the very heart of the TTS-based approach: for T = N and
any q, the rules allow the derivation b(1).0c3q 1

 b0c2q 1
 b0c1q; yet b(1).0c3q 6 2 ,

since (1).06 2 but (1).0 1
 0, and so neither the first nor the second rule applies.

Hence this particular operator is not compatible with the abstract model of
timed processes used here, and its exclusion is actually desirable rather than
problematic. On the level of abstract rules, the failure of time continuity is
mirrored by the δ-diagram failing for the induced map [[b ct]] which conse-
quently does not respect the structure of E, conceptually underpinning the
decision not to include the operator.

Although the admissible operators exclude some undesirable operators,
they do not provide a complete description of all possible well-behaved rules.
A simple counter-example is given by the following function

[[σ(e)]] = λt.

{

σ(e(0)) if t = 0
σ′(e(0)) if t > 0

or, spelled out as a schematic time rule (again with t only ranging over T>):

−
σ(x) t

 σ′(x)

It is trivial to check that [[σ]] is natural and respects the structure of E, yet,
for σ 6= σ′, the rule does not fit any of the rule shapes since the top-most
operator is changed in the conclusion of the rule (from σ to σ′).

The reason for this restriction on admissible operators is the δ-diagram.
Intuitively demanding that the rules satisfy continuity, changes in the topmost
operator would cause problems, especially in the case of cyclic dependencies
between operators. Assume, for instance, that there is a time transition from
a term with σ as its topmost operator to a term with σ′ on top, and vice
versa; once including such cases, it seems almost impossible to syntactically
guarantee continuity. Besides, all relevant operators from the literature fit

10

Kick

the format anyway, so it seems general enough as it is. Furthermore, after
repeated attempts, it seems that more permissive rule shapes or operator
formats invariably invalidate well-definedness or the δ-diagram.

3.1 Refining the Rule Shapes

Even though arguably expressive enough, the admissible operators are by no
means as general as they could be. As an illustrative example consider the
following ‘speed-halving’ operator, as suggested by an anonymous referee:

p t
 p′

σ(p) t+t
 σ(p′)

(7)

This operator can be described by the function

[[σ]] : ΣEX → E(X + ΣX)

e 7→ λt.

{

σ(e(t)) if ∃u. u + u = t ∧ e(u)↓
undef otherwise

which, in general, is not well-defined: for T = N, [[σ]] potentially allows the
derivation of a 2

 -transition (in case e(1)↓), yet never of a 1
 -transition (there

is no u ∈ N such that u + u = 1) and therefore, axiom (5) of evolutions would
not hold for [[σ]](e). However, when considered over the time domain R≥0, [[σ]]
is natural, it fits the type (2), and it respects the structure of E. Thus, for
the time domain R≥0 and the specific time transformation t 7→ t + t on it, (7)
results in a well-behaved operator. This can be generalised as sketched in the
following tentative development, allowing rule shapes parameterised by a time
domain T and ‘well-behaved’ transformations T → T .

Let f : T → T be a monoid homomorphism. The image of f is the set
f [T] df= {s ∈ T | ∃t ∈ T . s = f(t)}; it is necessarily a submonoid of T , hence
non-empty, always containing 0. An order ideal on T is a downward closed
subset I of T (with respect to the induced pre-order ≤ on T , cf. Def. 2.1),
i.e., t ∈ I and u ≤ t imply u ∈ I.

Assume now that f : T → T is a monoid homomorphism which is injective,
and whose image is an order ideal. Spelled out in concrete terms, the second
requirement states that if there exists st ∈ T such that f(st) = t and u ≤ t
then there also exists su ∈ T with f(su) = u. Given such an f , the following
rule shape then constitutes an admissible operator with respect to T :

x t
 x′

σ(x)
f(t)
 σ(x′)

By the injectivity of f , its inverse function f−1 : f [T] → T exists and, by the
additional properties, is also an injective homomorphism, so the above rule

11

Kick

can be translated into the well-defined map

[[σ]] : EX → E(X + ΣX),

e 7→ λt.

