
Future Efficient Distributed AI Systems
Luo Mai
Large-scale AI Systems Group
University of Edinburgh



What are the key challenges in AI systems?

Gap to be filled by Distributed AI Systems 

Time

Examples of distributed AI systems:
• Uber Horovod
• TensorFlow / PyTorch Distributed
• Microsoft DeepSpeed
• DeepMind Acme
• …

2

Computational requirement of AI computing



Why should ARM care?
• AI becomes critical workload in data centres

• Gigantic reasoning models: GPT-3, AlphaFold2
• Neural recommendation services: Facebook DLRM
• Real-time gaming services: AlphaStar

• Many AI services are deployed at the edge and endpoints
• Intelligent edge: traffic engineering, content caching
• Intelligent endpoints: personal assistant (phones), scene understanding 

(autonomous vehicles)

3



What are the opportunities for ARM?

Designing efficient distributed AI systems with ARM technologies
• AI systems optimised for ARM chips:

• ARM Desktop Chips, ARM Server CPUs, ARM GPUs

• Distributed AI systems optimised for ARM clouds:
• ARM AI Platform for Machine Learning

4

Existing distributed AI systems exhibits extremely low energy efficiency
• Example: training a GPT-3 consumes energy equivalent to drive a car from the earth to the moon
• Strong demands for sustainable AI infrastructure



My research towards efficient distributed AI systems

Efficient distributed AI systems

High hardware efficiency High statistical efficiency High management efficiency

• Model training systems that can 
dynamically allocate hybrid 
processors [NSDI 2021, …]

• Cloud-edge gigantic model 
serving systems that can achieve 
high energy-efficiency 

• Multi-GPU systems for efficient 
small-batch deep learning 
[VLDB 2019]

• Distributed systems for efficient 
meta-gradient computation

• Systems that support policies for 
automatically tuning parameters 
[OSDI 2020]

• Systems for automatically 
parallelising the training of 
gigantic AI models

5



Key problem in optimising hardware efficiency

Data pre-
processing tasks

Model training 
tasks

Model serving 
tasks

How to allocate AI tasks to distributed devices?

CPUs GPUs FPGAs

Hybrid AI tasks

Cloud Devices
Edge Devices Endpoint DevicesDistributed devices

Research problem
Allocation objectives: inference 
accuracy & latency, energy efficiency

6



How to allocate devices for training models?

Data pre-
processing

Model 
training

CPUs GPUs 

SOTA: Existing AI systems (e.g., TensorFlow, 
PyTorch) statically allocate CPUs for pre-
processing and GPUs for training

Problem: Data pre-processing often become 
bottleneck in emerging AI workloads (e.g., 
GNNs, RL)

Our proposal

Data pre-
processing

Model 
training

CPUs GPUs 

Adaptive processor schedulers

Idea: Designing schedulers that can 
dynamically allocate pre-processing and 
training tasks to CPUs and GPUs based on 
monitored metrics [NSDI 2021, …]

Benefits: Up to 10x performance 
improvement in GNN / Streaming applications

7



How to allocate devices for serving models?
Problem: Allocating cloud and endpoint devices for serving large AI models (e.g., GPT-3, AlphaFold2) 

SOTA: (1) Cloud-based model serving shows low energy-efficiency; (2) Compressing models for endpoint 
deployment hurts model accuracy

Cloud-based model 
serving

(e.g., TensorFlow 
Serving)

Energy 
efficiency

Model 
accuracy

Serving compressed 
model at endpoints

(e.g., TensorFlow Lite)

Our proposal
Endpoint “small” model

Cloud “large” model

Serving request
Small model answers 
requests only when it 
has high confidence; 
otherwise the request is 
routed to large models

Benefit: Reducing the invocation of the cloud 
large model, thus its energy consumption

8



Key problem in improving management efficiency

AI System Parameters

Accuracy-driven hyper-parameters:
SGD batch size
Learning rate
Weight decay

…

Performance-driven system parameters
Level of data parallelism

Level of model parallelism
Level of pipeline parallelism

…

How to find optimal parameters?

9



How to find optimal hyper-parameters?
SOTA: Hyper-parameters are statically configured according to empirical experience
Problem: Users must frequently re-configure hyper-parameters whenever update models

High-level parameter adaptation policies

Scalable policy execution runtime

TensorFlow/PyTorch/Keras Workers

Monitoring training metrics Adapting hyper-parametersKungFu Framework
[OSDI 2020]

https://github.com/lsds/KungFu

Our proposal

10

Benefits:
- Up to 80% improvement in 
model training time
- Elastic resource usage



How to find optimal system parameters?
SOTA: System parameters (e.g., data parallel, model parallel, pipeline parallel) are hard-coded in system implementation
Problem: Users must frequently re-configure system parameters whenever change hardware or environments

Gigantic AI 
Model Declaration

Parallelism Cost 
Model

Parallelism Cost 
Profiler

Parallelism Plan 
Optimiser

Our proposal: Automatic Parallelism Compiler

11

Distributed 
Heterogeneous Devices



Summary
• ARM technologies are keys to design efficient distributed AI systems
• At Edinburgh, we are designing distributed AI systems that can improve
• Hardware efficiency [NSDI’21, …]
• Statistical efficiency [VLDB’19, …]
• Management efficiency [OSDI’20, ...]

Large-scale AI Systems Group
University of Edinburgh

Luo Mai
luo.mai@ed.ac.uk

https://luomai.github.io
12


