

Towards Secure and Resilient IoT Infrastructures

an Al Perspective

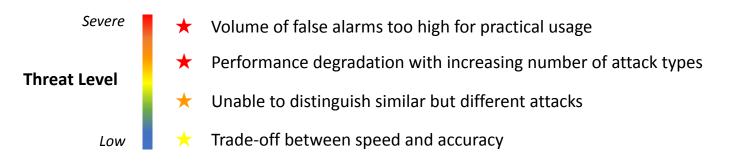
Alec F. Diallo

September, 2021

Agenda

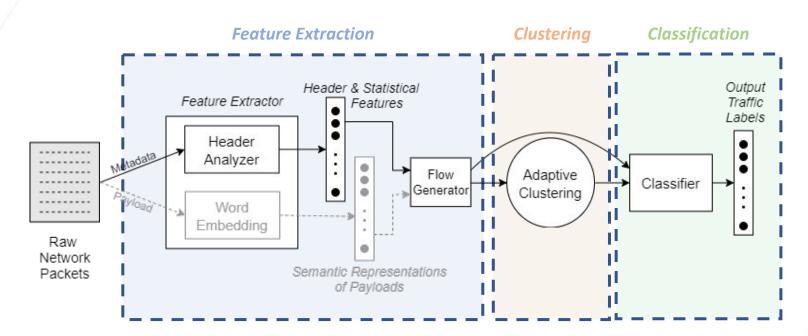
1. Boosting the performance of ML classifiers

Task: Network Intrusion Detection

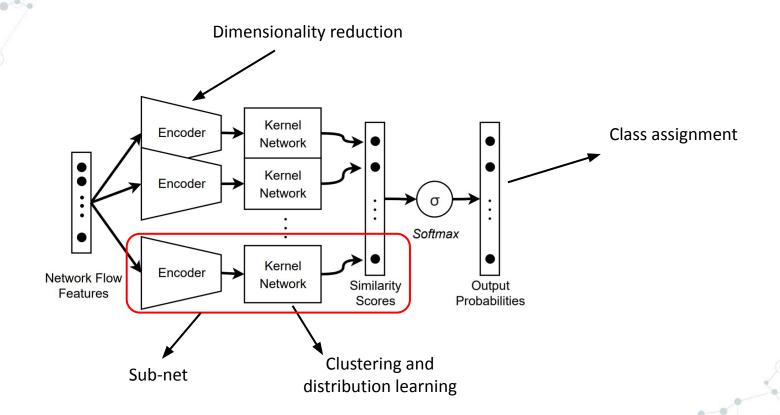

Constraints: Lightweight / Deployable at the Edge

2. Protecting ML classifiers against adversarial attacks

Boosting the performance of ML classifiers


4 Network Intrusion Detection Systems

- * Two main approaches: *Knowledge oriented | Data oriented*
- Shortcomings of existing solutions:



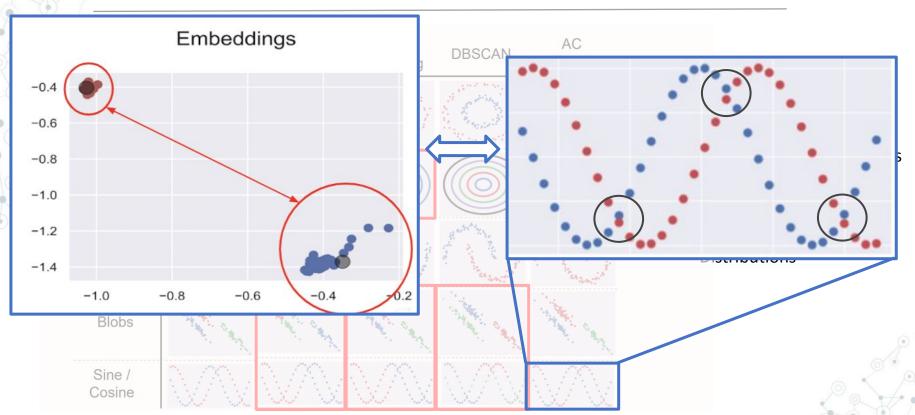
Threat models: Attacker inside/outside the LAN

Proposed Solution

ACID Architecture: Adaptive Clustering-based Intrusion Detection

Solution | Adaptive Clustering network (AC-Net)

