
Typing with Conditions and Guarantees
for Functional In-place Update

Michal Konečný

LFCS Edinburgh, Mayfield Rd, Edinburgh EH9 3JZ, UK
mkonecny@inf.ed.ac.uk,

WWW: http://homepages.inf.ed.ac.uk/mkonecny/

Abstract. Hofmann’s LFPL is a functional language with constructs
that can be interpreted as referring to heap locations. In this view, the
language is suitable for expressing and verifying in-place update algo-
rithms. Correctness of in-place evaluation is guaranteed by a linear typ-
ing. As linearity prevents sharing on the heap, LFPL rejects many sound,
natural in-place update algorithms with sharing. Recently, Aspinall and
Hofmann added usage aspects to parameters of terms in first-order LFPL
in order to type-check sound non-linear programs. Nevertheless, sound-
ness of this system has not been fully established.
We show a more subtle meaning of the usage aspects as pre-conditions
and (rely-)guarantees about the heap layout before and after evaluation.
This interpretation allows a manageable proof of soundness for Aspinall
and Hofmann’s system. Secondly, we present an algorithm for inferring
the strongest sound usage aspects for typable recursive programs.
We outline two other annotated typings of LFPL as systems inferring pre-
conditions and (rely-)guarantees, both extending usage aspects. One is
Atkey’s system based on explicit indication of sharing among parameters
in typing contexts and the other one is a system by the author which
admits LFPL programs in which datatypes share at different layers. The
latter is based on the author’s conditions-and-guarantees approach to
usage aspects.

1 Introduction

This paper is based on the research language LFPL (Linear Functional Pro-
gramming Language) introduced by Hofmann [5]. Hofmann has proved several
important complexity theoretic results about the language in [5, 7]. Here we will
build on the more operational view of LFPL as first explored by Hofmann in
[6]. The language turns out to be well suited for writing functional programs
that can be evaluated efficiently with in-place update. The approach is currently
confined to first-order with arbitrary recursion provided via named functions.

For example, in LFPL we can write the following program to append two
lists:

append(x, y) = match x with Nil → y

| Cons(h, t)@d → Cons(h, append(t, y))@d



Fig. 1. Evaluation of append in LFPL

•x •ystack

heap
v1 •

v2 •

v3 nil

v4 •

v5 nil

¤¤
¤¤

¤¤

¡¡ ¤¤
¤¤

¤¤

¡¡

rrrrrr
xx

rrrrrr
xx

rrrrrr
xx

À •r •y

v1 •

v2 •

v3 •

v4 •

v5 nil

¤¤
¤¤

¤¤

¡¡ ¤¤
¤¤

¤¤

¡¡

rrrrrr
xx

rrrrrr
xx

­­­­­­­­­­­

FF

rrrrrr
xx

The new feature of LFPL over, say, ML is that most datatype constructors take
an additional argument. In a suitable operational interpretation, this argument
stands for the heap location that the constructor occupies. Its type is ♦ which
is a new basic type called diamond. Heap locations are virtually ignored in the
denotational semantics and therefore the program is a definition of list concate-
nation as claimed. Nevertheless, the operational semantics will append the lists
in-place: it modifies the last cons-cell of the first list if the list is not empty and
it overwrites the other cons-cells of the first list with the same contents (see
Fig. 1). We will review LFPL and its operational semantics in Section 2.

This evaluation strategy can go wrong easily in the presence of sharing. For
example, append(x, x) evaluates to a heap with a circular structure for a non-
empty list x. Various terms might fail to evaluate or evaluate with incorrect
results. We will call a term (operationally) sound if it evaluates in harmony with
its denotational semantics. The theme of this paper is the approximation of this
semantical property with a typing system.

Very few terms are operationally sound in all circumstances and therefore we
consider soundness subject to some pre-condition on the layout of the values of
its free variables (parameters) on the heap. For example, append(x, y) is sound
whenever x is separated from y.

In the original LFPL from [6], soundness is achieved via affine linear typing
and the ambient pre-condition that all parameters are separated from each other
and, moreover, the heap satisfies the single pointer property.

Affine linear typing is neat but it appears to be too restrictive for practical
programming as it rejects many natural and sound in-place update algorithms.
For example, the terms (x, x) (a tensor pair) and Cons(even(x), x)@d are sound
under the LFPL separation pre-conditions but do not type-check. (Where even
is an obviously defined function testing the parity of the length of a list.)

A solution to these problems has been introduced by Aspinall and Hofmann
[1]. They distinguish three ways in which a parameter is used during the evalu-
ation of a term. Each variable in a typing context Γ within a typing judgement
Γ ` e : A is assigned a number 1, 2 or 3, called usage aspect, which represents
a guarantee on how the parameter might be used during an evaluation of the
term:



– 1: potentially destructive use (weakest guarantee)
– 2: read-only use, potentially sharing with the result
– 3: read-only use, not sharing with the result (strongest guarantee)

In their system, append and even can have the following typings:

x :1 L(A), y :2 L(A) ` append(x, y) : L(A) x :3 L(A) ` even(x) : Bool

reflecting that the first argument of append may be destroyed (if not empty)
and the second one is not destroyed but may (if not empty) be shared with the
result. Thanks to usage aspects the expression Cons(even(x), x)@d mentioned
above type-checks. Moreover, usage aspects allow a sound treatment of cartesian
products and thus a pair (x, x) which type-checks can be constructed.

The idea of usage aspects is similar to that of use types in linear logic [4] and
also to passivity [14] within syntactic control of interference [16, 17].

