
LFPL with Types for Deep Sharing
Michal Konečný

Abstract

First-order LFPL is a functional language for non-size increasing computation with an
operational semantics that allows in-place update. The semantics is correct for all well-
typed programs thanks to linear restrictions on the typing. Nevertheless, the linear typ-
ing is very strict and rejects many correct, natural in-place update algorithms. Aspinall
and Hofmann added usage aspects to variables in LFPL terms in order to typecheck more
programs while keeping correctness.

We further extend this language to typecheck even more programs, especially those that
use data sharing on the heap. We do it by assigning usage aspects to certain type sub-
terms instead of whole types thus referring to value portions instead of the whole values.
The usage aspects express preconditions of separation between certain argument por-
tions, the guarantees of preservation of certain argument portions and containment of
every result portion in some set of argument portions and a rely-precondition for ev-
ery separation guarantee within the result value. The new typing allows deterministic
type-checking with automatic synthesis of the best usage aspects for recursively defined
functions.

Contents

Contents . 1

1 Introduction . 2

2 Underlying language . 5

3 Operational semantics . 6

3.1 Data representation . 6

3.2 Term evaluation . 8

3.3 Heap regions . 8

4 Annotations . 12

4.1 Types . 12

4.2 Typing judgements . 14

5 Typing rules . 18

6 Correctness . 19

7 Inference . 20

8 Examples . 22

9 Conclusion . 24

9.1 Related work . 24

References . 25

1

1 Introduction

First-order LFPL [Hofmann 2000] is a functional programming language which has a straight-
forward compositional denotational semantics and at the same time can be evaluated imper-
atively without dynamic memory allocation. The higher-order version of this language is in-
teresting among other reasons because it captures non-size increasing polynomial time/space
computation with primitive/full recursion [Hofmann 2002]. We focus on the first order ver-
sion of LFPL in this report.

For example, in LFPL we can write the following program to append two lists of elements
of type A:

appendA(x, y) = match x with nil ⇒ y

| cons(h, t)@d ⇒ cons(h, appendA(t, y))@d

In the denotational semantics of the program, the attachment @d of cons is (virtually) ig-
nored in both cases and thus the semantics is list concatenation as expected. Nevertheless,
in the operational semantics @d indicates that the cons-cell is (or will be) at location d on the
heap. Thus the above program appends the lists in-place, rewriting the first list’s end with
a reference to the second list. This amounts to changing its last cons-cell if the first list is not
empty. The other cons-cells of the first list are overwritten with the same content.

This evaluation strategy can go wrong easily, for example for appendA(x, x) with a non-empty
list x. Such terms might fail to evaluate or evaluate with incorrect results. We will call
a term operationally correct (OC) if it evaluates in harmony with its denotational semantics
independently of the values of its free variables and how they are represented on the heap.

We also need a finer notion of operational correctness relative to some extra condition on
the representation of the arguments on the heap. For example, we would like to declare
appendA(x, y) correct under certain condition on how lists x and y are represented. A neces-
sary and sufficient condition for appendA(x, y) to evaluate correctly is that the heap region
occupied by the cons-cells of x should be separated (disjoint) from the whole region of y.

Apart from stating conditions for correctness, we need to mark certain guarantees about the
heap representation of the result and the change of heap during the evaluation. For example,
appendA(x, y) preserves the value of y and this might be crucial for showing the correctness
of a bigger term of which this is a subterm.

LFPL (Linear Functional Programming Language) uses linearity to achieve operational cor-
rectness of its terms. This means that in LFPL a variable cannot be used twice unless the
occurrences are in the two components of a cartesian product or in the two branches of an
if-then-else statement. Thanks to this restriction, LFPL maintains the “single pointer prop-
erty”, i.e. to any heap location there exists at most one reference at any time. This has the
consequence that different variables always refer to disjoint regions on the heap.

The language from [Aspinall & Hofmann 2002] (which we will call UAPL) relaxes the lin-
earity of LFPL by adding an integer i ∈ {1, 2, 3} (called usage aspect) to every variable in a
typing context (x :i A). The aspects indicate whether a variable’s content on the heap might
be destroyed (aspect 1) or has to be preserved during evaluation and also, in case it is pre-
served, whether the content of the variable may share with the result (aspect 2) or has to be

2

separated from it (aspect 3). For example, append will get the following typing:

x :1 L(A), y :2 L(A) ` appendA(x, y) : L(A).

In [2002] we described how the UAPL aspects can be translated to conditions and rely-
guarantees and how this view of UAPL (or other similar typings of the LFPL underlying
language) can help in its formalisation and its inference of annotation.

It is impossible to achieve a full characterisation of semantical correctness of the first-order
LFPL evaluation by a simple typing system. Nevertheless, UAPL has improved over LFPL
in allowing more of the correct algorithms to be recognised. For example, it type-checks
some programs which safely access both components of two structures that potentially share
some heap locations. This is impossible in LFPL.

Still, many correct programs will be rejected by UAPL. For example, if appendA(x, y) is
used in some program where x and y could not be guaranteed to be fully disjoint (e.g.
appendA(cons(h, tx)@dx, cons(h, ty)@dy)), then UAPL would not type-check it. UAPL needs
this stronger precondition because it cannot distinguish between the cons-cell (shallow) and
data (deep) levels of a list. This report develops a typing for the underlying language of
LFPL which improves over UAPL in that it can distinguish between these two levels (and
more than that) in any recursive data-type.

More precisely, we note each place in a type term which may involve a heap location in the
operational representation of the values of the type. For example, there is one such place
within each list or binary tree type constructor L(), Tb(). We give a name ζ to each such a
place (usually using a bold lower-case letter) and mark it in the type. For example, in a list
constructor we mark it like this: L[ζ](). To each such place we logically associate a portion
of the heap region taken by a value of the type (e.g. the locations of the cons-cells of a list).

We formulate preconditions and rely-guarantees using the portion names given in the types
within a typing judgement. The most obvious atomic condition is the separation (disjoint-
ness) of two portions ζ1, ζ2 on the heap which is written as ζ1⊗ζ2.

We need other atomic separation conditions related to the unfolding of a recursive type. For
example, we need to express that a list has its elements separated from each other or that a
tree’s skeleton is laid out without overlapping.

For this reason we give names also to each occurrence of a recursive type constructor within
the types of a typing judgement. For a list or tree constructor we will simply reuse the
name of the only portion associated with it. Given a recursive type occurrence name ζR

and a portion name ζ which occurs within the scope of ζR, we will define two conditions
⊗ζ/ζR and ⊗ζ©ζR. The former one states that the sub-portions of ζ which correspond to
the unfoldings of the type ζR are pairwise disjoint. The latter one is the same but requires
disjointness only for pairs of unfoldings in which one is not an sub-unfolding of the other
(see Def. 4.4 for details).

Now we can express that the elements of a list of the type L[a](L[b](Bool)) do not share by
⊗b/a and that the skeleton of a tree of the type T[c]

b (Bool) has no confluences by ⊗c©c.

3

Figure 1: Heap portions in the append program

b

e

f

a c

d

The typing for appendL(Bool) in our new system is:

x : L[a](L[b](Bool)), y : L[c](L[d](Bool)); {a⊗b, a⊗c, a⊗d} `
appendL(Bool)(x, y) : L[e⊆{a,c}](L[f⊆{b,d}](Bool)); {a}; ⊗f/e ⇐= {b⊗d,⊗b/a,⊗d/c}

Each argument has two portions indicated in their types. The argument portion names are
a, b, c, d and are illustrated in Fig. 1. Just before ` there is a pre-condition demanding that
three pairs of argument portions should be separated. Whenever this condition holds, the
term will evaluate in harmony with the obvious denotational semantics. The result type
has also two portions, named e and f. The notation with ⊆ indicates the guarantee that the
corresponding result portion is contained within the union of the given argument portions.
Behind the result type is the set of possibly destroyed portions, i.e. {a} in this case. The
last guarantee is a list of implications giving a set of separation pre-conditions necessary
for each basic separation guarantee about the result. The expression ⊗f/e indicates internal
separation between individual elements of the resulting list which depends on the same
property for both argument lists and the separation of b from d.

The containment and destruction-limitation guarantees in the example above have an anal-
ogous function to the UAPL usage aspects.

Our motivating example of an algorithm which makes use of the distinction between shal-
low and deep levels is an in-place update binary tree reversal algorithm converting a binary
tree with labelled nodes (but not leaves) to the list containing for each leaf the list of labels
as read along the path from the leaf to the root (Fig. 2).

