
Benchmarking, Analysis, and Optimization of
Serverless Function Snapshots

Dmitrii Ustiugov,

Plamen Petrov, Marios Kogias, Edouard Bugnion, Boris Grot

Why Users Love Serverless

2

Functions

Happy serverless user Serverless providers

Manage

So, you will manage all
infrastructure for me?

No problem!

How to study serverless systems?

Studying Serverless: State-of-the-Art Frameworks

3

Bleeding-edge but proprietary systems
• Complex distributed software stack

Need for a complete open-source framework for serverless research

Incomplete or non-representative
• Single component, e.g., hypervisor
• Container isolation only (e.g., OpenWhisk, OpenLambda)
• but >70% of providers (AWS, Azure, Google) rely on VMs

Serverless in the Age of Open Source

4

Host management (CNCF)

MicroVM (AWS Lambda)

Communication fabric (Google)

Kubernetes Knative

Cluster scheduler & Function-as-a-Service API
(Google & CNCF)

vHive: Framework for Serverless Experimentation

Holistic benchmarking
End-to-end & per-component analysis

Representative of serverless clouds Open-source, integrating latest
production-grade technologies

Firecracker

5

vHive-CRI Integration

Load and latency measurement clients

Istio as load balancer

Kubernetes cluster scheduler

A function instance deployed as a Kubernetes pod, including
● Queue-proxy container (per function instance)

○ Monitors per-instance queue depth
○ Drives function autoscaling

● Firecracker MicroVM with a function handle

First to support snapshotting at scale

6

vHive integrates all serverless components in an open-source research framework

Characterizing Cold Starts with vHive

7

Why Providers… Struggle with Serverless

8

Happy serverless user

Ok…

Serverless providers

How common are rare and short function invocations in serverless?

and... they should be fast & cheap!

and... they run for 1 second

Can I invoke my functions once per hour?

FaaS Characteristics [Azure Functions, ATC’20]

Functions are short (user code)
• 670ms on average

• 90% execute for <10 seconds

The majority of functions are rare (“cold”)
• 80% invoked less than once per minute

9

Short and cold functions are dominant

Function execution time (user code)

Average interval between function invocations

Why Cold Starts are Slow?

Cluster delays are low (<20ms)
● Corroborating [Firecracker, NSDI’20]

Worker-internal delays dominate (helloworld, Python)
● Boot-based cold start: >2 seconds
● Firecracker snapshots: 100s of milliseconds

10

Cold start delays dominated by internal worker delays

Evaluating Worker-Internal Delays

11

Goal: Careful modelling of a single worker, similar to AWS Lambda
● MicroManager terminates connections to MicroVMs & Front-end

vHive single-node configuration
● MicroManager injects the invocation traffic to function instances

Extended Firecracker-Containerd to support VM snapshots

Firecracker Snapshotting Support

Function instance is snapshotted after function server initialization

Firecracker snapshots implementation follows Catalyzer [ASPLOS’20]

The procedure of loading a VM from a snapshot includes:
1. Loads the state of the VM monitor (VMM), virtual NICs and disks
2. Mmaps the guest memory file without populating its contents
3. Resumes function execution from the point of snapshotting
4. Restores the connection between the function server and the MicroManager

12

How fast is Firecracker snapshotting for cold functions?

Methodology: Serverless Characterization with vHive

Host specs
• 48-core Haswell Xeon, Linux v4.15 (Ubuntu 18)
• Snapshots stored on a local SSD (SATA3 850MB/sec)
• Large inputs (e.g., videos) stored in a MinIO object store

MicroVM specs
• Linux v4.14 (Alpine), 1 vCPU, 256MB RAM

Functions adopted from FunctionBench [SoCC’19]
• Wide range of single-function serverless workloads

Emulating cold invocations
• Assumption: guest memory pages evicted from memory
• Modelling: flush the host-OS’ page cache after invocation

13

Evaluated functions from FunctionBench [SoCC’19]

Cold Invocation Delay with Snapshots

Cold start delays dominated by:
• Connection restoration
• Useful function processing

Key: cold invocations are ~20x slower than warm

14

Warm-start (left bars) and cold-start latencies (right bars), ms

What slows function processing down?