It turned out that it was apparently rather hard to prove the soundness of
the typing rules given in [1]. The paper contains only an outline of the soundness
proof. The details were provided by the present author and are being prepared
for publication. The key idea is to consider carefully both the conditions and
guarantees that usage aspects represent, not only the guarantees.

This paper has the following goals, pursued in Sections 3 and 4, respectively:

1. Present a refined view of usage aspects as conditions and guarantees which
– allows an easier proof of soundness,
– provides an efficient algorithm inferring the strongest sound usage as-

pects for typable recursive programs. (In particular, strongest sound us-
age aspects exist.)

2. Abstract away from usage aspects and portray from this point of view other,
more expressive, typing systems for LFPL.

2 LFPL

We introduce the types and terms of the language, following [1] with the excep-
tion that we leave out binary trees and replace natural numbers with booleans
to avoid arithmetic features which are irrelevant to our study:

A ::= ♦ Bool A1 ×A2 A1 ⊗A2 L(A)

e ::= x let x = e1 in e2 f(x1, . . . , xn)
TT FF if x then e1 else e2

(e1, e2) fst(x) snd(x)
x1 ⊗ x2 match x with x1 ⊗ x2 → e

NilA Cons(xh, xt)@xd match x with Nil → e1|Cons(xh, xt)@xd → e2

The language can be extended for arbitrary inductive datatypes the same way
as in [3] or in [11].



Notice the extensive use of variables instead of expressions in term construc-
tors. All of the usual, more general, forms of the terms can be simulated by
the use of let. The reason for this restriction is to confine most of the reasoning
about sharing and destroying of heap resources around the let expressions.

The plain typing (i.e. typing judgements Γ ` e : A without usage aspects) is
defined as usual apart from the rules for list constructors and destructor where
the new location argument d in Cons(h, t)@d is has to have the diamond type
♦. The typing rules can be obtained from those in Fig. 3 by removing usage
aspects.

In LFPL there is no means of allocating new space on the heap which cor-
responds to the fact that there is no closed term of type ♦. This means that
the heap space of the arguments is the only space available to an LFPL func-
tion. Consequently, all functions defined in LFPL are non-size-increasing. This
is significant to the complexity theoretic study of LFPL but not crucial in our
context. We could therefore extend the language with a term new whose type is
♦ and the rest of the paper would be easily extended accordingly.

A program P is a map from a finite set of function names to valid typing
judgements in which the order of parameters is significant: P (f) = Γf ` ef : Af .
All function names used in ef have to be in Dom(P ). The variables in Γf are
the named arguments of f . The pair (Γf , Af ) captures the signature of f .

A denotational semantics JAK for each type A is given using flat Scott do-
mains. For the diamond type we out J♦K = {¥}⊥ and the rest is standard. The
denotation of programs JP K and terms JeKη,JP K with a valuation η of variables
(including the ones that are free in e) is defined by a least fixed point as usual.

2.1 Heap

Before we can formalise the evaluation of LFPL described in the Introduction,
we need to specify how the denotational values can be represented on a heap. A
heap σ is a finite map from locations to heap values. In the case of our simple
language, the only values stored in heap locations are list cons-cells represented
as {hd = vh, tl = vt} where vh, vt are operational values of the following form:

v ::= tt ff (v1, v2) nil `

where ` ranges over heap locations1. These operational values are also assigned
to variables in environments. (See Fig. 1 in the Introduction for an illustration.)

Thus an operational value v together with a heap σ may represent a deno-
tational value a ∈ JAK, e.g. a list or a pair. This relationship is formalised by
the relation v ­σ

A,◦◦ a and extended to tuples by the relation S ­σ
Γ,◦◦ η. The

definition of v ­σ
A,◦◦ a is more or less derivable from the rules for the evaluation

1 We could take a different strategy and have {hd = `h, tl = `t} with two pointers,
one for head and one for tail. Nevertheless, this would require that basic values like
tt, ff and the empty list occupy a heap location. This would result in having TT@d,
FF@d and NilA@d which would make it clumsier to write programs in LFPL.



relation and the definition of region below. For illustration, we quote the clauses
defining the representation relation for lists:

nil ­σ
L(A),◦◦ []

σ(`) = {hd = vh, tl = vt} vh ­σ
A,◦◦ h vt ­σ

L(A),◦◦ t

` ­σ
L(A),◦◦ h :: t

The full definition can be found in [12]. Notice that this representation of lists
does not require the head not to share heap with the tail. In fact, this relation
does not put any restrictions on aliasing of parts of the value, not even on the
components of a tensor pair. Therefore we define another representation relation
v ­σ

A,◦◦ a which differs from the above only by asserting certain separation
conditions2. The change affects only the rules for tensor pairs and cons-cells
(apart from replacing ◦◦ with ◦◦). The latter one becomes:

σ(`) = {hd = vh, tl = vt} vh ­σ
A,◦◦ h vt ­σ

L(A),◦◦ t

RA(vh, σ) ∩RL(A)(vt, σ) = ∅
` ­σ

L(A),◦◦ h :: t

where RA(v, σ) is the region of the value of type A represented by v on σ, i.e.
the set of locations in σ “reachable” from v. Whenever it holds v ­σ

A,◦◦ a, the
region is defined as follows:

RBool(tt, σ) = RBool(ff, σ) = ∅
RA1⊗A2((v1, v2) , σ) = RA1×A2((v1, v2) , σ) = RA1(v1, σ) ∪RA2(v2, σ)

RL(A)(nil, σ) = ∅
RL(A)(`, σ) = {`} ∪RA(vh, σ) ∪RL(A)(vt, σ)

if σ(`) = {hd = vh, tl = vt}
R♦(`, σ) = {`}

The notion of region is easily extended to tuples of values represented by an
environment: RΓ (S, σ) =

⋃
x∈Dom(S) RΓ (x)(S(x), σ).