The function pathsauxA(t, p) does the same as pathsA but appends p to all of the lists in its
result list. Actually, in the course of the induction, all of the elements of the result list are
constructed within calls to pathsauxA as the second argument and only at the leaves this
argument is added to the result lists. On return from the two inductive calls, the results are
appended and returned.

In the operational point of view, the algorithm simply reverses all the pointers in the struc-
ture of the tree and turns the leaves into cons-cells of the resulting list. It is crucial here that

4

Figure 2: Binary Tree Reversal

pathsA(t) = pathsauxA(x, nilA)

pathsauxA(t, p) = match t with leafb()@d ⇒ let n =

in cons(p, nilL(A))@d

| nodeb(a, l, r)@d ⇒ let ap = cons(a, p)@d

in let s1 = pathsauxA(l, ap)

in let s2 = pathsauxA(r, ap)

in appendL(A)(s1, s2)

leaves are not heap-free and their locations can be reused for cons-cells of the resulting list.
The labels on leaves are ignored.

Notice that in the last append s1 and s2 are lists whose control structures are disjoint but
whose data are lists that share among each other extensively.

Automatically inferred annotation for the above program can be found in Sect. 8.

2 Underlying language

First, we define the types, terms, typing judgements and denotational semantics of a lan-
guage which is a version of LFPL without linearity and with arbitrary heap-aware recur-
sive types. The types include recursive datatypes, sums and products, unit and LFPL-like
memory-resource types:

A ::= ♦ ♦A Unit A1 ×A2 A1 + A2 X µX.A

where X ranges over a set TVar of type variables. Let Type denote the set of all types. The
type ♦A has the same values as A but in the operational semantics a value would be repre-
sented by a pointer to a heap location which contains its ordinary type A representation1.

The pre-terms feature function calls which provide for general recursion as well as pointer
manipulation operators:

e ::= x f(x1, . . . , xn) let x = e1 in e2

unit (x1, x2) match x with (x1, x2) ⇒ e

inL (x) inR (x) case x of inL (xL) ⇒ eL|inR (xR) ⇒ eR

foldµX.A (x) unfoldµX.A (x)

x@d loc (x) get (x)

where x, d range over a set of variables and f over a set of function symbols called FnSym.
1Operationally viewed, the construction ♦A is analogous to Standard ML reference type A ref as well as to

the pointer type construction (A *) in C. Unlike in SML, our constructor is transparent to the denotational
semantics.

5

The plain typing defines typing judgements of the form Γ ` e : A and is standard apart from
the axiom rules for the new heap-aware term constructors:

[PUT]
x : A,d : ♦ ` x@d : ♦A

[GET]
x : ♦A ` get (x) : A

[LOC]
x : ♦A ` loc (x) : ♦

All types in a typing judgement have to be closed (without free type variables).

A program P is a finite domain partial function from FnSym to typing judgements (P(f) =

Γf ` ef : Af) which capture the signature (Γf, Af) and the definition (ef) of each symbol.

We consider the straightforward denotational semantics of types as sets:

• JUnitK = {unit}

• JA1 ×A2K = JA1K× JA2K

• JµX.AK = JA[X 7→ µX.A]K

• J♦K = {¥}

• JAL + ARK = {L}× JALK ∪ {R}× JARK

•
q

♦A
y

= JAK

Notice that ♦() is ignored and ♦ does not play any significant role here.

Denotation of programs JPK and terms JeKη,JPK with valuation η of free variables in e is de-
fined as usual apart from the pointer-related constructs which are virtually ignored:

• Jloc (x)Kη,JPK = ¥ • Jx@dKη,JPK = Jget (x)Kη,JPK = JxKη,JPK = η(x)

In examples, we will use a straightforward shortcut notation for expressions with booleans,
lists and a version of labelled binary trees as shown in Fig. 3. Finitely-branching labelled
trees are also included for illustration.

3 Operational semantics

In order to gain a good intuition for the annotated typing which will follow, let us first
consider the details of the operational semantics to which the annotations will refer.

3.1 Data representation

The occurrences of ♦() in types correspond to the intended heap layout of their values. For
example, compare the given type of binary trees with:

µX.♦(A + A× (X× X))

Any binary tree would take the same amount of heap locations according to both of the types
(provided it is laid out without sharing). A representation of a value of the above type is a
pointer to a location with a value of the sum type while a value of the type in Fig. 3 is a sum
value which contains a pointer to either a leaf or to a node. This difference is irrelevant at
this point. It could make a difference later when a heap portion is assigned to each diamond

6

Figure 3: Shortcut notation for booleans, lists and trees.

Bool = Unit + Unit tt = inL (unit) , ff = inR (unit)

L(A) = µX.Unit + ♦(A× X)
nilA = foldL(A) (inL (unit))

cons(h, t)@d = foldL(A) (inR ((h, t)@d))

match x with nil ⇒ e1|cons(h, t)@d ⇒ e2 = . . .

Tb(A) = µX.♦A + ♦
(
A× (X× X)

) leafb(a)@d = foldTb(A) (inL (a@d))

nodeb(a, l, r)@d = foldTb(A) (inR ((a, (l, r))@d))

match x with leafb(a)@d ⇒ e1

| nodeb(a, l, r)@d ⇒ e2

= . . .

T(A) = µX.A× LN(X) tree(a, l) = foldT(A) ((a, l))

match t with tree(a, l) ⇒ e = . . .

LN(A) = µX.♦Unit + ♦(A× X) nilA@d = foldLN(A) (inL (unit@d))

. . .

in the type. The chosen type then allows one to divide the heap portion taken by a binary
tree skeleton into two parts, one with the leaves and one with the nodes. Nevertheless, we
will not make use of this possibility in this report as we will consider the two portions as
one.

We will now make the heap-based representation of values precise. Let Loc be a set of
locations which model memory addresses on a heap. We use ` to range over elements of Loc.
Let Val be the set of (operational) values defined as follows:

v ::= unit ` (v1, v2) inl (v) inr (v)

An environment is a partial mapping S: Var ⇀ Val from variables to operational values.

A heap σ: Loc ⇀ Val is a partial mapping from heap locations to operational values.

The way in which a denotational value a of type A is represented by an operational value v

on a heap σ is formalised using a 4-ary relation v σ
A a defined as follows:

• unit σ
Unit unit • ` σ

♦ ¥,

• (v1, v2) σ
A1×A2

(a1, a2) if vk σ
Ak

ak for k = 1, 2

• inl (v) σ
AL+AR

(L, a) if v σ
AL

a • inr (v) σ
AL+AR

(R, a) if v σ
AR

a

• v σ
µX.A a if v σ

A[µX.A/X] a, • ` σ
♦A a if σ(`) σ

A a.

Whenever v σ
A a cannot be derived by a finite derivation from the rules above, the quadru-

ple is not in the relation.

7

Any heap location can be used for values of any type and thus there is no general bound
on the size of a heap location. For a particular program it is desirable that such a bound
could be derived statically. A simple sufficient condition for this is that all recursive types
mentioned in P are bounded. A recursive type µX.A is bounded if all occurrences of X in A

are within some ♦().

3.2 Term evaluation

Using the heap representation of values, define the operational semantics by an evaluation
relation S, σ ` e À v, σ ′ given in Fig. 4.

This evaluation allows in-place update and is non-size-increasing in the sense that there is no
means of allocating new space on the heap. All heap operations either read the heap or
overwrite some of the previously referenced locations.

3.3 Heap regions

The complete heap region RA(v, σ) taken by an operational value v with v σ
A a is defined

as follows:

• RUnit(unit, σ) = ∅ • R♦(`, σ) = {`}

• RA1×A2
((v1, v2) , σ) = RA1

(v1, σ) ∪ RA2
(v2, σ)

• RAL+AR
(inl (v) , σ) = RAL

(v, σ) • RAL+AR
(inr (v) , σ) = RAR

(v, σ)

• RµX.A(v, σ) = RA[µX.A/X](v, σ) • R♦A(`, σ) = {`} ∪ RA(σ(`), σ)

As we said in the introduction, we will view all recursive types as container types, i.e. we
will view the region taken by a representation of a value of a recursive type µX.A on the
heap as consisting of two parts. Firstly, it is the “control structure” layer corresponding to
the locations associated with those ♦’s within A which are not within any deeper recursive
type. The data layer then consist of the locations associated with all the other ♦’s within A.
For example, in a list value of type

L(L(Bool)) = µX.Unit + ♦
((

µY.Unit + ♦(Bool× Y)
)
× X

)
there are locations holding cons-cells of the top level list corresponding to the outer-level
♦() and cons-cells of the element lists of the top-level list that correspond to the deeper ♦().