{

σ(e(f−1(t))) if f−1(t)↓ ∧ e(f−1(t))↓
undef if f−1(t)↑ ∨ e(f−1(t))↑

which also respects the structure of E.
For N, the only such f is the identity function, while for R≥0, we conjecture

that only functions of the form t 7→ r · t for r 6= 0 (including the identity for
r = 1, and (7) for r = 2) satisfy all the conditions, i.e., that only speeding-
up/slowing-down by a constant factor is allowed. It remains to be investigated
in how far such functions f can be used in the previously presented rule shapes,
including a necessary generalisation to the n-ary case.

4 Comonadic SOS

Taking a more abstract point of view, this section now presents a general
account of abstract rules for an arbitrary behaviour comonad D = (D, ε, δ)
and freely generated syntax 2 , based on natural transformations ρ of type (3),
and thus having greater expressivity than (2), which in turn formed the basis of
the schematic format of the previous section. The increased expressive power
of (3) necessitates stronger assumptions on the rules ρ in order for them to
respect the operations of the comonad D.

Definition 4.1 Let Σ, F be endofunctors, Σ freely generating the monad
T = (T, η, µ) with free Σ-algebra structure γ : ΣT ⇒ T . Given a natural
transformation ρ : ΣF ⇒ FT , define `ρ : TF ⇒ FT as the unique map
making the following diagram commute (obtained by the freeness of T):

F
ηF

+ 3

Fη
�%

C

C

C

C

C

C

C

C

C

C

C

C

C

C

TF
`ρ

��

�

�

�

�

�

�

ΣTF
γF

ks

Σ`
��

FT FT 2
Fµ

ks ΣFTρT
ks

(8)

Call `ρ the distributive law induced by ρ.

Proposition 4.2 Let Σ, F, T and `ρ be as in Def. 4.1. Then `ρ : TF ⇒ FT
is a distributive law of the monad T over the functor F .

Using `ρ, it is now possible to formulate conditions under which rules as
in (3) respect the structure of D:

2 Dualising this approach by using an arbitrary (syntax) monad T , e.g., terms over a
signature modulo some equational theory, but only a one-step behaviour endofunctor B as
in [15], seems closely related to [5] where so-called structured transition systems (where the
set of states is endowed with some algebraic structure given by T and its algebras) were
considered by using B-coalgebras on the category of T -algebras.

12

Kick

Definition 4.3 Let Σ, T be as in Def. 4.1, and define the natural transforma-
tion ξ : Σ ⇒ T by ξ df=γ ◦ Ση. Let, furthermore, D = (D, ε, δ) be a comonad
and ρ : ΣD ⇒ DT be a natural transformation with induced distributive law
`ρ : TD ⇒ DT of T over D (regarded as an endofunctor). Say then that ρ
respects the structure of the comonad D if the following two diagrams (again
referred to as the ε- and δ-diagram, respectively) commute:

ΣD
ρ

+3

Σε
� �

DT
εT

��

Σ ξ
+3 T

ΣD
ρ

+3

Σδ
��

DT
δT
� �

ΣD2
ρD

+3 DTD D`ρ
+3 D2T

(9)

Abstract comonadic SOS (CSOS) rules for D are then given by a natural
transformation ρ : ΣD ⇒ DT respecting the structure of D.

Theorem 4.4 Assume ρ : ΣD ⇒ DT respects the structure of the comonad
D = (D, ε, δ). Then the induced distributive law `ρ : TD ⇒ DT is a distribu-
tive law of the monad T over the comonad D.

Thm. 4.4 states that abstract CSOS rules induce a distributive law of free
syntax over the (arbitrary) behaviour comonad D. Hence it extends the result
of Prop. 4.2 in the case that the endofunctor F is a comonad D such that the
rules ρ respect the comonad structure. It is also a more general result than
Thm. 2.4, since each natural transformation of type (2) can be extended to
one of type (3), but not vice versa. The main result of [15], that abstract
GSOS rules (1) induce a distributive law of free syntax over cofree behaviour,
is also covered by Thm. 4.4 when instantiating D with the cofree comonad on
a behaviour functor B, e.g., for timed processes over discrete time, in which
case the evolution comonad is cofreely generated from BN

df=1 + (see [8]). In
the following, the generality of abstract CSOS rules is made even more precise:
such rules are in fact already equivalent to a distributive law of a free monad
over a comonad, providing the converse of Thm. 4.4.