Values of some types, e.g. Bool× Bool, do not use heap at all. Such types are
called heap-free.

2.2 Evaluation

The operational semantics of LFPL terms is expressed by a big-step evaluation
relation S, σ ` e À v, σ′ where

– S is the environment mapping the free variables of e to operational values
which refer to the initial heap σ,

– v is the result operational value referring to the result heap σ′.

The definition of the evaluation relation is in Fig. 2.

2 The symbols ◦◦ and ◦◦, suggested by Martin Hofmann, stand for sharing and sepa-
ration, respectively.



Fig. 2. Definition of Evaluation Relation

[var]

S, σ ` x À S(x), σ

[func]

S, σ ` ef À v, σ′ Γf = y1 : A1, . . . , yn : An

S ◦ (xi 7→ yi), σ ` f(x1, . . . , xn) À v, σ′

[let]

S, σ ` e1 À v, σ′ S[x 7→ v], σ′ ` e2 À v′, σ′′

S, σ ` let x = e1 in e2 À v′, σ′′

[true]

S, σ ` TT À tt, σ

[if-true]

S(x) = tt S, σ ` e1 À v, σ′

S, σ ` if x then e1 else e2 À v, σ′

[false]

S, σ ` FF À ff, σ

[if-false]

S(x) = ff S, σ ` e2 À v, σ′

S, σ ` if x then e1 else e2 À v, σ′

[tensor-pair]

S, σ ` x1 ⊗ x2 À (S(x1), S(x2)) , σ

[tensor-elim]

S(x) = (v1, v2) S[x1 7→ v1][x2 7→ v2], σ ` e À v, σ′

S, σ ` match x with x1 ⊗ x2 → e À v, σ′

[cart-pair]

S, σ ` e1 À v1, σ
′ S, σ′ ` e2 À v2, σ

′′

S, σ ` (e1, e2) À (v1, v2) , σ′′

[fst]

S(x) = (v1, v2)

S, σ ` fst(x) À v1, σ

[snd]

S(x) = (v1, v2)

S, σ ` snd(x) À v2, σ

[nil]

S, σ ` NilA À nil, σ

[cons]

S, σ ` Cons(xh, xt)@xd À S(xd), σ[S(xd) 7→ {hd = S(xh), tl = S(xt)}]

[match-list-nil]

S(x) = nil S, σ ` e1 À v, σ′

S, σ ` match x with Nil → e1|Cons(xh, xt)@xd → e2 À v, σ′

[match-list-cons]

σ(S(x)) = {hd = vh, tl = vt} S[xh 7→ vh, xt 7→ vt, xd 7→ S(x)], σ ` e2 À v, σ′

S, σ ` match x with Nil → e1|Cons(xh, xt)@xd → e2 À v, σ′



Lemma 1. For every evaluation S, σ ` e À v, σ′ with the representation of
parameters S ­σ

Γ,◦◦ η and of result v ­σ′

A,◦◦ a, it holds:

1. Dom(σ) = Dom(σ′)
2. RA(v, σ′) ⊆ RΓ (S, σ)
3. ∀` ∈ Dom(σ) \RΓ (S, σ), σ(`) = σ′(`)

This lemma can be proved easily by induction on the structure of e from the
full definition of evaluation relation and region. If we would add heap allocation
to LFPL, statements (1) and (2) would have to be adjusted.

3 Usage Aspects

In this section, we review the usage aspects introduced by Aspinall and Hofmann
in [1], expose our foundations for proving the soundness of the system and, finally,
discuss an efficient aspect inference algorithm.

As shown in the Introduction, the syntax of typing judgements annotated
with usage aspects is as follows:

x1 :i1 A1, . . . , xn :in An ` e : A n ∈ N, ij ∈ {1, 2, 3} for 1 ≤ j ≤ n

Unless stated otherwise, from now on, assume that every Γf is a typing judge-
ment with usage aspects, i.e. that we deal with annotated programs.

A full list of typing rules with usage aspects can be found in Fig. 3. The
rules use the following notation: Γ [x] stands for the aspect of x in Γ and Γ i

stands for the context which arises from Γ by changing any usage aspect 2 in
Γ to i. The joined context Γ1 ∧ Γ2 is defined when the contexts are compatible
(i.e. Γ1(x) = Γ2(x) for every x ∈ |Γ1| ∩ |Γ2| where |Γ | is the set of all variables
in Γ ) and annotations are calculated as the minimum where the contexts Γ1, Γ2

overlap: ∀x ∈ |Γ1| ∩ |Γ2|.(Γ1 ∧ Γ2)[x] = min(Γ1[x], Γ2[x]).