In order to be able to make this distinction, we need to define the portions of a region RA(v, σ)

corresponding to each ♦ in A.

In order to be able to talk about occurrences of ♦ in a type A, as well as occurrences of
recursive types and type variables within them, let us define formal addresses of these kinds
of subterms of a type.

8

Figure 4: Definition of Evaluation Relation

[UNIT]

S, σ ` unit À unit, σ

[VAR]

S, σ ` x À S(x), σ

[FUNC]
S(xi) = vi [xi 7→ vi], σ ` ef À v, σ ′

S, σ ` f(x1, . . . , xn) À v, σ ′

[LET]
S, σ ` e1 À v, σ ′ S[x 7→ v], σ ′ ` e2 À v ′, σ ′′

S, σ ` let x = e1 in e2 À v ′, σ ′′

[PAIR]

S, σ ` (x1, x2) À (S(x1), S(x2)) , σ

[PAIR-ELIM]
S(x) = (v1, v2) S[x1 7→ v1][x2 7→ v2], σ ` e À v, σ ′

S, σ ` match x with (x1, x2) ⇒ e À v, σ ′

[INL]

S, σ ` inL (x) À inl (S(x)) , σ

[INR]

S, σ ` inR (x) À inr (S(x)) , σ

[SUM-ELIM-LEFT]
S(x) = inl (vL) S[xL 7→ vL], σ ` eL À v, σ ′

S, σ ` case x of inL (xL) ⇒ eL|inR (xR) ⇒ eR À v, σ ′

[SUM-ELIM-RIGHT]
S(x) = inr (vR) S[xR 7→ vR], σ ` eR À v, σ ′

S, σ ` case x of inL (xL) ⇒ eL|inR (xR) ⇒ eR À v, σ ′

[FOLD]

S, σ ` foldµX.A (x) À S(x), σ

[UNFOLD]

S, σ ` unfoldµX.A (x) À S(x), σ

[PUT]

S, σ ` x@d À S(d), σ[S(d) 7→ S(x)]

[GET]

S, σ ` get (x) À σ(S(x)), σ

[LOC]

S, σ ` loc (x) À S(x), σ

9

Definition 3.1 (Type subterm addresses).
Let us define the set of type subterm addresses AddrXRD(A) of a type A as the set of those
sequences ξ for which Aξ (see below) is defined. The sequences are made of ¥, L, R, 1, 2 and µX, X for
all X ∈ TVar. These addresses correspond to certain subterms of A as follows:

♦¥ = ♦
(

♦A
)
¥ = ♦A

(
♦A

)
¥ξ = Aξ

(AL + AR)Lξ = (AL)ξ (AL + AR)Rξ = (AR)ξ

(A1 ×A2)1ξ = (A1)ξ (A1 ×A2)2ξ = (A2)ξ

(µX.A)µX
= µX.A (µX.A)µXξ = Aξ

XX = X

Let AddrD(A) be the subset of AddrXRD(A) consisting of the addresses which end with ¥. A type
A is called heap-free iff AddrD(A) = ∅.

Similarly, for a given type variable X, let AddrXX(A) be the subset of AddrXRD(A ′) consisting of
the addresses ending with X where A ′ is A in which all bound type variables have been renamed not
to coincide with X. (Thus AddrXX(A) is the set of addresses of the free occurrences of X in A.)

Finally, let AddrR(A) be the subset of AddrXRD(A) of addresses ending with µX for some X.

For example, using the type A = ♦×
(
µY.Unit + ♦Y

)
we get A1¥ = ♦, A2µY

= µY.Unit + ♦Y

and A2µYRY = Y.

When it holds v σ
A a, we may unfold the recursive types within A arbitrarily and still

yielding a valid type A ′ for which it holds v σ
A ′ a. Moreover, when imagining the fully

unfolded (infinite) version of A, we can capture all the possible shapes that the values might
take on the heap. Thus we will formalise addresses into this imaginary infinite type to help
us with the definition of heap portions later.

Definition 3.2 (Addresses within fully unfolded types).
For a closed type A, let UddrRD(A) denote the set of unfolded type subterm addresses which is
defined analogously to AddrXRD(A) as the set of addresses ξ for which A∅

ξ is defined. The unfolded
type subterm Aν

ξ is defined for some types A, address ξ and type variable valuation ν: TVar ⇀ Type
as follows:

(µX.A)
ν
µX

= µX.A (µX.A)
ν
µXξ = A

ν[X7→A]
ξ

Xν
µX

= µX.ν(X) Xν
µXξ = ν(X)

ν
ξ

plus equations for ♦, ♦ , + , × which are analogous to those for Aξ.

Moreover, we associate to every unfolded address ξ ∈ UddrRD(A) its corresponding non-unfolded
address ξF ∈ AddrXRD(A) as follows:

• If ξ ∈ AddrXRD(A) then ξF = ξ,

• otherwise, let ξpµX be the only prefix of ξ (denoting the rest by ξr: ξ = ξpµXξr) such that
ξpX ∈ AddrXRD(A) and let ξµ be the longest prefix of ξp ending with µX. Then define
ξF = ξµ (ξr)

F whenever ξr is not empty and ξF = ξµ otherwise.

10

Consider a representation of a value of the list type µX.Unit + ♦(A× X). All the unfolded
addresses µXR (¥2µX)

n ¥ for n ∈ N correspond to one and the same diamond in the type. If
such a list has length m, then for every n < m the address above can be associated with the
heap location that contains the n-th cons-cell of this list. The rest of the addresses cannot be
associated with any heap location.

In the following definition, we will formalise this observation in the general case: we will
associate one heap location to each one among a certain subset of unfolded addresses of a
diamond within a type, given a particular representation of a value of that type.

Definition 3.3 (Locations for unfolded D-addresses).
Assume v σ

A a and pick a type address ξ ∈ UddrD(A). Let vξ(A, v, σ) ∈ Dom(σ) denote the heap
location v∅

ξ (A, v, σ) (see below) if it is defined and let vξ(A, v, σ) be undefined otherwise.

A heap location vν
ξ(A, v, σ) is defined in some cases, as follows:

vν
¥ (♦, `, σ) = vν

¥ (
♦A, `, σ) = ` vν

¥ξ(
♦A, `, σ) = vν

ξ(A,σ(`), σ)

vν
Lξ(AL + AR, inl (v) , σ) = vν

ξ(AL, v, σ) vν
Rξ(AL + AR, inr (v) , σ) = vν

ξ(AR, v, σ)

vν
1ξ(A1 ×A2, (v1, v2) , σ) = vν

ξ(A1, v1, σ) vν
2ξ(A1 ×A2, (v1, v2) , σ) = vν

ξ(A2, v2, σ)

vν
µXξ(µX.A, v, σ) = v

ν[X7→A]
ξ (A, v, σ) vν

µXξ(X, v, σ) = vν
ξ(ν(X), v, σ)

Now we are ready to “collect” all the locations that correspond to a given occurrence of a dia-
mond in a type. We will also define a bit more subtle sub-collection of these locations—those
which are limited to a certain sub-value. The sub-value is given by an unfolded address of a
recursive type which is then forbidden to unfold any more.

Definition 3.4 (Heap portions and subportions for diamonds).
Whenever v σ

A a and ξ ∈ AddrD(A), we define the portion of the region RA(v, σ) corresponding
to the unfolded type address ξ as the set

Pξ
A(v, σ) =

{
vξ ′(A, v, σ) ξ ′ ∈ UddrD(A), (ξ ′)

F
= ξ, vξ ′(A, v, σ) defined

}
For an unfolded address ξRξ ∈ UddrD(A) with AξR

= µX.A ′, its subportion along ξR is the set

P
ξRξ/ξR

A (v, σ) ={
vξRξ ′(A, v, σ) ξRξ ′ ∈ UddrD(A), ξ ′ has no µX, (ξRξ ′)

F
= (ξRξ)

F
, vξRξ ′(A, v, σ) defined

}
where A ′ is assumed not to contain a bound type variable named X.