Lemma 4.5 Let Σ, F , and T be as above. Then natural transformations of
type ρ : ΣF ⇒ FT are in one-to-one correspondence with distributive laws
` : TF ⇒ FT of the monad T over the endofunctor F .

Proof (Sketch) The correspondence is defined as follows, leaving the proof
that the two maps are mutually inverse to the reader. Given ρ, use the induced
distributive law `ρ : TF ⇒ FT ; Prop. 4.2 then shows that ` respects the
operations of the monad T . In the converse direction, given ` : TF ⇒ FT ,
consider ρ` = ` ◦ ξF : ΣF ⇒ FT . 2

Substituting D for F , and adding the requirement that ρ respects the
structure of D, the one-to-one correspondence from Lemma 4.5 extends to
distributing free monads over comonads:

13

Kick

Theorem 4.6 Let Σ, T , and D be as above. Then there is a one-to-one cor-
respondence between abstract CSOS rules ρ : ΣD ⇒ DT and distributive laws
` : TD ⇒ DT of the freely generated monad T over the comonad D.

Proof (Sketch) The assumptions (9) allow to deduce that the induced dis-
tributive law `ρ is a distributive law of a monad over a comonad (not just
an endofunctor), and in the other direction, if ` distributes a monad over a
comonad, then ρ` satisfies both diagrams in (9). So the correspondence from
Prop. 4.5 extends to the case of freely generated monads and comonads. 2

Intuitively, Thm. 4.6 states that, in the case of T being freely generated,
the conditions in (9) are precisely the necessary and sufficient conditions on
abstract rules of type ΣD ⇒ DT allowing the bialgebraic approach of [15] to
be applied; in other words: there is no way to use strictly more expressive
abstract rules and still obtain a distributive law TD ⇒ DT in the case that
T is freely generated.

Note that, as already stated in [8], abstract CSOS rules (3) and the rules (2)
as in [8] form the extreme cases of a hierarchy of types for abstract rules from
which, under global constraints like (9) or (6), ensure that one obtains a
distributive law of T over D.

5 CSOS for Timed Processes

As an application of CSOS rules, this section presents a syntactic characteri-
sation of CSOS rules for the evolution comonad E. The format is based on the
notion of a meta rule, which will serve as a convenient abbreviation for infinite
sets of infinitary rules. Even so, the format will still consist of infinitely many
such meta rules to completely capture all possible abstract rules.

In the following, fix a non-trivial time domain T , hence T has infinite
cardinality, see [8]. Furthermore, let V be a set of variables with |V| = |T |,
and for each n ≥ 1 fix an n-ary enumeration of V without repetitions: disjoint
subsets Vi = {xt

i | t ∈ T } ⊆ V for each 1 ≤ i ≤ n. For a set X and an
evolution e ∈ EX, the domain and range of e are dom(e) = {t ∈ T | e(t)↓} ⊆
T and rng(e) = e(T) ⊆ X, respectively, extended for e = (e1, . . . , en) ∈
(EX)n by dom(e) = (dom(e1), . . . , dom(en)) and rng(e) =

⋃n
i=1 rng(ei). If

e ∈ ETX is an evolution on terms, the variables vars(e) of e are all the
variables occurring in the terms in rng(e) ⊆ TX. For tuples e ∈ (ETX)n,
define vars(e) =

⋃n
i=1 vars(ei). A tuple e ∈ (EX)n is generic if all the ei

are injective and have pairwise disjoint ranges. For n ∈ N and some n-ary
domain, the n-ary canonical tuple for that domain is given by n evolutions
εi such that the εi have the desired domain, and their values are given as
εi(t) = xt

i ∈ Vi ⊆ V . In the following, canonical tuples are denoted by ε. Since
none of the n-ary enumerations on V contains repetitions, canonical tuples
are generic tuples with canonical names. Note that for e ∈ (EX)n, there is a
unique corresponding canonical tuple ε ∈ (EV)n with the same domain.