3.1 Soundness

We aim to define when a typing judgement annotated with usage aspects is
sound in such a way that each typing rule would transform sound premises to
a sound conclusion. This consists in finding an interpretation of usage aspects
which is more subtle than the one given in [1]. The interpretation which follows
has evolved during the search for a proof of the desired property:

– x :1 A: condition: x is separated from all the other parameters
condition: x is represented without internal sharing
guarantee: none (x could be even destroyed)

– x :2 A: condition: x is separated from all parameters with aspect 1
guarantee: x is preserved during evaluation

– x :3 A: condition: x is separated from all parameters with aspect 1
guarantee: x is preserved during evaluation
guarantee: x is separated from the result with the exception of its

portion which shares with parameters of aspect 2



Fig. 3. LFPL typing rules with usage aspects

[drop]

Γ, x :i A ` e : A′ j ≤ i

Γ, x :j A ` e : A′

[raise]

Γ ` e : A A heap-free

Γ 3 ` e : A

[var]

Γ, x :2 A ` x : A

[weak]

Γ ` e : A′

Γ, x :3 A ` e : A′

[let]

Γ1 ` e1 : A Γ2, x :i A ` e2 : A′ Either ∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z] = 3,
or i = 3,∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z], Γ2[z] ≥ 2

Γ i
1 ∧ Γ2 ` let x = e1 in e2 : A′

[true]

` TT : Bool

[false]

` FF : Bool

[if]

Γ ` e1 : A Γ ` e2 : A

Γ, x :3 Bool ` if x then e1 else e2 : A

[cart-intro]

Γ1 ` e1 : A1 Γ2 ` e2 : A2 ∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z], Γ2[z] ≥ 2

Γ1 ∧ Γ2 ` (e1, e2) : A1 ×A2

[fst]

x :2 A1 ×A2 ` fst(x) : A1

[snd]

x :2 A1 ×A2 ` snd(x) : A2

[tens-intro]

x1 :2 A1, x2 :2 A2 ` x1 ⊗ x2 : A1 ⊗A2

[tens-elim]

Γ, x1 :i1 A1, x2 :i2 A2 ` e : A′ i = min(i1, i2)

Γ, x :i A1 ⊗A2 ` match x with x1 ⊗ x2 → e : A′

[nil]

` NilA : L(A)

[cons]

h :2 A, t :2 L(A), d :1 ♦ ` Cons(h, t)@d : L(A)

[list-elim]

Γ ` e1 : A′ Γ, h :ih A, t :it L(A), d :id ♦ ` e2 : A′

Γ, x :min(ih,it,id) L(A) ` match x with Nil → e1|Cons(h, t)@d → e2 : A′



Moreover, we can give a guarantee that the result is represented without internal
sharing if the same holds for all parameters with aspect 2 and there is no sharing
between them.

The guarantees associated with the usage aspects in the original motivating
interpretation are a special case of the above interpretation when the precon-
ditions are strengthened to allow sharing only between and within parameters
with aspect 3 and nowhere else. Then variables with aspect 3 are truly separated
from the result.

Our more encompassing interpretation is required when proving the sound-
ness of the [let] rule. E.g. consider let x = y in (even(x), y) and see that in the
subterm (even(x), y) the variables x, y share despite having usage aspects 3, 2,
respectively.

In order to formalise this interpretation succinctly, we introduce more nota-
tion. New operators rg, sep, lin,pres stand for region, separation, (linear) internal
separation and preservation, respectively. They are defined in the context of a
typing judgement Γ ` e : A with usage aspects and an evaluation S, σ ` e À v, σ′

as follows:

rg(x) = RΓ (x)(S(x), σ),
sep(x, y) ≡ rg(x) ∩ rg(y) = ∅, sep(T, T ′) ≡

∧
x∈T,x′∈T ′,x 6=x′ sep(x, x′)

lin(x) ≡ (∃a)
(
S(x) ­σ

Γ (x),◦◦ a
)
, lin(T ) =

∧
x∈T lin(x)

pres(x) ≡ (∀` ∈ rg(x))
(
σ(`) = σ′(`)

)
, pres(T ) =

∧
x∈T pres(x)

In the same context, the symbol r is treated as a special variable representing
the result on the heap σ′, i.e. S(r) = v, Γ (r) = A and in relation to r the heap
σ′ is used instead of σ. Thus one can say, e.g. lin(r) or sep(x, r).

When it is not clear which heap(s), environment or result value these opera-
tors refer to, we will state them explicitly after the assertion like this: sep(x, y) a
S, σ or pres(x) a S, σ, v, σ′. Types of variables are usually clear from the context.

For a typing context Γ with usage aspects, we let |Γ |i denote the set of those
variables in Γ that have aspect i. Let |Γ |i,j stand for the union of |Γ |i and |Γ |j .

Definition 1. A typing judgement Γ ` e : A with usage aspects is sound if

– S, σ ` e À v, σ′,
– S ­σ

Γ,◦◦ η,
– sep(|Γ |1 , |Γ |) and
– lin(|Γ |1)

 =⇒


– v ­σ′

A,◦◦ JeKη,JP K,
– pres(|Γ |2,3),
– rg(r) ⊆ rg(|Γ |1,2) and
– lin(r) if also lin(|Γ |2) and sep(|Γ |2 , |Γ |2).

Definition 2. A typing rule is sound if whenever its premises are sound, so is
its conclusion.

Theorem 1. All the typing rules in Fig 3 are sound.

The theorem is fully proved in a paper in preparation, joined with Aspinall
and Hofmann. Here, we show only a proof for one of the rules for illustration. A
condensed proof of soundness for the most intricate rule [let] and some others
can be found in [12].