Notice that different heap portions of a value may overlap with each other in general. For
example, a list [(R, [(L, ff)]) , (L, ff)] of type

L(Bool + L(Bool + Bool)) = µX.Unit + ♦
((

Bool +
(
µY.Unit + ♦(Bool + Bool× Y)

))
× X

)
represented by `1 on the heap:

[`1 7→ cons(inr (`2) , `2),

`2 7→ cons(inl (ff) , nil)]

has two portions corresponding to the type addresses µXR¥ and µXR¥1RµYR¥. The first
portion equals to {`1, `2} and the second one to {`2}.

11

4 Annotations

We will add several kinds of annotations to every typing judgement Γ ` e : A.

First, we will assign a name ζ from a set Nm to each portion (diamond) address and each
recursive type address within the parameters in the context Γ . (In the examples, we will
use bold letters a, b, . . . as names.) There is a bijection between these names and classes of a
certain equivalence relation on pairs consisting of a variable and an address within its type.
In a machine implementation of the present system, it might be more convenient to work
with type addresses and argument names modulo an equivalence relation instead of portion
names. The main reason for introducing portion names is to make typing rules simpler and
typing judgements shorter and easier to read.

Further, the typing judgement will contain a separation precondition predicate represented
by an element of a set Sep(Γ) which will be defined later. Each element C of Sep(Γ) induces a
binary relation on the argument portion names indicating which portions have to be disjoint
on the heap. The rest of C may indicate internal separation within some portions modulo
the unfolding of some recursive types. For example, the elements of some list might need to
be separated from each other.

The result type will also be annotated at each portion and recursive type address with a
portion name ζ from Nm. Moreover, portion addresses will be annotated with a set Z of
argument portion names. This set indicates the guarantee that ζ will be fully contained
within the space of the argument portions whose names are in Z.

Another guarantee will be expressed by a distinct subset D of the argument portion names.
Portions in D could be modified during the evaluation of the term e. All other portions are
guaranteed to be preserved wherever they are not overlapping with the portions in D.

Finally, there will be a separation condition predicate from Sep(Γ) for each basic separation
predicate of the result type showing a sufficient condition for its validity.

4.1 Types

We first need to formalise a type labelled at its diamond addresses. We define two syntactical
constructions of annotated types, one suitable for generic treatment of the whole type and
one suitable for accessing specific labels in a specific annotated type.

Definition 4.1 (Generic annotated type).
Given a type A and functions fD: AddrD(A) → TD, fR: AddrR(A) → TR for some set T , the
expression A

[
fD
fR

]
is an annotated type. Another syntax for the same annotated type is defined

inductively as follows:

♦
[

fD
fR

]
= ♦[fD(¥)] (

♦A
)[

fD
fR

]
= ♦[fD(¥)](A[

fD◦[ξ 7→¥ξ]

fR◦[ξ 7→¥ξ]

])
Unit

[
fD
fR

]
= Unit

(AL + AR)
[

fD
fR

]
= AL

[
fD◦[ξ 7→Lξ]

fR◦[ξ 7→Lξ]

]
+ AR

[
fD◦[ξ 7→Rξ]

fR◦[ξ 7→Rξ]

]
(A1 ×A2)

[
fD
fR

]
= A1

[
fD◦[ξ 7→1ξ]

fR◦[ξ 7→1ξ]

]
×A2

[
fD◦[ξ 7→2ξ]

fR◦[ξ 7→2ξ]

]
µX.A

[
fD
fR

]
= µX(fR(µX)).A

[
fD◦[ξ 7→µXξ]

fR◦[ξ 7→µXξ]

]

12

Let α() be the obvious polymorphic forgetful mapping from annotated to plain types.

As examples of the syntax introduced above, annotated versions of the list and tree types are
listed below together with their shortcut notation incorporating a simplification enforcing
the use of the same names at certain addresses:

L[ζ](A) = µX(ζ).Unit + ♦[ζ](A× X)

L[ζ]
n (A) = µX(ζ).♦[ζ]Unit + ♦[ζ](A× X)

T[ζ]
b (A) = µX(ζ).♦[ζ]A + ♦[ζ](A× X× X)

T(ζR)[ζ](A) = µX(ζR).A× L[ζ]
n (X)

where A stands for an annotated type in this case.

Definition 4.2 (Annotated types B and E).
Let BType be the set of all annotated types A[δ

ρ] where δ: AddrD(A) → Nm, ρ: AddrR(A) → Nm.

Let EType be the set of all annotated types A[δ,γ
ρ] with δ, γ: AddrD(A) → Nm × ℘(Nm) where ρ

and δ fulfil the same conditions as before.

In the other syntax for A[δ,γ
ρ], a pair (ζ, {ζ1, ζ2, . . .}) from the image of δ, γ will be usually written as

[ζ⊆{ζ1, ζ2, . . .}].

For B = A[δ
ρ] ∈ BType and E = A[δ,γ

ρ] ∈ EType let

ND(B) = ND(E) = Ran(δ)

NR(B) = NR(E) = Ran(ρ)

NC(E) =
⋃

ξ∈AddrR(A)
γ(ξ)

and also N(B) = ND(B) ∪NR(B) and N(E) = ND(E) ∪NR(E).

Thus ND(B) and NR(B) are the sets of the names of all the diamonds and recursive type
constructors, respectively, within B.

From now on, whenever using the symbol B or E (with sub- or super-scripts) let us implicitly
assume that it stands for a type from BType or EType, respectively.

All the notions defined for plain types extend by analogy to annotated types. In particular,
AddrXRD(B) and Bξ are well defined for a B ∈ BType as well as for an E ∈ EType.

For any ξ ∈ AddrD(B)∪AddrR(B), let ζB
ξ denote the name from Nm at the top of Bξ (i.e. the

image of δ or ρ). We will often leave the superscript B out from ζB
ξ . Analogously define ζE

ξ .

Definition 4.3 (Syntax of separation conditions).
For any type B ∈ BType let BasicSep(B) be the least set containing the following basic separation
conditions:

⊥ ∈ BasicSep(B)

ξ1, ξ2 ∈ AddrD(B)

ζξ1
⊗ζξ2

∈ BasicSep(B)

ξR ∈ AddrR(B), ξD ∈ AddrD(B), ξR v ξD

⊗ζξD
©ζξR

∈ BasicSep(B), ⊗ζξD
/ζξR

∈ BasicSep(B)

13

Let ⊗ζ be a shortcut for ⊗ζ©ζ.

Separation conditions are sets of basic separation conditions: Sep(B) = ℘ (BasicSep(B)).

For E ∈ EType, separation conditions BasicSep(E) and Sep(E) are defined analogously.

Definition 4.4 (Meaning of separation conditions).
We say that a valid representation v σ

A a satisfies a condition C ∈ Sep(B) (written as v σ
B;C a)

where α(B) = A, if:

• ⊥ /∈ C

• for every ζξ1
⊗ζξ2

∈ C it holds Pξ1
A (v, σ) ∩ Pξ2

A (v, σ) = ∅

• for every ⊗ζξ©ζξR
∈ C with AξR

= µX.A ′ and ξ = ξRξ ′ (implying Aξ = A ′
ξ ′) it holds

∀ξ1, ξ2 ∈ UddrR(A), ξ1
F = ξ2

F = ξR, ξ1 6v ξ2, ξ2 6v ξ1
::::::::::::::::::

=⇒ P
ξ1ξ ′/ξR

A (v, σ) ∩ P
ξ2ξ ′/ξR

A (v, σ) = ∅

• for every ⊗ζξ/ζξR
∈ C with AξR

= µX.A ′ and ξ = ξRξ ′ it holds

∀ξ1, ξ2 ∈ UddrR(A), ξ1
F = ξ2

F = ξR, ξ1 6= ξ2
::::::::

=⇒ P
ξ1ξ ′/ξR

A (v, σ) ∩ P
ξ2ξ ′/ξR

A (v, σ) = ∅

For example, for a type T[a]
b (L[b](L[c](Bool))), the condition ⊗a means that the nodes and

leaves of the tree are laid out in the heap without any sharing and ⊗b/a means that the lists
labelling the tree do not share with each other. The condition ⊗c/b means that each of the
labelling list has elements separated from each other and is independent from ⊗b/a as well
as ⊗c/a which stands for the separation of the contents between different labels of the tree.
Notice that ⊗c/a usually implies ⊗b/a.

Several basic conditions for the above type are always true: ⊗b,⊗c,⊗c©b, a⊗b, a⊗c, b⊗c.
As for a list L[ζ](A) the conditions⊗ζ ′©ζ (and⊗ζ in particular) are void (because among any
two unfolded addresses of cons-cells one is a prefix of the other) and thus trivially true in
any context, we will ignore them from now on. Conditions like a⊗b, b⊗c are false in some
contexts and will be kept explicitly in the Sep(B) sets.