14

Kick

Intuitively, generic tuples will serve the same purpose in the new format
as using distinct variables did in GSOS rules, viz., ensuring that rules treat
argument processes ‘anonymously’: although instantiating a rule with the
same processes in different argument places is certainly possible, the rules
cannot demand such identifications like, e.g., defining transitions only if two
arguments are equal. As a consequence of this ‘anonymity’ for generic tuples e,
each element in rng(e) can be uniquely ‘traced back’ to some ei, and canonical
tuples ε are truly canonical: they can be transformed into all other tuples of
the same domain.

Lemma 5.1 (i) If e ∈ (EX)n is a generic tuple and x ∈ rng(e) then there
exist unique 1 ≤ i ≤ n and t ∈ T such that x = ei(t).

(ii) Each tuple e ∈ (EX)n, with corresponding canonical tuple ε, induces a
unique map ϕe : rng(ε) → rng(e) such that Eϕe(εi) = ϕe ◦ εi = ei.

Later on, ϕe will be extended to a function of type V → X by arbitrarily
assigning values to variables not contained in the range of ε.

Definition 5.2 Let Σ be a signature, σ ∈ Σ be an n-ary function symbol,
e ∈ (EX)n, and ϑ ∈ ETX. Then an expression of the form

σ(e1, . . . , en) =⇒ ϑ(10)

is a meta rule for σ. In the following, write θt = ϑ(t) ∈ TX for t ∈ dom(ϑ).
The domain of a meta rule (10) is the same as dom(e) and it is generic (resp.
canonical) if e is a generic (canonical) tuple of evolutions.

Each meta rule (10) is an abbreviation of the (infinite) set of infinitary
time rules, ranging over t ∈ dom(ϑ), of the form

{ei(0) ti ei(ti) | ti ∈ T ∧ei(ti)↓}1≤i≤n {ei(0) 6 ti | ti ∈ T ∧ei(ti)↑}1≤i≤n

σ(e1(0), . . . , en(0)) t
 θt

(11)

occasionally abbreviated as σ(e) t
 θt, blurring the distinction between rule

and rule conclusions. Note that each meta rule contains a complete (or global)
description of the arguments’ behaviour, not just local tests for the presence
or absence of specific time transitions (like in the schematic format). This
is in line with the interpretation of behaviour comonads modelling global be-
haviour. The following development will be based entirely on meta rules to
make it more concise; all of it can also be carried out using standard time
rules, via the correspondence (11).

Definition 5.3 A meta rule σ(ε) =⇒ ϑ is a GSOS meta rule if it is canonical
and if vars(ϑ) ⊆ rng(ε). A set of meta rules over a signature Σ is complete
(resp. deterministic) if for each n-ary function symbol σ ∈ Σ and each n-ary
domain, there is at least (at most) one meta rule for σ. A set of deterministic,
complete GSOS meta rules is called admissible.

15

Kick

It follows immediately that an admissible set of meta rules contains pre-
cisely one meta rule for each σ and each appropriate domain. The termi-
nology ‘GSOS meta rule’ is used because then each induced time rule (11)
is an (infinitary) GSOS rule: all the εi have disjoint ranges, therefore vari-
ables occurring in the premises are distinct, in particular the εi(0); moreover,
since vars(ϑ) ⊆ rng(ε), each variable occurring in some θt must occur in the
premises. Note that this property does not depend on ε being canonical, it
also holds for generic tuples e such that vars(ϑ) ⊆ rng(e). However, canon-
ical names are used to guarantee an exact one-to-one correspondence. The
following results show that admissible sets of meta rules are a correct charac-
terisation of natural transformations ΣE ⇒ ET .

Proposition 5.4 Each admissible set R of meta rules induces a natural trans-
formation [[R]] :ΣE⇒ET .

Proof (Sketch) Define a map [[R]]V : ΣEV → ETV at all canonical tuples
(possible because R is admissible) by [[R]]V(σ(ε)) = ϑ iff R contains the meta
rule σ(ε) =⇒ ϑ. This is well-defined and extends to a natural transformation
[[R]] because all meta rules in R are GSOS and then using Lemma 5.1(ii). 2

Proposition 5.5 Let ρ : ΣE ⇒ ET be a natural transformation. Then ρ
induces an admissible set 〈〈ρ〉〉 of meta rules.