Fig. 4. Soundness of [cart-intro]

(Op) S, σ ` (e1, e2) À v, σ′′

(R) S ­σ
Γ1∧Γ2,◦◦ η

(S) sep(|Γ1 ∧ Γ2|1 , |Γ1 ∧ Γ2|) a S, σ
(L) lin(|Γ1 ∧ Γ2|1) a S, σ

(Op12) S, σ ` e1 À v1, σ
′ ∧ S, σ′ ` e2 À v2, σ

′′ ∧ v = (v1, v2)
(R1) S1 ­σ

Γ1,◦◦ η1 where S1 = S|Γ1 , η1 = η|Γ1

(SL1) sep(|Γ1|1 , |Γ1|) ∧ lin(|Γ1|1) a S1, σ

(D1) v1 ­σ′
A1,◦◦ Je1Kη1,JP K

(P1) pres(|Γ1|2,3) a S1, σ, v1, σ
′

(C1) rg(r) ⊆ rg(|Γ1|1,2) a S1, σ, v1, σ
′

(Lr1) lin(r) ⇐= lin(|Γ1|2) ∧ sep(|Γ1|2 , |Γ1|2) a S1, σ, v1, σ
′

(R2’) S2 ­σ
Γ2,◦◦ η2 where S2 = S|Γ2 , η2 = η|Γ2

(R2) S2 ­σ′
Γ2,◦◦ η2

(SL2) sep(|Γ2|1 , |Γ2|) ∧ lin(|Γ2|1) a S2, σ

(D2) v2 ­σ′′
A2,◦◦ Je2Kη2,JP K

(P2) pres(|Γ2|2,3) a S2, σ
′, v2, σ

′′

(C2) rg(r) ⊆ rg(|Γ2|1,2) a S2, σ
′, v2, σ

′′

(Lr2) lin(r) ⇐= lin(|Γ2|2) ∧ sep(|Γ2|2 , |Γ2|2) a S2, σ
′, v2, σ

′′

(D1’) v1 ­σ′′
A1,◦◦ Je1Kη,JP K

(D) (v1, v2) ­σ′′
A2,◦◦ Je2Kη2,JP K

(P) pres(|Γ1 ∧ Γ2|2,3) a S, σ, v, σ′′

(C) rg(r) ⊆ rg(|Γ1 ∧ Γ2|1,2) a S, σ, v, σ′′

(Lr) lin(r) ⇐= lin(|Γ1 ∧ Γ2|2) ∧ sep(|Γ1 ∧ Γ2|2 , |Γ1 ∧ Γ2|2) a S, σ, v, σ′′

Proposition 1. The [cart-intro] typing rule is sound.

Proof. Let us state the rule again for convenience:

[cart-intro]

Γ1 ` e1 : A1 Γ2 ` e2 : A2 ∀z ∈ |Γ1| ∩ |Γ2|.Γ1[z], Γ2[z] ≥ 2
Γ1 ∧ Γ2 ` (e1, e2) : A1 ×A2

The main intermediate statements that arise in course of the proof are listed
in Fig. 4. The list starts with the four assumptions and ends with the four
conclusions from Def. 1 applied to the concluding judgement of the rule. Now
we explain why each statement follows from the preceding ones.

Assume (Op,R,S,L). From the operational semantics rule [cart-intro] and
(Op) we get (Op12). Statements (R1,SL1) are simple projections of (R,S,L) and
together with (Op12) form the four conditions of the definition of soundness for
the first premise. Thus we get the four conclusions (D1,P1,C1,Lr1).



By another projection of (R) we get (R2’). To get (R2) as well as (SL2), we
need to show that none of the values referenced in S2 has been modified during
the evaluation of e1. This follows from sep(|Γ1|1 , |Γ2|) (which is a consequence
of (S)), (P2), Lemma 1 (3) and the side condition that Γ2 does not contain any
variable which has aspect 1 in Γ1. Now we get by the soundness of the second
premise and (Op12,R2,SL2) the conclusions (D2,P2,C2,Lr2).

By (C1), the region RA1(v1, σ
′) has not been modified by the evaluation of

e2 thanks to sep(|Γ2|1 , |Γ2|) (a consequence of (S)). Thus we get (D1’) which
together with (D2) yields (D).

From (P1,P2) and (C1,C2) it is easy to deduce (P) and (C), respectively.
Assuming the extra conditions in (Lr), hold on σ then the analogous conditions
holds for Γ1 and Γ2 on their respective heaps σ and σ′—the conditions of (Lr1)

and (Lr2) are satisfied and we get that both v1 and v2 represent values on σ′′

with internal separation which concludes the proof of the last statement (Lr). ut

3.2 Inference

Imagine that a LFPL program is written which type-checks using the plain non-
linear typing. Next, we will show a way to find out whether the program can be
soundly annotated with usage aspects. Moreover, we will be able to find a kind
of principal annotations for typable programs giving its strongest sound usage
aspects.

The typing rules are formulated in such a way that type-checking of terms can
be viewed as a combination of the ordinary type-checking of (non-linear) LFPL
and the inference of usage aspects. Thus we take the approach of performing
ordinary type-checking and deriving the usage aspects along the way.

Our tasks would be trivial if the typing system was strongly deterministic.
There would be only one path of type-checking and it would either fail or succeed.
If succeeded, it would give the only derivable usage aspects as a by-product.
Nevertheless, the typing is not deterministic because of the rules [weak], [drop]

and [raise].
Fortunately, we can still specify a greedy deterministic type-checking strat-

egy which type-checks all typable terms. Dealing with [weak] is standard. The
two rules [drop] and [raise] would be trivial without the usage aspects. They
introduce nondeterminism to the type-checking by allowing the annotation to be
weakened at any time and strengthened at certain situations. Our deterministic
strategy consists in:

– giving [raise] priority over all other rules,
– using [weak] and [drop] only if necessary to make two premises of another

rule match each other.