4.2 Typing judgements

Before tackling the annotation of typing judgements, we need to extend some type-related
notions to typing contexts viewed as tuples of types. We will define type subterm addresses,
separation conditions and a heap representation of value tuples and their portions and sub-
portions related to typing contexts in a straightforward manner.

14

Definition 4.5 (Contexts as tuples of types).
Given a typing context Γ , define the set of its addresses

AddrXRD(Γ) =
{
xξ

∣∣ ξ ∈ AddrXRD(Γ(x))
}
.

For any xξ ∈ AddrXRD(Γ), let Γxξ = Γ(x)ξ and if the context is annotated with portion names, let
also ζΓ

xξ = ζ
Γ(x)
ξ .

Also separation conditions BasicSep(Γ) and Sep(Γ) are defined analogously to BasicSep(B) and
Sep(B) using the context addresses instead of type addresses.

We say that an environment S correctly represents a valuation η on a heap σ according to a typing
context Γ (written S σ

Γ η) if it holds S(x) σ
Γ(x) η(x) for every x in Γ .

Whenever this is so, we can use the following extended notation for regions, portions and subportions:

RΓ (S, σ) = RΓ(x)(S(x), σ)

Pxξ
Γ (S, σ) = Pξ

Γ(x)(S(x), σ)

P
xξ/xξR

Γ (S, σ) = P
ξ/ξR

Γ(x) (S(x), σ)

A representation S σ
Γ ;C η satisfying a separation condition C ∈ Sep(Γ) has a meaning analogous to

the meaning of v σ
E;C a.

The following definitions of annotated typing judgements and their meaning follows the
informal description given in the Introduction and in the beginning of this section.

Definition 4.6 (Syntax of typing judgements).
The sets of annotated typing judgements ZJudg are defined as follows:

Γ = x1 : B1, . . . , xn : Bn C ∈ Sep(Γ) E ∈ EType, N(E) ∩N(Γ) = ∅, NC(E) ⊆ ND(Γ)

D ⊆ ND(Γ) G ∈ BasicSep(E) → Sep(Γ)

(Γ ; C ` e : E; D; G) ∈ ZJudg

where ND(Γ) and N(Γ) are the unions of ND(Bi) and N(Bi), respectively, for all i = 1, . . . , n.

We will represent a concrete guarantee function G by a series of statements s ⇐= G(s) one
for each s ∈ Dom(G) \ {⊥} with G(s) 6= ∅. We will always assume that a guarantee function
G maps ⊥ (i.e. false) to itself.

Definition 4.7 (Meaning of typing judgements).
A typing judgement Γ ; C ` e : E; D; G is operationally correct (OC) if

• whenever it holds S σ
Γ ;C η (separation preconditions) and S, σ ` e À v, σ ′ then it holds

– (correctness and internal separation guarantees) v σ ′

E;CG
JeKη,JPK where

CG =
{
s ∈ BasicSep(E) S σ

Γ ;G(s) η
}

15

– (containment guarantees) for each ξ ∈ AddrD(E) with annotation [ζξ⊆γ(ξ)]

Pξ
E(v, σ ′) ⊆

⋃
ζxξ ′∈γ(ξ)

Pxξ ′

Γ (S, σ)

– (preservation guarantees) for each xξ ∈ AddrD(Γ) it holds

σ|P = σ ′|P where P = Pxξ
Γ (S, σ) \

⋃
ζx ′ξ ′∈D

Px ′ξ ′

Γ (S, σ)

Consider the typing judgement for a predictably defined function which negates the first
element of the argument list (if not empty):

x : L[a](Bool); ∅ ` neghead(x) : L[b⊆{a}](Bool); {a}; ∅

Both the separation precondition and guarantee are empty because BasicSep() is empty for
both the context and the result type. The only portion of the argument gets potentially
destroyed.

The following function does the same as neghead to every element of a list of lists:

x : L[a](L[b](Bool)); {a⊗b,⊗b/a} `
negheadlist(x) : L[c⊆{a}](L[d⊆{b}](Bool)); {a, b}; c⊗d ⇐= {a⊗b}

⊗d/c ⇐= {⊗b/a}

The precondition means that the elements of the list cannot overlap on the heap with each
other. With our system, this is the only way to guarantee the correctness, i.e. that no boolean
on the heap would be negated more than once.

One might argue that, in fact, only portion b gets modified and portion a does not change
at all. This is true and follows from the fact that lists in portion b are modified in-place and
moreover their resulting cons-cells occupy exactly the same positions as the original ones.
Nevertheless, we have no means of expressing such a condition in our language and when
deriving the annotation in a purely compositional manner we have to assume that the lists
could have been modified in a way which would change their reference location and thus
modify portion a too.

The last simple example is binary tree mirroring:

x : T[a]
b (L[b](Bool)); {a⊗b,⊗a} ` treflex(x) : T[c⊆{a}]

b (L[d⊆{b}](Bool)); {a}; c⊗d ⇐= {a⊗b}

⊗c ⇐= {⊗a}

⊗d©c ⇐= {⊗b©a}

⊗d/c ⇐= {⊗b/a}

which requires ⊗a, i.e. the skeleton of the tree must not overlap with itself.

16

Figure 5: Basic typing rules

[UNIT]

; ∅ ` unit : Unit; ∅; ∅

[WEAK]
Γ ; C ` e : E; D; G

Γ, x : B; C ` e : E; D; G

[VAR]
E ∈ EY(B)

x : B; ∅ ` x : E; ∅; GY(E, B)

[FUNC]
Γ = Γf[~x/~y]

Γ ; Cf ` f(x1, . . . , xnf
) : Ef; Df; Gf

[RENAME]
Γ ; C ` e : E; D; G τ: N(Γ) → Nm

Γ [τ];C[τ] ` e : E[τ]; D[τ]; G[τ]

[LET]
Γ1; C1 ` e1 : A

[
δ1,γ

ρ1

]
; D1; G1 Γ2, x : A

[
δ2
ρ2

]
; C2 ` e2 : E; D2; G2

Γ1 ∧ Γ2; C1 ∪ T(C2) ∪
(
D1⊗ND(Γ2)

)
` let x = e1 in e2 : E[γ/δ2]; D1 ∪D2[γ/δ2]; T ◦G2

where T = C 7→ (
(C \ Sepx)[γ/δ2]

)
∪G1

(
(C ∩ Sepx)[δ1/δ2, ρ1/ρ2]

)
and Sepx = BasicSep(A

[
δ2
ρ2

]
).

[PAIR]
E ∈ EY(B1 × B2)

x1 : B1, x2 : B2; ∅ ` (x1, x2) : E; ∅; GY(E, B1 × B2)

[PAIR-ELIM]
Γ, x1 : B1, x2 : B2; C ` e : E; D; G

Γ, x : B1 × B2; C ` match x with (x1, x2) ⇒ e : E; D; G

[INL]
EL ∈ EY(BL) ER = A[δ,ξ 7→∅

ρ]

x : BL; ∅ ` inL (x) : EL + ER; ∅; GY(EL, BL)

[INR]
EL = A[δ,ξ 7→∅

ρ] ER ∈ EY(BR)

x : BR; ∅ ` inR (x) : EL + ER; ∅; GY(ER, BR)

[SUM-ELIM]
Γ, xL : BL; CL ` eL : EL; DL; GL Γ, xR : BR; CR ` eR : ER; DR; GR

Γ, x : BL + BR; CL ∪ CR `
case x of inL (xL) ⇒ eL|inR (xR) ⇒ eR : EL ∪ ER; DL ∪DR; GL ∪GR

[PUT]
E ∈ EY(♦[ζ]B)

x : B, d : ♦[ζ]; {ζ}⊗ND(B) ` x@d : E; {ζ}; GY(E, ♦[ζ]B)

[GET]
E ∈ EY(B)

x : ♦[ζ]B; ∅ ` get (x) : E; ∅; GY(E, B)

[LOC]

x : ♦[ζ]B; ∅ ` loc (x) : ♦[ζ ′⊆{ζ}]; ∅; ∅

17

Figure 6: Typing of fold and unfold
[FOLD]

B = (A[µX.A/X])[δ
ρ] B ′ = A

[
δ|AddrD(A)
ρ|AddrR(A)