Function Memory Usage Characterization

Functions have a non-negligible memory footprint
• High-level languages: Libraries and modules
• High infrastructure tax: gRPC fabric, kernel code, …

Recall: Snapshots rely on lazy paging
• Guest memory (file) is mapped but not populated with contents
• Page faults result in 20x slowdown (avg)

• Serial: Page faults occur one at a time
• No spatial locality: Pages are scattered across the guest memory

Observation: Serial & sparse disk accesses slow down function execution
• Linux run-ahead prefetching is inefficient due to the lack of locality

15

Page faults dominate snapshot-based cold invocation latency

Number of page faults during a single invocation

Key Insight: Function Working Sets are Stable

Study: Trace page faults with userfaultfd
(stock Linux user-level page fault handling mechanism)

Memory footprint is non-trivial
• Functions touch 8-99MB upon each invocation

Key: Function working sets are stable across invocations
• Same language runtime, libraries, guest networking stack, …
• 76-99% of pages are the same, even with different inputs!

16

Idea: Record and prefetch the working set pages

Memory footprint, number of pages

REcord-And-Prefetch (REAP) Snapshots

Record phase (1st invocation)
1. Intercept page faults with Linux userfaultfd
2. Capture working set (WS) pages in a compact file
3. Write the WS file to disk (SSD, HDD, AWS S3, …)

Prefetch phase (2nd and future invocations)
1. Read the WS file from the disk
2. Prefetch all WS pages into the guest memory

• Also, install the page mappings into the host page tables

3. Install missing, non-WS, pages on demand

17

REAP trades off a little extra storage for faster cold starts

Guest memory
Working set file

(2) Capture the working set

Guest memory file

(1) Load pages on demand

Guest memory

(3) Write the WS file to disk

Working set file

(1) Read the WS file

(2) Prefetch WS pages

(3) Install non-WS pages on demand

REAP slashes connection restoration by 45x
• Efficient prefetching of gRPC & network stack

Function processing reduced by 4.5x (avg)
• Exception: video_processing, likely due to OpenCV’s

memory allocation depending on video aspect ratio

Evaluation: FunctionBench [SOCC’19]

Single function cold start latency, ms
(left bars: Firecracker snapshots, right bars: REAP)

18

3.7x faster cold invocations, on average

Takeaways

We introduce the open-source vHive framework for serverless experimentation

Key insight: A function uses the same guest memory pages across invocations

We introduce REcord-And-Prefetch (REAP) technique
● Record working set (WS) pages upon 1st invocation, prefetch upon future invocations

○ Reduces the cold-start latency by 3.7x (avg), by eliminating 97% of page faults
● Seamless integration with Firecracker and Containerd (<250LoC)

● Entirely in user space and infrastructure agnostic

19

20

Academic contributors: Industrial collaborators:

Join the vHive Open-Source Community
https://github.com/ease-lab/vhive

Slack: firecracker-microvm.slack.com, channel: #firecracker-vhive-research

https://github.com/ease-lab/vhive

21

Evaluation: Optimization Steps (helloworld)
Single cold function invocation latency (prefetch phase)

22

Vanilla snapshots: Load VMM and serial page fault processing
● Serial major page faults are slow

Parallel page faults: Fetch WS pages from large guest memory file
● Many SSD accesses to scattered locations in SSD

WS file: Fetch WS pages from a compact WS file
● Host filesystem limits SSD read bandwidth

REAP: Fetch from a WS file & bypass host OS page cache

Peak SSD read bandwidth

SSD read throughput, MB/s

REAP cold-start delays grow sub-linearly with concurrency

REAP extracts 4-6x higher read SSD throughput

REAP becomes SSD-bandwidth bound with >16 instances

Evaluation: Concurrent Cold Invocations

Cold-start latency if concurrently loading (all helloworld, avg)

23

REAP shows better scalability and lower latency