We need to show that all rules are stable and monotone in a precise sense to
be able to see that this strategy is optimal. To that end, let us first introduce
an order on annotations.

Let the notation Γ ≤ Γ ′ mean that the annotated contexts Γ, Γ ′ do not
differ apart from their usage aspects and it holds Γ [x] ≤ Γ ′[x] for each x ∈ |Γ |.



Extend this order point-wise to annotated programs: P ≤ P ′ if the two programs
differ only in their usage aspect annotations and for every f ∈ Dom(P ) it holds
Γf ≤ Γ ′

f where P (f) = Γf ` ef : Af and P ′(f) = Γ ′
f ` ef : Af .

This syntactical order on annotations agrees with the logical strength order:

Lemma 2. If Γ ≤ Γ ′ and Γ ′ ` e : A is sound, then Γ ` e : A is sound.

Proof. This follows directly from Def. 1 because the pre-conditions sep(|Γ |1 , |Γ |)
and lin(|Γ |1) as well as lin(|Γ |2) and sep(|Γ |2 , |Γ |2) weaken when aspects grow
while the guarantees pres(|Γ |2,3), rg(r) ⊆ rg(|Γ |1,2) and lin(r) strengthen when
aspects grow. ut

As a result of this lemma, we know that there is a truly strongest annotation
for each typing judgement, namely the one with aspect 3 for all parameters.

Definition 3. A typing rule is stable and monotone if for each instance

Γ1 ` e1 : A1, . . . , Γn ` en : An

Γ ` e : A

and any Γ ′
1 ≥ Γ ′

1, . . . , Γ ′
n ≥ Γn there exists Γ ′ ≥ Γ such that the following is

another instance
Γ ′

1 ` e1 : A1, . . . , Γ
′
n ` en : An

Γ ′ ` e : A
.

Proposition 2. All the typing rules in Fig 3 are stable and monotone.

The proof is an easy combinatorial exercise.
Now we can see that our type-checking strategy is optimal: If we follow

another strategy, we either unnecessarily weaken the judgement or miss an op-
portunity to strengthen it (this follows from the fact that [raise] and [drop] do
indeed strengthen or weaken the judgement by Lemma 2). Stability and mono-
tonicity of the rules then guarantee that such losses in strength cannot lead to
a strengthening which would be missed by the greedy strategy.

We are now able infer the strongest annotations for terms given some an-
notations of all functions used in the term. The next step is to infer strongest
annotation for a whole unannotated program P as follows:

– Annotate every parameter of every function in P with the strongest usage
aspect 3 and thus get an annotated program P0.

– Using this annotation for function symbols, infer usage aspects for all the
functions in P if possible to get an annotated program P1.

– Use annotation of Pi to infer Pi+1 if possible.
– Repeat until Pk = Pk+1 holds and return Pk.

This process may fail if some of the terms cannot be annotated. We will show
that in this case the program is not sound.



Assume that the program is sound. Take any sound annotation P ′ of P . This
means that when inferring annotation for P using the annotations from P ′ we
get an annotated program P ′′ with P ′′ ≥ P ′.

It has to hold P ′ ≤ P0. By stability and monotonicity of the typing rules and
thus the typing of terms, we get that our algorithm will not fail but successfully
produce all Pi’s and it holds Pi ≥ P ′′ ≥ P ′. Thus the same holds for an eventual
Pk. This also means that Pk, if returned, is the strongest sound annotation.

From the stability and monotonicity and P1 ≤ P0, we get Pi+1 ≤ Pi for every
i. Since there are only finitely many annotations for a program, the process will
finish after finitely many steps. In fact, the number of steps is at most three
times the total number of parameters in the program. Altogether, the runtime
of the algorithm is asymptotically linear in the size of the program.

4 Beyond Usage Aspects

We can view also other annotation-based typings of LFPL as inferring condi-
tions and guarantees about the heap layout of the parameters and the result.
We will outline how this can be done with the language of Atkey [3] in Sub-
sect. 4.1. Another such language designed by the present author [11] will be
briefly described in Subsect. 4.2. This language is inspired by the analysis of
usage aspects in Sect. 3 as pre-conditions and rely-guarantees (i.e. guarantees
that rely on further pre-conditions) appear in it very explicitly.

For the language of Atkey, it was not possible to generalise the inference
annotation algorithm because of non-existent strongest annotations for some
terms. The second language is designed so that the inference algorithm from
Subsect. 3.2 would apply. Nevertheless, its quadratic size of annotations makes
the inference run asymptotically slower than linearly in the size of the program.

In general, if for an annotation-based typing of LFPL

– all typing rules are sound, stable and monotone,
– for every signature there exists a strongest annotation,
– for every annotated program there is an algorithm inferring strongest anno-

tation for terms using the signature of the program,

then the iterative process described in Subsect. 3.2 infers the strongest annota-
tion for any sound program P .

4.1 Explicit sharing

During the research that led to this paper, other typings for LFPL extending
usage aspects were designed. Namely, Robert Atkey formulated a typing for
LFPL in [3] that adds explicit pre-conditions about sharing among parameters
in addition to the usage aspects. This contrasts with the system of Aspinall and
Hofmann in which separation pre-conditions are deduced from usage aspects (as
described in Subsect. 3.1) and are therefore tightly bound to the usage guaran-
tees.