Proof (Sketch) Derive the meta rules in 〈〈ρ〉〉 from the values of ρV , via
(σ(ε) =⇒ ϑ) ∈ 〈〈ρ〉〉 iff ρV(σ(ε)) = ϑ. Since ρ is natural, 〈〈ρ〉〉 is admissible.2

The following theorem follows from using canonical tuples to describe ad-
missible sets of meta rules.

Theorem 5.6 The two constructions R 7→ [[R]] and ρ 7→ 〈〈ρ〉〉 are mutually
inverse. Hence, there is a one-to-one correspondence between admissible sets
of meta rules and natural transformations of type ΣE ⇒ ET .

Note that under the correspondence, (σ(ε) =⇒ ϑ) ∈ R iff [[R]]V(σ(ε)) = ϑ,
and ρV(σ(ε)) = ϑ iff (σ(ε) =⇒ ϑ) ∈ 〈〈ρ〉〉, for an admissible set R of meta rules
and a natural transformation ρ : ΣE ⇒ ET , respectively. The next goal for
the format is a (meta) rule-based characterisation of the ε-diagram in (9):

Definition 5.7 A meta rule σ(e) =⇒ ϑ is co-pointed if it satisfies

θ0 = ϑ(0) = σ(e1(0), . . . , en(0))

Call a set R of meta rules co-pointed if each meta rule in R is.

Simple inspection yields:

Theorem 5.8 Admissible co-pointed sets of meta rules are in one-to-one cor-
respondence with natural transformations ρ : ΣE ⇒ ET additionally satisfying
the ε-diagram in (9).

16

Kick

The final task is to produce a similar characterisation of the δ-diagram
in (9) where the maps ρE and `ρ are used, the latter being defined in terms
of ρT . In the following, the values of these maps, for specific arguments, are
expressed in terms of ρV . Since this last component of the rules is at the core
of the correspondence established in Thm. 5.6, a match between the diagram
and (conditions on) meta rules is obtained.

Definition 5.9 Let Σ be a signature and θ ∈ TX be a term over Σ and some
set X. Let f : X ⇀ Y be partial function such that vars(θ) ⊆ dom(f). Then
denote the simultaneous substitution of f(xi) for xi ∈ vars(θ) in θ by θ[f]
or θ[f(xi)/xi]. Extending this notion to evolutions ϑ ∈ ETX, write ϑ[f] or
ϑ[f(xi)/xi] to denote the evolution on TY whose value at each t ∈ dom(ϑ) is
the term θt[f], subject to the condition vars(ϑ) ⊆ dom(f).

Lemma 5.10 Assume that: ε is a canonical n-ary tuple and ϑ ∈ (ETV)n has
the same domain as ε; ϕ�� : V → EV and ϕ# : V → TV are (extensions of) the
functions obtained from Lemma 5.1(ii), mapping ε to δε and ϑ, respectively;
ρ : ΣE ⇒ ET is a natural transformation with induced admissible set R = 〈〈ρ〉〉
of meta rules; Σ is a signature and σ ∈ Σ is an n-ary function symbol. Then,
using the naturality of ρ, one obtains the following characterisations:

(i) ρEV(σ(δε)) = ϑ[ϕ��] = ϑ[εi + t/xt
i] if and only if ρV(σ(ε)) = ϑ.

(ii) ρT (σ(ϑ)) = ϑ[ϕ#] = ϑ[ϑi(t)/xt
i] if and only if ρV(σ(ε)) = ϑ.