: input	Classical Neural Networks	Adaptive Clustering Networks Networks Adaptive Clustering Network Flow Features Network Flow Flow Flow Flow Flow Flow Flow Flow
Scalability	Difficult	Easy
Parallelization	Data	Data + Sub-nets
Model Complexit	y High (1 network = all tasks)	Low (1 sub-net = 1 task)
Architecture	Fixed (high risk of network saturation, conflicts in learned parameters)	Flexible (no network saturation, no conflict in learned parameters)
Sensitivity	Extreme (input features, unbalanced datasets,)	Marginal
Advantages	None	- Optimal class separation - Intrinsic support for continual learning - Built-in clustering mechanism


Results | Clustering with AC-Net

1100	Algorithm / Data set	Ground truth	k-Means	Spectral Clustering	DBSCAN	AC (Ours)
	2 Circles					
	5 Circles					
	2 Moons	The state of the s	Marine St. St. St.		M	The state of the s
	Blobs	Man	A STATE OF	A STATE OF THE PARTY OF THE PAR	Mary and	A MARIE AND A MARI
	Sine / Cosine					

Scenarios:

- Number of clusters/groups
- Shape
- Ambiguity
- Distributions

8 Results | Clustering with AC-Net

Results | Intrusion Detection

Binary classification (Benchmark: ISCX-IDS 2012)

• FAR: False Alarm Rate

Classifier: Random Forests Encoding dimension: 10 Payload features: 50

Approach	Payload-based Features	Accuracy (%)	FAR (%)	F ₁ Score (%)
DAGMM	No	62.91	30.65	53.07
N-BaloT	No	89.19	10.80	89.19
Deep NN	No	88.14	7.41	70.35
TR-IDS	Yes	98.88	1.12	98.87
ACID (ours)	No	99.78	0.23	99.44
ACID (ours)	Yes	100.0	0.00	100.0

Comparison of ACID with existing methods

10 Results | Intrusion Detection

Multi-label classification (ACID)

Metric	Accuracy	FAR	\mathbf{F}_1	Classes	Samples
Dataset	(%)	(%)	(%)		
KDD CUP'99	100.0	0.00	100.0	23	43,510
ISCX-IDS 2012	100.0	0.00	100.0	5	10,547
CSE-CIC-IDS 2018	100.0	0.00	100.0	15	144,772

Properties

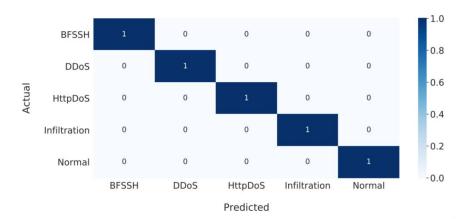
Datasets:

• Time span: 20 years

Number of attack types: 40

Raw network traffic traces

• Train/Test split: 70/30

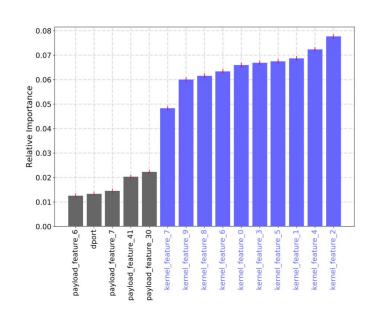

Payload features: Yes

• Test set ≅ 0.2 Billion packets

Classifier: Random Forests

• Encoding dimension: 10

Payload features: 50

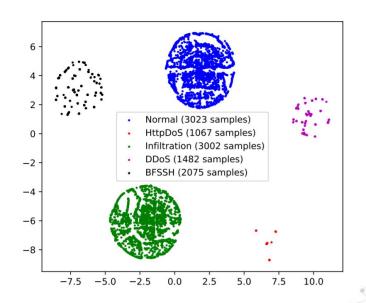


Normalized confusion matrix for multi-label classification using ACID on the ISCX-IDS 2012 dataset.

11 Impact factors | ISCX-IDS 2012

Feature ranking:

15 most important features in the classification process

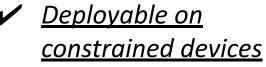

Classifier: Random Forests

Encoding dimension: 10

Payload features: 50

t-SNE (from AC-Net's Embeddings)

t-SNE: A tool used to simplify the visual exploration of high-dimensional data points