The syntax of a typing judgement in [3] is Γ ` e : A,S,D where

– Γ contains assumptions of the form x : (Ax, Sx)
– Sx lists parameters that x is allowed to share with
– S lists parameters which may share with the result (aspect 2)
– D lists parameters which may get destroyed (aspect 1)

For example, append can be typed as follows:

x : (L(A), ∅), y : (L(A), ∅) ` append(x, y) : L(A), {y} , {x}

The usage aspects are encoded using a different method. More importantly, they
retain only their meaning as a guarantee. Separation pre-condition is expressed
independently via a symmetrical anti-reflexive relation on the context which is
encoded in the judgement via the Sx sets. This gives more flexibility to the
typing despite maintaining the invariant:

(1) y ∈ Sx =⇒ ((x ∈ S =⇒ y ∈ S) ∧ (x ∈ D =⇒ y ∈ D))

(I.e. parameters with different usage aspects cannot share.)
More formally, the annotation’s meaning can be expressed as the following

assertions (using the notation from Subsect. 3.1):

condition:
∧

(x,Sx)∈Γ sep(x, |Γ | \ Sx) ∧ lin(x)
guarantee: pres(|Γ | \D) ∧ sep(r, |Γ | \ (S ∪D)) ∧ lin(r)

The invariant (1) allows Atkey to formulate the following typing rule for let:

[ES-let]

Γ ` e1 : A,S1, D1 Γ [\D1, x 7→ (A,S1)] ` e2 : B,S2, D2

Γ ` let x = e1 in e2 : B,S2 \ {x}, (D1 ∪D2) \ {x}

which is much simpler and easier to prove sound than [let] from Fig. 3.
The extra flexibility leads to even more sound terms being type-checked but

results in a more complex annotation inference algorithm. The complexity of
type-checking seems to be inherent and caused by the fact that some typing
judgements do not have any strongest correct annotation but a set of several
maximal ones. For example, x : A, y : A′ ` x : A can be annotated in two incom-
parable ways:

x : (A, ∅), y : (A′, ∅) ` x : A, {x}, ∅
x : (A, {y}), y : (A′, {x}) ` x : A, {x, y}, ∅

Maybe this problem can be alleviated by a more subtle interpretation of the
annotation which would make the second judgement weaker than the first one.



Fig. 5. Layers in append

b

e

f

a c

d

Fig. 6. Layered typing of append

x : L[a](L[b](Bool)), y : L[c](L[d](Bool)); parameter layers
{a⊗b,a⊗c,a⊗d} ` separation pre-condition

append(x, y) : L[e⊆{a,c}](L[f⊆{b,d}](Bool)); result layers, containment
{a}; destroyed layers
⊗f/e ⇐= {b⊗d,⊗b/a,⊗d/c} separation rely-guarantees

4.2 Layered sharing

Next, we outline the main ideas of the LFPL typing described in [11] and show
how the system arose from the view of usage aspects as conditions and guarantees
presented above.

In both of the typings shown earlier, one implicitly or explicitly derives the
soundness pre-condition for append(x, y) that x and y have to be completely
separated on the heap. This condition is unnecessarily strong because append
is sound even when the elements of the two lists share with each other. The
sufficient and necessary pre-condition of soundness for append is indeed that the
top-level cons-cells of x (marked a in Fig.5) do not share heap space with y
(marked c and d). The new system arose from the need to distinguish between
different layers3 of datatypes in some situations. Layered sharing has developed
from the idea that usage aspects should be assigned to individual layers instead
of the value as a whole.

Let us now describe the annotations within the typing of append shown in
Fig. 6. Firstly, layer names (a,b, . . .) appear inside the types within the context
as well as in the result type.

Like in Atkey’s language, an explicit separation pre-condition is added to
the typing context. It takes the form of a set of basic separation assertions. A
prime example of a basic separation assertion is a⊗b which means that the two
3 Layers are called portions in [11].



layers are separated. There is another kind of basic separation assertion which
is introduced below.

An equivalent of the usage aspect 1 is the set of destroyed layers shown
towards the end of the judgement. Equivalent to the distinction between aspects
2 and 3 are the containment guarantees shown next to the layer names within the
result type (e.g. e⊆{a, c}). Notice that this containment is unrelated to whether
the layers a and c are destroyed during the evaluation.

A new aspect of this typing are the explicit separation rely-guarantees con-
sisting of a sequence of implications like ⊗f/e ⇐= {b⊗d,⊗b/a,⊗d/c} which
mean that the result satisfies the given basic separation assertion (⊗f/e in this
case—its meaning will be explained shortly) on condition that all the given basic
separation assertions (b⊗d,⊗b/a,⊗d/c in this case) hold for the parameters.

The basic separation assertion ⊗f/e means that within any list marked by e
all instances of the layer f are separated from each other. More specifically, the
elements of the list do not share with each other. Such assertions do sometimes
appear in the main separation pre-condition.

In [11], the idea of layered datatype sharing is formalised and generalised
for arbitrary inductive datatypes. It is also shown there that the inference algo-
rithm applies to the resulting typing system. An implementation of the inference
algorithm exists and should be soon made available through the web interface
[10].

5 Conclusion

We have extracted and made explicit the ideas that were behind the original
design of usage aspects and thus managed to reformulate their meaning in a
way in which it is manageable to prove the soundness of their typing rules and
to design a simple annotation inference algorithm. We have also outlined from
this perspective Atkey’s early typing and given some hints for its further study.
Lastly, we previewed a powerful typing for layered datatype sharing which has
been formed as a result of this study.