Definition 5.11 Given a set R of canonical meta rules, define the notion of
R-derivation as follows. For ξ ∈ TEX and ϑ ∈ ETX, write R ` ξ =⇒ ϑ if
there is a finite proof using only the two following rules (where, for simplicity,
any reference to unit η and multiplication µ of T is omitted):

(i) If ξ = e for some e ∈ EX then R ` e =⇒ e

(ii) If σ ∈ Σ is an n-ary function symbol and ξ1, . . . , ξn ∈ TEX then

{R ` ξi =⇒ ϑi, dom(ϑi) = dom(εi)}1≤i≤n (σ(ε) =⇒ ϑ) ∈ R
R ` σ(ξ) =⇒ ϑ[ϕ#]

In particular, if (σ(ε) =⇒ ϑ) ∈ R, then R ` σ(ε) =⇒ ϑ, so one could call
the expression R ` σ(ε) =⇒ ϑ an axiom. Note that it is not necessary that R
is admissible for R-derivations to make sense, but one obtains:

Lemma 5.12 Let R be an admissible set of meta rules and ρ = [[R]] be its
corresponding natural transformation with induced distributive law `ρ. Then
the following equivalence holds for ξ ∈ TEX and ϑ ∈ ETX:

(`ρ)X(ξ) = ϑ ⇔ R ` ξ =⇒ ϑ

Proof (Sketch) By induction on the structure of ξ. Two cases arise, as in
the definition of `ρ, and they are taken care of by the two corresponding rules
for R-derivations. 2

17

Kick

Intuitively, R-derivations (or equivalently `[[R]] for admissible R) capture
the notion of provability from a set of rules. Meta rules only apply to ‘simple’
terms with exactly one function symbol. The inductive extension given by
the R-derivations then determines the action of the rules on complex terms,
iterating applications of the rules (subject to necessary substitutions).

For admissible R, R-derivations describe the natural transformation `ρ.
Hence, whenever R ` ξ =⇒ ϑ (or equivalently, `ρ(ξ) = ϑ), it must hold that
vars(ϑ) ⊆ vars(ξ), with vars(ξ) the suitably defined set of all variables from
X occurring in ξ ∈ TEX. Otherwise, `ρ could not be natural, by the same
argument as showing that GSOS (meta) rules induce a natural transformation.

Definition 5.13 Let R be a set of canonical meta rules, Σ a signature, σ ∈ Σ
an n-ary function symbol, σ(ε) =⇒ ϑ a meta rule in R, and t, u ∈ T . Then
R is called continuous if the following two statements are equivalent:

(i) σ(ε) t+u
 θt+u, and

(ii) σ(ε) t
 θt ∧ R ` θt[ϕ��] =⇒ ϑ′ ∧ ϑ′(u) = θt+u

The terminology ‘continuous’ is used because the required equivalence in
Def. 5.13 is a generalised, meta rule-based version of time continuity: if one
rule application allows to derive a t+u

 -transition, it must be possible to first
derive a t

 -transition in one step, followed by a derivation (of arbitrary finite
length) of a u

 -transition. This use of derivations also precisely marks the
difference between the two δ-diagrams in (6) and (9): the former specifies
that the u

 -transition must be derivable at once, whereas the latter, as just
stated, allows several steps to derive the transition. This is due to the fact that
the abstract rules in (2) only allow terms with at most one function symbol in
rule conclusions, so at most one rule application is necessary/possible, whereas
in (3), arbitrary terms are allowed. Note that continuous sets of meta rules
are not necessarily admissible, yet using Lemmas 5.10 and 5.12, one deduces:

Theorem 5.14 There is a one-to-one correspondence between admissible con-
tinuous sets of meta rules and natural transformations ΣE ⇒ ET satisfying
the δ-diagram.

Corollary 5.15 There is a one-to-one correspondence between abstract CSOS
rules for timed processes and admissible, co-pointed, and continuous sets of
meta rules.

As already shown, the schematic format induces CSOS rules for E, hence:

Corollary 5.16 The schematic format induces an admissible, co-pointed and
continuous set of meta rules.

There is also a concrete way to derive the set of meta rules corresponding
to one of the admissible operators from §3, again illustrated by the case of
TeCCS’s strong choice + operator with associated map

[[+]] : (EV)2 → E(V + ΣV) ⊆ ETV
18

Kick

which was already shown to respect the structure of E in Prop. 3.4. Let (ε1, ε2)
be an arbitrary canonical tuple. Then [[+]] induces the following meta rule:

ε1 + ε2 =⇒ ϑ df= λt.