]
E = E ′ ∪

⋃
ξX∈AddrXX(A) EξµX

E ′ ∈ EY(B ′) Eξ ∈ EY(Bξ)

x : B; ∅ ` foldµX.A (x) : E; ∅; GM(E) ∪GY(E ′, B ′) ∪
⋃

ξX∈AddrXX(A) GY(EξµX
, BξµX

) ∪G ′ ∪G ′′

where
G ′ =

[
⊗ζξ©ζµX

⇐=
{
ζxξ ′ξ⊗ζxξ ′′ξ ξ ′X, ξ ′′X ∈ AddrXX(A)

}]
ξ∈AddrD(A)

and

G ′′ =
[
⊗ζξ/ζµX

⇐= ditto ∪
{
ζxξ ′ξ⊗ζxξ ξ ′X ∈ AddrXX(A)

}]
ξ∈AddrD(A)

[UNFOLD]
E ∈ EY(B[µX(ζ).B/X])

x : µX(ζ).B; ∅ ` unfoldµX.α(B) (x) : E; ∅; GY(E, B[µX(ζ).B/X]) ∪G ′ ∪G ′′

where
G ′ =

[
ζxξ ′ξ⊗ζxξ ′′ξ ⇐=

{
⊗ζξ©ζµX

}]
ξ∈AddrD(A),ξ ′X,ξ ′′X∈AddrXX(A)

and
G ′′ =

[
ζxξ ′µξ

⊗ζxξ ⇐=
{
⊗ζξ/ζµX

}]
ξ∈AddrD(A),ξ ′X∈AddrXX(A)

5 Typing rules

The rules are summarised in Figs. 5 and 6. The new notation used there will be described
next.

In the [FUNC] rule we assume an annotated program P with P(f) = Γf; Cf ` ef : Bf; Df; Gf

where Γf contains exactly the variables y1, . . . , ynf
in this order.

Given a result type E, we define the minimal default guarantee for E as follows:

GM(E) = [ζ1⊗ζ2 ⇐= Z1⊗DZ2]ζ1⊗ζ2∈BasicSep(E)

where Z1, Z2 appear in the following annotations in E: [ζ1⊆Z1], [ζ2⊆Z2]; and⊗D is one of the
following two similar operations:

Z1⊗Z2 = {ζ1⊗ζ2 ζ1 ∈ Z1, ζ2 ∈ Z2}

Z1⊗DZ2 = {ζ1⊗ζ2 ζ1 ∈ Z1, ζ2 ∈ Z2, ζ1 6= ζ2}

The second one differs from the first one by assuming that whenever the same portion name
is used in two different containment sets, then this portion could be divided into two disjoint
portions which could replace the two occurrences of the original portion while keeping the
containment guarantee. The fact that Z1⊗DZ2 is used instead of Z1⊗Z2 in GM(E) is significant
only in the [UNFOLD] rule where every portion is being split into several pieces some pairs
of which might be disjoint depending on the internal separation pre-conditions.

Several rules use a “copied” type E ∈ EY(B) for (part of) the result type. If B = A[δ
ρ] ∈ BType,

then
EY(B) =

{
A

[
δ ′,ξ 7→{δ(ξ)}

ρ ′

]
any valid δ ′, ρ ′

}
⊂ EType.

18

With a copied type E ∈ EY(B) go its default guarantees GY(E, B) given by the following
formula:

GY(E, B) = GM(E) ∪
[
⊗ζE

ξ/ζE
ξR

⇐=
{
⊗ζB

ξ/ζB
ξR

}]
⊗ζE

ξ/ζE
ξR
∈BasicSep(E)

∪
[
⊗ζE

ξ©ζE
ξR

⇐=
{
⊗ζB

ξ©ζB
ξR

}]
⊗ζE

ξ©ζE
ξR
∈BasicSep(E)

In [FOLD] and [SUM-ELIM], we construct the result type by a E-type union. If E1, E2 ∈ EType,
the union E1 ∪ E2 is defined if the types differ only in the γ-part of the annotation (E1 =

A
[

δ,γ1
ρ

]
, E2 = A

[
δ,γ2

ρ

]
) as the type A

[
δ,γ1∪γ2

ρ

]
where γ1∪γ2 is the the point-wise union of images.

In several places also various guarantee-condition functions are merged (e.g. GL ∪GR) via a
point-wise union of images.

The notation Γ1∧Γ2 stands for the merge of the context Γ1, Γ2. The use of this notation contains
the implicit condition that every variable x that appears in both contexts has the same type
and portion name annotations in both of them. To be able to apply rules that contain Γ1 ∧ Γ2

as intended, we might need to apply the [RENAME] rule first.

Given a substitution τ: N(Γ) → Nm, we can perform it on an annotated type E, a separation
condition C, a guarantee-condition mapping G as well as a set D in the obvious way. The
results are denoted E[τ], C[τ], G[τ] and D[τ], respectively. Analogous substitutions can be
done for τ: N(Γ) → ℘(Nm) using set union where necessary.

When δ: AddrD(A) → Nm is injective and γ: AddrD(A) → ℘(Nm), then we derive a set-
valued substitution γ/δ: Nm ⇀ ℘(Nm) as γ ◦ δ−1. This is used in the [LET] rule.

Notice that, unlike in other extensions of LFPL, there is no side condition in [LET]. Instead,
the illegal cases yield an inconsistent condition set C, i.e. one containing ⊥ or ζ⊗ζ for some
portion name ζ. Similarly, when an additional separation guarantee s is unachievable, its
precondition set G(s) would contain an unsatisfiable basic separation condition.

6 Correctness

A typing rule is OC if whenever all the premises of an instance of the rule are OC then so is
the conclusion. Let us assume that all the typing judgements P(f) are OC.

Proposition 6.1. All the rules in Figs. 5 and 6 are OC.

Proof outline. The proof is conceptually simple but looks complicated due to the complexity
of the annotations. We will therefore show the proof in a greater detail only for the rule [LET]
which is among the most intricate ones.

Assume S σ
Γ1∧Γ2;C1∪T(C2)∪(D1⊗ND(Γ2)) η and S, σ ` let x = e1 in e2 À v, σ ′′. It follows from

definition of À that S, σ ` e1 À vx, σ
′ and S[x 7→ vx], σ

′ ` e2 À v, σ ′′. By simple restriction
we get S1 σ

Γ1;C1
η1 where S1 := S|Dom(Γ1) and η1 := η|Dom(Γ1). Now we can use the correctness

of the first premise and obtain the separation guarantees G1 as well as the containment γ for
portions of x named by δ1 and the destruction limitation D1 in addition to vx σ

A a where
a := Je1Kη1,JPK.

19

Relative to the second premise, we can again derive S2 σ
Γ2;C2x

η2 where S2 := S|Dom(Γ2),
η2 := η|Dom(Γ2) and

C2x :=
{
⊥, ζ1⊗ζ2, ⊗ζ1/ζ, ⊗ζ1©ζ ∈ C2

∣∣ ζ /∈ Ran(ρ2), ζ1, ζ2 /∈ Ran(δ2)
}
.

Nevertheless, to be able to use the second premise, we need to show S2x σ ′

Γ2x;C2
η2x where

S2x := S2[x 7→ vx], Γ2x := Γ2, x : A
[

δ2
ρ2

]
and η2x := η2[x 7→ a]. For this, it remains to prove

S2x σ ′

Γ2x;C2x
η2x and S2x σ ′

Γ2x;C2xx
η2x where

C2x :=
{
ζ1⊗ζ2 ∈ C2

∣∣ ζ1 ∈ Ran(δ2), ζ2 /∈ Ran(δ2)
}

and C2xx :=
{
ζ1⊗ζ2, ⊗ζ1/ζ, ⊗ζ1©ζ ∈ C2

∣∣ ζ ∈ Ran(ρ2), ζ1, ζ2 ∈ Ran(δ2)
}

because C2 = C2x ∪ C2x ∪ C2xx. The former of these two statements follows from the first
part of T(C2) for Γ1 ∧ Γ2 on σ and the containment of each portion δ2(ξ) within the portions
γ(ξ). The latter statement follows from the second part of T(C2) using the validity of the
rely-guarantees G1.