We conjecture that also αλ-calculus [15] which arises from the logic of Bunched
Implications [13] can be interpreted in the present approach similarly to Atkey’s
typing but without considering preservation guarantees. This is very interesting
because αλ-calculus is a higher-order language.

The present approach might be beneficial in extending the usage aspects to
higher order too. A suitable extension of the operational semantics with explicit
allocation of closures has been suggested in [3] and [2]. The leading idea for
designing the typing is that every function type constructor in the judgement
has to be treated like a typing judgement (featuring its captured context). Thus
a function type should be explicitly or implicitly annotated with a subset of
possible annotations of the associated typing judgement.

The use of pre- and post-conditions for certifying in-place update with sharing
is not new. Recent work includes Alias types [19, 20] which have been designed
to express when heap is manipulated type-safely in a typed assembly language.



Alias types express properties about heap layout and could be considered as
representations of our assertions. Unfortunately, they cannot express that two
heap location variables may have the same value. In an alias type, two different
location variables always take different values.

Separation Logic [18] may serve a similar purpose as alias types but for higher
level imperative languages. We believe that it is expressive enough to encode
the assertions present in the three systems which we described in this paper.
Nevertheless, the encoding of layers would not be very natural.

There are plenty more studies related to certifying in-place update which we
cannot possibly cover here.

The novelty of LFPL and its extensions is that one can write in them certified
in-place update algorithms that evaluate in accordance with a simple functional
denotational semantics. The new resource type ♦ makes in-place update explicit
in a functional setting. In the annotated typings of LFPL presented here any
constructor argument of type ♦ is given a “destroyed” aspect. Thus by distin-
guishing different ways in which the resources are used, the typing is made more
flexible. The typings with usage aspects and layered sharing moreover feature a
deterministic type-checking via usage aspect annotation inference thus liberating
a programmer from writing any annotation in their programs. Complementary
aid is given to an LFPL programmer by an automatic inference of constructor
arguments of type ♦ [9, 8].

Acknowledgements. This research has been supported by the EPSRC grant
GR/N28436/01. The author is grateful to David Aspinall and Robert Atkey for
discussion and comments on this work. Many thanks go also to the anonymous
referee who provided valuable hints on how to make the material easier to read.

References

1. David Aspinall and Martin Hofmann. Another type system for in-place update.
In D. Le Métayer, editor, Programming Languages and Systems, Proceedings of
11th European Symposium on Programming, pages 36–52. Springer-Verlag, 2002.
Lecture Notes in Computer Science 2305.

2. Robert Atkey. First year progress report and thesis proposal: Type systems with ex-
plicit sharing. Available from: http://www.dcs.ed.ac.uk/home/roba, August 2002.

3. Robert Atkey. LFPL with explicit sharing and destruction. An unpublished draft,
June 2002.

4. Juan C. Guzmán and Paul Hudak. Single-threaded polymorphic lambda calculus.
In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 333–343, 1990.

5. Martin Hofmann. Linear types and non size-increasing polynomial time compu-
tation. In Logic in Computer Science (LICS), pages 464–476. Computer Society
Press, 1999.

6. Martin Hofmann. A type system for bounded space and functional in-place update.
Nordic Journal of Computing, 7(4):258–289, 2000.

7. Martin Hofmann. The strength of non size-increasing computation. In Proceedings
of 17th Annual IEEE Symposium on Logic in Computer Science, 2002.



8. Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-
order functional programs. In 30th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Langauges (POPL ’03), January 2003.

9. Steffen Jost. Static prediction of dynamic space usage of linear functional programs.
Master’s thesis, Technische Universität Darmstadt, Fachbereich Mathematik, 2002.

10. C. Kirkegaard, R. Atkey, M. Konečný, D. Aspinall, and M. Hofmann.
Prototype compilers with resource-bounded type systems. Available from:
http://www.dcs.ed.ac.uk/home/resbnd/prototypes/, 2000-2003.

11. Michal Konečný. LFPL with types for deep sharing. Technical Report EDI-INF-
RR-157, LFCS, Division of Informatics, University of Edinburgh, October 2002.

12. Michal Konečný. Typing with conditions and guarantees in LFPL. Technical Re-
port EDI-INF-RR-0151, LFCS, Division of Informatics, University of Edinburgh,
October 2002.

13. P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–243, 1999.

14. P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control
of interference revisited. Theoretical Computer Science, 228:211–252, 1999.

15. Peter W. O’Hearn. On bunched typing. To Appear in the Journal of Functional
Programming, 2002.

16. John C. Reynolds. Syntactic control of interference. In Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 39–46. ACM Press, 1978.

17. John C. Reynolds. Syntactic control of interference, part 2. In G. Ausiello,
M. Dezani-Ciancaglini, and S. Ronchi Della Rocca, editors, Automata, Languages
and Programming, 16th International Colloquium, pages 704–722. Springer-Verlag,
1989. Lecture Notes in Computer Science 372.

18. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science,
2002.

19. David Walker and Greg Morrisett. Alias types. In ESOP 2000, pages 366–381,
2000. Lecture Notes in Computer Science 1782.

20. David Walker and Greg Morrisett. Alias types for recursive data structures. In
Types in Compilation 2000, pages 177–206, 2001. Lecture Notes in Computer
Science 2071.