12 Complexity Analysis

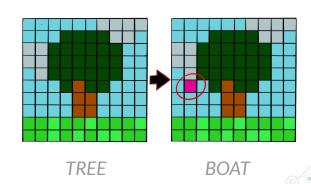
Environmental setup

- 1 Virtual Machine
- 4 CPU cores @ 1.1GHz
- 4 GB RAM
- 50 GB Storage

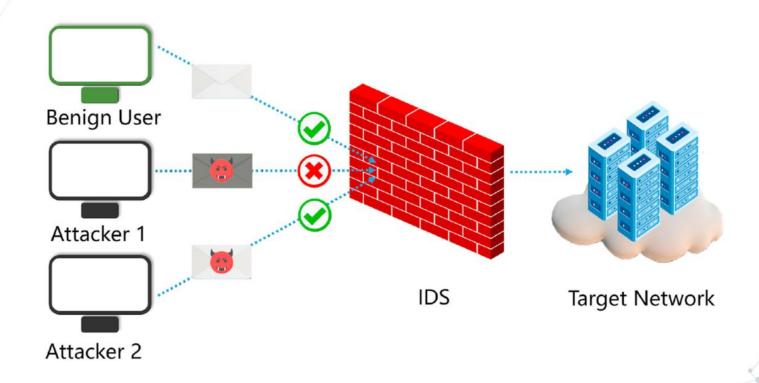
Speed Analysis (per packets)

Payload features?	Duration 		
No	0.78 us		
Yes	145 us		

Parameters	size	Complexity (MFLOP)	Time (seconds)
700 955	1	1.49	0.08 ± 0.01
769,633	128	191.68	0.10 ± 0.02
042.460	1	25.71	0.19 ± 0.04
942,400	128	3291.43	18.59 ± 0.74
	789,855 942,460	942,460 — 1	789,855 1 1.49 128 191.68 942,460 1 25.71


> 100x speed up

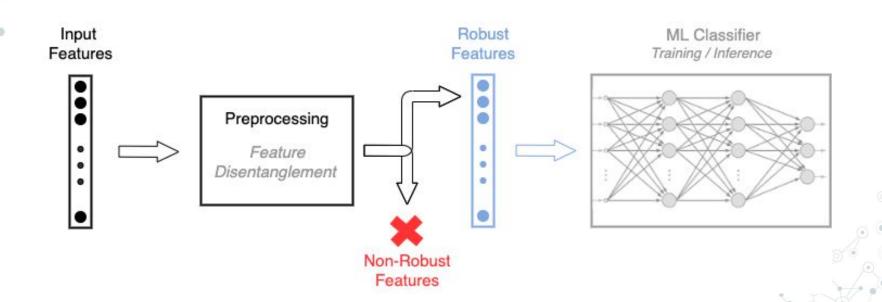
Protecting ML classifiers against adversarial attacks


14 Adversarial Attacks

• <u>Definition:</u> Way of applying *subtle* perturbations to the inputs of a machine learning model, causing it to malfunction or produce a deceitful output.

• Adversarial Sample:
$$f_{\theta}: \mathbf{X} \to \mathbf{Y},$$
 $\mathbf{x}' = \mathbf{x} + \eta, f(\mathbf{x}) = \mathbf{y}, \mathbf{x} \in \mathbf{X},$ $f(\mathbf{x}') \neq \mathbf{y},$ or $f(\mathbf{x}') = \mathbf{y}', \mathbf{y}' \neq \mathbf{y},$

15 Adversarial Attacks



16 Desired Properties

- Retention of performance on non-adversarial samples
- Similar performance on adversarial samples
- Generalization: known + unknown attacks (Attack-agnostic)
- Preprocessing-based approach
 i.e., Can be combined with other defenses
- Low computational overhead

17 Methodology

Goal: Improve robustness by only relying "robust/useful" features from inputs.

Robust Features Extraction

Original Features

Benign

Eps =8/255

Eps = 20/255

PGD L-inf attacks

Eps = 40/255

Robust Features

19 Preliminary Results

CIFAR-10: Top-1 accuracy under different attacks (perturbation bound \mathcal{E} = 8/255)

Attacks	No Attack	FGSM	PGD	
Defenses			20 steps	100 steps
No Defense	94.21	14.64	0.00	0.00
AT (Madry et al., 2018)	87.30	56.1	45.80	45.05
TRADES (Zhang et al., 2019)	84.92	60.87	55.38	55.13
ME-NET (Yang et al., 2019) 0.4-0.6	84.00	71.39	57.50	53.50
Ours	92.61	94.93	94.92	94.92

Thank you!

Read more?

Alec F. Diallo, Paul Patras. "Adaptive Clustering-based Malicious Traffic Classification at the Network Edge" - IEEE INFOCOM 2021.

- PhD supported by **CITM**

Source code available at:
github.com/Mobile-Intelligence-Lab/ACID

Contact: alec.frenn@ed.ac.uk