We have proved S2x σ ′

Γ2x;C2
η2x and conclude v σ ′′

E Je2Kη2x,JPK as well as the containment,
preservation and separation guarantees expressed in E, D2 and G2, respectively. It remains
to prove that also the guarantees E[γ/δ2], D1 ∪D2[γ/δ2] and T ◦G2 are valid with respect to
the concluding typing judgement. The proofs of containment and preservation guarantees
are straightforward. For every basic separation predicate s, we assume S σ

Γ1∧Γ2;(T◦G2)(s) η

and prove S2x σ ′

Γ2x;G2(s) η2x in exactly the same way as we did for C2 from T(C2). Using G2

we finish by concluding v σ ′′

E;s Je2Kη2x,JPK. £

7 Inference

Given a well-typed and well-annotated program P, for every term e over P we can perform
the inference of its unannotated type deterministically as usual but we can also infer its an-
notation at the same time. Moreover, we can derive an annotation which does not reuse any
name for two different portions or recursive type constructors. Such a derivable annotation
of e is unique modulo renaming of portions and recursive type constructors.

Given an unannotated well-typed program P, we can infer its strongest derivable annotation
by an iterative process as follows.

• Annotate every unannotated signature Γf, Af with portion names and the strongest
conditions and rely-guarantees: Cf := ∅, Ef := Af[,ξ 7→∅], Df := ∅ and Gf := [s ⇐= ∅]

getting an annotated program P0.

• Infer the annotation for all ef using P0 and translate the derived conditions and rely-
guarantees to annotations of P forming another annotated program P1.

• Repeat the process, obtaining a sequence {Pi} of annotated versions of the program P

until a fixpoint Pk = Pk+1 is found and return Pk.

20

We have studied this process in a more abstract setting in [Konečný 2002] and showed that
it will always terminate with the strongest derivable annotation for P provided that all the
typing rules are monotone in the following sense:

Definition 7.1. A rule is monotone if in any instance by weakening the annotation of the premises
we get an instance whose conclusion is equivalent or weaker than the original one.

A typing judgement
Γ ; C ` e : A[δ,γ

ρ]; D; G

is equivalent or weaker than
Γ ′; C ′ ` e ′ : A ′[δ ′,γ ′

ρ ′

]
; D ′; G ′

if Γ = Γ ′, e = e ′, A = A ′, δ = δ ′, ρ = ρ ′, ∀ξ.γ ′(ξ) ⊆ γ(ξ), D ′ ⊆ D and whenever S σ
Γ ;C η then

S σ
Γ ;C ′ η and whenever S σ

Γ ;G(s) η then S σ
Γ ;G ′(s) η for every basic condition s.

The notion of being syntactically equivalent or weaker is defined for typing judgements anal-
ogously like above but replacing the conditions on C,C ′, G,G ′ with the following: C ′ ⊆ C and
∀s.G ′(s) ⊆ G(s).

Analogously we define when a rule is syntactically monotone.

Proposition 7.2. All the rules in Figs. 5 and 6 are syntactically monotone.

Proof outline. The rules without premises are monotone trivially. Only rules [WEAK], [LET],
[PAIR-ELIM] and [SUM-ELIM] have any premises. All the constructors of annotation C, γ, D

and G(s) in the conclusions of the rules are monotone with respect to subset inclusion. £

Lemma 7.3. If a judgement J is syntactically equivalent or weaker than J ′ then J is equivalent or
weaker than J ′.

The opposite of this lemma does not hold because for some types (e.g. L[a](L[b](Bool))) there
are tautological separation conditions (e.g. a⊗b). Another reason for the failure is that some
conditions are consequences of others, in particular of ⊥. We ruled out some of these tau-
tological conditions (e.g. ⊗ζ for lists) but not all because their characterisation is not trivial
and would further complicate the system. Nevertheless, the following weaker opposite of
the above lemma holds and is sufficient for us:

Lemma 7.4. If
J ≡ Γ ; C ` e : A[δ,γ

ρ]; D; G

is equivalent or weaker than
J ′ ≡ Γ ; C ′ ` e : A

[
δ,γ ′

ρ

]
; D ′; G ′

then there exist C ′′ and G ′′ such that J ′′ ≡ Γ ; C ′′ ` e : A
[

δ,γ ′
ρ

]
; D ′; G ′′ is equivalent to J ′ and J is

syntactically equivalent or weaker than J ′′.

Lemma 7.5. All the rules preserve semantical equivalence of typing judgements.

Corollary 7.6. All the rules in Figs. 5 and 6 are monotone.

21

Figure 7: Derived rules for list term constructors

[NIL]
E = L[ζ⊆∅](A[δ,ξ 7→∅

ρ])

; ∅ ` nilA : E; ∅; GM(E)

[CONS]
Bh = A[δ

ρ] Bt = L[ζ](A
[

δ ′
ρ ′

]
) E = L[ζ ′⊆{ζd}](Eh) ∪ Et Eh ∈ EY(Bh) Et ∈ EY(Bt)

h : Bh, t : Bt, d : ♦[ζd]; {ζd}⊗
(
ND(Bh) ∪ND(Bt)

)
` cons(h, t)@d : E; {ζd}; G

where G = GM(E) ∪GY(Eh, Bh) ∪GY(Et, Bt)

∪
[
⊗ζξ/ζ ′ ⇐= {δ(ξ)⊗δ ′(ξ)}

]
ξ∈AddrD(A)

[MATCH-LIST]
Γ ; C1 ` e1 : E1; D1; G1 Γ, h : A[δ

ρ], t : L[ζ](A
[

δ ′
ρ ′

]
), d : ♦[ζd]; C2 ` e2 : E2; D2; G2

Γ, x : L[ζ](A[δ
ρ]); C ` match x with nil ⇒ e1|cons(h, t)@d ⇒ e2 : E; D; G

where C = C1 ∪ T(C2)[ζ/ζd][δ/δ ′][ρ/ρ ′],
T(C) =

(
C \ {ζ⊗ζd}

)[(
⊗δ(ξ)/ζ

)
/
(
δ(ξ)⊗δ ′(ξ)

)]
ξ∈AddrD(A)

,
E = E1 ∪ (E2[ζ/ζd][δ/δ ′]),
G = G1 ∪ (T ◦G2)

and D = D1 ∪D2[ζ/ζd][δ/δ ′].

8 Examples

To make type checking of programs with lists easier, we put down the typing rules for the
list term constructors in Fig. 7. Rules for trees could be derived in a similar way.

The following typing judgements have been generated by a Haskell implementation of the
typing rules in Fig. 5 and the derived rules for binary trees and the rules for lists in Fig. 7. The
annotations have been automatically deduced by the program using the iterative process
described in Sect. 7.

The judgements in Figs. 8 and 9 are the components of the in-place binary tree reversal algo-
rithm as described in the Introduction. Due to the lack of parametric polymorphism, the ex-
ample cannot involve types with an unbound variable like it did in the Introduction. There-
fore we substitute a simple non-heap-free type L(Bool) in place of the type meta-variable
A.

Although we defined binary trees with labels on both nodes and leaves, we ignore the labels
on leaves in this algorithm. It is crucial here that leaves are not heap-free and their locations
can be reused for cons-cells of the resulting list.

The annotation of paths tells us about the function that in order to work correctly, it needs
the input tree to have non-overlapping control structure disjoint from the labels. The cons-
cells of the result list as well as the cons-cells of the lists in it are constructed solely from
the control structure of the argument tree which is also the only argument portion being

22

Figure 8: Tree reversal top level

paths = x : T[a]
b (L[b](Bool)); {a⊗b,⊗a} `

let n = nilL[](Bool) in pathsaux(x, n)

: L[c⊆{a}](L[d⊆{a}](L[e⊆{b}](Bool))); {a};

c⊗d ⇐= {⊗a}

c⊗e ⇐= {a⊗b}

d⊗e ⇐= {a⊗b}

⊗d/c ⇐= {⊥,⊗a}

⊗e/c ⇐= {⊥,⊗b/a}

⊗e/d ⇐= {⊗b/a}

Figure 9: Tree reversal recursion

pathsaux = t : T[a]
b (L[b](Bool)), p : L[c](L[d](Bool));

{a⊗b, a⊗c, a⊗d,⊗a} `
match t with leafb(a)@d ⇒ let n = nilL[](L[](Bool))

in cons(p, n)@d

| nodeb(v, l, r)@d ⇒ let vp = cons(v, p)@d

in let s1 = pathsaux(l, vp)

in let s2 = pathsaux(r, vp)

in append(s1, s2)

: L[e⊆{a}](L[f⊆{a,c}](L[g⊆{b,d}](Bool))); {a};

e⊗f ⇐= {a⊗c,⊗a}

e⊗g ⇐= {a⊗b, a⊗d}

f⊗g ⇐= {a⊗b, a⊗d, b⊗c, c⊗d}

⊗f/e ⇐= {⊥, a⊗c,⊗a}

⊗g/e ⇐= {⊥, b⊗d,⊗b/a}

⊗g/f ⇐= {b⊗d,⊗b/a,⊗d/c}

23

destroyed. Thus the label data is not modified on the heap at all.