{

xt
1 + xt

2 if ε1(t)↓ ∧ ε2(t)↓
undef if ε1(t)↑ ∨ ε2(t)↑

Adding such a meta rule for each canonical tuple, [[+]], and more generally
any admissible operator from §3, yields an admissible set of meta rules.

Future Work

We are currently investigating how to treat calculi where action and time
transitions are not independent, using products of comonads together with
abstract rules like (2) or (3). Apart from the remaining open problems men-
tioned in [8], most importantly how to deal with timed automata [2], the
parameterised version of the schematic format from §3 should be extended, in
particular in such a way as to recover the presently used rule shapes. Finally,
there is the question whether one can find a different abstract model of timed
processes compatible with the bialgebraic approach of [15], yet avoiding the
various levels of infinity as exhibited by the complete format (using infinite
sets of infinitary rules); very speculatively, examining potential connections
with Fiore’s work on hybrid systems [6] might prove useful in this direction.

Acknowledgements. The author would like to thank Daniele Turi and Gordon
Plotkin for many helpful discussions.

References

[1] P. Aczel and P. F. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E.
Rydeheard, P. Dybjer, A. M. Pitts, and A. Poigné, editors, Proceedings of the
Conference on Category Theory and Computer Science, volume 389 of LNCS,
pages 357–365, Berlin, September 1989. Springer-Verlag.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 25 April 1994. Fundamental Study.

[3] F. Bartels. GSOS for probabilistic transition systems (extended abstract). In
Larry Moss, editor, Proc. Coalgebraic Methods in Computer Science (CMCS
2002), volume 65 of Electronic Notes in Theoretical Computer Science, 2002.

[4] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42(1):232–268, January 1995.

[5] A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and beyond: a
coalgebraic view of open systems. Theoretical Computer Science, 280(1–2):163–
192, May 2002. Special issue with selected papers from [7].

19

Kick

[6] M. Fiore. Fibred models of processes: Discrete, continuous, and hybrid systems.
In IFIP International Conference on Theoretical Computer Science, volume
1872 of Lecture Notes in Computer Science, pages 457–473, 2000.

[7] B. Jacobs and J. Rutten, editors. Coalgebraic Methods in Computer Science
(CMCS’1999), volume 19 of Electronic Notes in Theoretical Computer Science,
1999.

[8] M. Kick. Bialgebraic modelling of timed processes. In P. Widmayer, F.
Triguero, R. Morales, M. Hennessy, S. Eidenbenz, and R. Conejo, editors,
Proceedings ICALP’02, volume 2380 of Lecture Notes in Computer Science.
Springer-Verlag, 2002. Available from http://www.dcs.ed.ac.uk/home/mk.

[9] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. In H. Reichel, editor,
Third Workshop on Coalgebraic Methods in Computer Science (CMCS’2000),
volume 33 of Electronic Notes in Theoretical Computer Science, pages 233–263,
2000.

[10] F. Moller and C. Tofts. A temporal calculus of communicating systems. In
J.C.M. Baeten and J.W. Klop, editors, CONCUR ’90 (Concurrency Theory),
volume 458 of Lecture Notes in Computer Science, pages 401–415, Amsterdam,
The Netherlands, August 1990. Springer-Verlag.

[11] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In K.G. Larsen and A. Skou, editors, Computer Aided Verification (CAV ’91),
volume 575 of Lecture Notes in Computer Science, pages 376–398, Aalborg,
Denmark, July 1991. Springer-Verlag.

[12] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
Aarhus, Denmark, September 1981.

[13] J. Power and H. Watanabe. Combining a monad and a comonad. Theoretical
Computer Science, 280(1–2):137–162, May 2002. Special issue with selected
papers from [7].

[14] D. Turi. Functorial Operational Semantics and its Denotational Dual.
PhD thesis, Free University, Amsterdam, June 1996. Available from
http://www.dcs.ed.ac.uk/home/dt/.

[15] D. Turi and G. Plotkin. Towards a mathematical operational semantics. In
Twelfth Annual Symposium on Logic in Computer Science (LICS ’97), pages
280–291, Warsaw, Poland, 29 June–2 July 1997. IEEE Computer Society Press.

20