Notice that the elements of the result list cannot be guaranteed to be separated from each
other (i.e. ⊗d/c) under any preconditions (indicated by ⊥). Consequently, the same holds
for the labels when viewed from the result lists’ cons-cells (⊗e/c). Labels viewed from the
individual elements’ cons-cells can be guaranteed to be separated from each other (⊗e/d)
provided that the labels of the argument tree are separated from each other (⊗b/a).

9 Conclusion

We have enhanced the typing system of Aspinall & Hofmann [2002] following the natural
idea that data and control structure should be treated separately. This lead to a, perhaps
surprisingly, complicated system of annotations. Despite using complex notation, the sys-
tem provides efficient annotation inference which is, in fact, an efficient statical analysis of
memory interference.

A possible direct application of various extensions of LFPL including ours is to generate com-
plex efficient imperative algorithms automatically from easy-to-verify functional programs.
For some problem areas the present language might not be sufficiently expressive. It should
be possible, though, to adapt the annotation system in this report to other language features,
including arrays, directed graphs, higher order functions and various resource types.

Also, it could be used for functional languages without the ♦ type that have a fairly straight-
forward heap-based evaluation strategy. For example, recently Hofmann, Jost [2002] and
Kirlı developed a statical analysis of memory consumption in a ♦-free version of LFPL with
implicit memory allocation and deallocation. Combining the present system with the above
would contribute to another area of further research which is to extend the present system
with a resource usage analysis.

9.1 Related work

The theory of Shapely types by Jay [1995] treats inductive and other types as containers ex-
plicitly. Thus the idea to treat differently the control (i.e. shape) and data layers of data
types is common to both this and Jay’s work. Nevertheless, the tools and the purpose of
shape theory are very different from ours and do not seem to be applicable to the present
system. Shape theory is formulated in categorical terms and studies mainly shape polymor-
phism and statical shape analysis on the semantical level. In contrast, we develop a statical
analysis of non-interference in a particular operational semantics with in-place update.

The idea to indicate the level of boxing for representing values of recursive types using
a “boxing” type constructor (♦() in our case) has been also used by Shao [1997a] using the
notation Boxed (). This idea appears often in the context of the strongly-typed intermediate
language for compilation of functional languages FLINT [Shao 1997b, League & Shao 1998].

The use of pre- and post-conditions for certifying in-place update with sharing is not new.
Recent work includes Alias types [Walker & Morrisett 2000, Walker & Morrisett 2001] which
have been designed to express when heap is manipulated type-safely in a typed assembly

24

language. Alias types express properties about heap layout and could be considered as
representations of our assertions. Unfortunately, they cannot express that two heap location
variables may have the same value. In an alias type, two different location variables always
take different values.

Separation Logic [Reynolds 2002] may serve a similar purpose as alias types but for higher
level imperative languages. The logic is in Hoare style where postconditions cannot refer
to the original state and cannot therefore capture effects. If the logic is adapted so that it
can refer to the pre-state, we believe that it is expressive enough to encode our assertions.
Nevertheless, such an encoding might not be very natural.

Our system bears some resemblance to the Region inference of Tofte & Talpin [1997]. They
also associate regions with types and infer certain effects made on these regions. One major
difference is that they also infer where deallocation of regions should take place. This means
that they derive special annotation in terms which influences their evaluation. An analogy to
this in the context of LFPL might be the inference of diamond typed arguments (@d) within
programs mentioned above. Another difference is that the regions of Tofte & Talpin are
mutually disjoint and cannot be explicitly overwritten.

The usage aspects of UAPL which are subsumed in the present system are similar to use
types in linear logic [Guzmán & Hudak 1990] and also to passivity [O’Hearn et al. 1999]
within syntactic control of interference [Reynolds 1978, Reynolds 1989]. These aspects can
be also viewed as effects (in the sense of [Lucassen & Gifford 1988]) somewhat similar to get
and put of Tofte & Talpin [1997]. Our system can be viewed as inferring a combination of
effects on finely specified regions and separation assertions in the style of Reynolds.

Acknowledgements. This research has been supported by the EPSRC grant GR/N28436/01.
The author is grateful to David Aspinall, Robert Atkey and Martin Hofmann for discussion
and comments on this work.

References

Aspinall, D. & Hofmann, M. [2002], Another type system for in-place update, in D. L.
Métayer, ed., ‘Programming Languages and Systems, Proceedings of 11th European
Symposium on Programming’, Springer-Verlag, pp. 36–52. Lecture Notes in Computer
Science 2305. 2, 24

Guzmán, J. C. & Hudak, P. [1990], Single-threaded polymorphic lambda calculus, in ‘Pro-
ceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science’, pp. 333–
343. 25

Hofmann, M. [2000], ‘A type system for bounded space and functional in-place update’,
Nordic Journal of Computing 7(4), 258–289.
URL: citeseer.nj.nec.com/hofmann00type.html 2

Hofmann, M. [2002], The strength of non size-increasing computation, in ‘Proceedings of
17th Annual IEEE Symposium on Logic in Computer Science’. 2

25

Jay, C. B. [1995], ‘A semantics for shape’, Science of Computer Programming 25(2–3), 251–283.
URL: citeseer.nj.nec.com/jay95semantics.html 24

Jost, S. [2002], Static prediction of dynamic space usage of linear functional programs, Mas-
ter’s thesis, Technische Universität Darmstadt, Fachbereich Mathematik. 24

Konečný, M. [2002], Typing with conditions and guarantees in LFPL, Technical Report EDI-
INF-RR-0151, LFCS, Division of Informatics, University of Edinburgh. 3, 21

League, C. & Shao, Z. [1998], Formal semantics of the FLINT intermediate language, Techni-
cal Report Yale-CS-TR-1171, Department of Computer Science, Yale University. 24

Lucassen, J. M. & Gifford, D. K. [1988], Polymorphic effect systems, in ‘Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages’,
ACM Press, pp. 47–57. 25

O’Hearn, P. W., Power, A. J., Takeyama, M. & Tennent, R. D. [1999], ‘Syntactic control of
interference revisited’, Theoretical Computer Science 228, 211–252. 25

Reynolds, J. C. [1978], Syntactic control of interference, in ‘Proceedings of the 5th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages’, ACM Press,
pp. 39–46. 25

Reynolds, J. C. [1989], Syntactic control of interference, part 2, in G. Ausiello, M. Dezani-
Ciancaglini & S. R. D. Rocca, eds, ‘Automata, Languages and Programming, 16th In-
ternational Colloquium’, Springer-Verlag, pp. 704–722. Lecture Notes in Computer
Science 372. 25

Reynolds, J. C. [2002], Separation logic: A logic for shared mutable data structures, in ‘Pro-
ceedings of 17th Annual IEEE Symposium on Logic in Computer Science’. 25

Shao, Z. [1997a], Flexible representation analysis, in ‘Proc. 1997 ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’97)’, Amsterdam, The Nether-
lands, pp. 85–98. 24

Shao, Z. [1997b], An overview of the FLINT/ML compiler, in ‘Proc. 1997 ACM SIGPLAN
Workshop on Types in Compilation (TIC’97)’, Amsterdam, The Netherlands. 24

Tofte, M. & Talpin, J.-P. [1997], ‘Region-based memory management’, Information and Compu-
tation 132(2), 109–176. 25

Walker, D. & Morrisett, G. [2000], Alias types, in ‘ESOP 2000’, pp. 366–381. Lecture Notes in
Computer Science 1782. 24

Walker, D. & Morrisett, G. [2001], Alias types for recursive data structures, in ‘Types in
Compilation 2000’, pp. 177–206. Lecture Notes in Computer Science 2071. 24

26

	Contents
	1 Introduction
	2 Underlying language
	3 Operational semantics
	3.1 Data representation
	3.2 Term evaluation
	3.3 Heap regions

	4 Annotations
	4.1 Types
	4.2 Typing judgements

	5 Typing rules
	6 Correctness
	7 Inference
	8 Examples
	9 Conclusion
	9.1 Related work

	References

